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Preface

This book provides a calculus-based introduction to probability and statistics.
It contains enough material for two semesters, but with judicious selection,
it can be used as a textbook for a one-semester course, either in probability
and statistics or in probability alone.

In each section, it contains many examples and exercises and, in the sta-
tistical sections, examples taken from current research journals.

The discussion is rigorous, with carefully motivated definitions, theorems,
and proofs, but aimed for an audience, such as computer science students,
whose mathematical background is not very strong and who do not need the
detail and mathematical depth of similar books written for mathematics or
statistics majors.

The use of linear algebra is avoided and the use of multivariable calculus
is minimized as much as possible. The few concepts from the latter, like
double integrals, that were unavoidable are explained in an informal manner,
but triple or higher integrals are not used. The reader may find a few brief
references to other more advanced concepts, but they can safely be ignored.

Some Distinctive Features
In Chapter 2, events are defined (following Kemeny and Snell, Finite

Mathematics) as truth sets of statements. Venn diagrams are presented with
numbered rather than shaded regions, making references to those regions
much easier.

In Chapter 3, combinatorial principles involving all four arithmetic opera-
tions are mentioned, not just multiplication as in most books. Tree diagrams
are emphasized. The oft-repeated mistake of presenting a limited version of
the multiplication principle, in which the selections are from the same set
in every stage and which makes it unsuitable for counting permutations, is
avoided.

In Chapter 4, the axioms of probabilities are motivated by a brief dis-
cussion of relative frequency, and in the interest of correctness, measure-
theoretical concepts are mentioned, though not explained.

In the combinatorial calculation of probabilities, evaluations with both
ordered and unordered selections are given where possible.

v



vi Preface

De Méré’s first paradox is carefully explained (in contrast to many books
where it is mishandled).

Independence is defined before conditioning and is returned to in the
context of conditional probabilities. Both concepts are illustrated by simple
examples before stating the general definitions and more elaborate and inter-
esting applications. Among the latter are a simple version of the gambler’s
ruin problem and Laplace’s rule of succession as he applied it to computing
the chances of the sun’s rising the next day.

In Chapter 5, random variables are defined as functions on a sample space,
and first, discrete ones are discussed through several examples, including the
basic, named varieties.

The relationship between probability functions and distribution functions
is stressed, and the properties of the latter are stated in a theorem, whose
proof is relegated though to exercises with hints.

Histograms for probability functions are introduced as a vehicle for tran-
sitioning to density functions in the continuous case. The uniform and the
exponential distribution are introduced next.

A section is then devoted to obtaining the distributions of functions of
random variables, with several theorems of increasing complexity and nine
detailed examples.

The next section deals with joint distributions, especially in two dimen-
sions. The uniform distribution on various regions is explored and some simple
double integrals are explained and evaluated. The notation f(x, y) is used for
the joint p.f. or density and fX(x) and fY (y) for the marginals. This nota-
tion may be somewhat clumsy, but is much easier to remember than using
different letters for the three functions, as is done in many books.

Section 5.5 deals with independence of random variables, mainly in two
dimensions. Several theorems are given and some geometric examples are
discussed.

In the last section of the chapter, conditional distributions are treated,
both for discrete and for continuous random variables. Again, the notation
fX|Y (x, y) is preferred over others that are widely used but less transparent.

In Chapter 6, expectation and its ramifications are discussed. The St.
Petersburg paradox is explained in more detail than in most books, and the
gambler’s ruin problem is revisited using generating functions.

In Section 6.4 on covariance and correlation, following the basic material,
the Schwarz inequality is proved and the regression line in scatter plots is
discussed.

In the last section of the chapter, medians and quantiles are discussed.
In Chapter 7, the first section deals with the Poisson distribution and the

Poisson process. The latter is not deduced from basic principles, because that
would not be of interest to the intended audience, but is defined just by the
distribution formula. Its various properties are derived though.
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In Section 7.2, the normal distribution is discussed in detail, with proofs
for its basic properties.

In the next section, the de Moivre-Laplace limit theorem is proved, and
then used to prove the continuity correction to the normal approximation of
the binomial, followed by two examples, one of them in a statistical setting.
A rough outline of Lindeberg’s proof of the Central Limit Theorem is given,
followed by a couple of statistical examples of its use.

In Section 7.4, the negative binomial, the gamma, and beta random vari-
ables are introduced in a standard manner.

The last section of the chapter treats the bivariate normal distribution
in a novel manner, which is rigorous, yet simple, and avoids complicated
integrals and linear algebra. Multivariate normal distributions are just briefly
described.

Chapter 8 deals with basic statistical issues. Section 8.1 begins with the
method of maximum likelihood, which is then used to derive estimators in
various settings. The method of moments for constructing estimators is also
discussed. Confidence intervals for means of normal distributions are also
introduced here.

Section 8.2 introduces the concepts of hypothesis testing and is then con-
tinued in the next section with a discussion of the power function.

In Section 8.4, the special statistical methods for normal populations are
treated. The proof of the independence of the sample mean and variance and
of the distribution of the sample variance is in part original. It was devised
to avoid methods of linear algebra.

Sections 8.5, 8.6, and 8.7 describe chi-square tests, two-sample tests, and
Kolmogorov-Smirnov tests.





Preface to the Second Edition

The organization of the book is the same as that of the first edition, except
that Section 8.8 is new. It treats simple linear regression in some detail,
pulling together and extending the partial strands of earlier discussions in
Sections 6.4 and 7.5, which have also been expanded.

We made small improvements in many places to make the text clearer
and more precise. This, of course, included the correction of all the known
errors.

Many new examples have been added, especially more classical ones, such
as the inclusion-exclusion principle, Montmort’s problem, the ballot problem,
the Monty Hall problem, Bertrand’s paradox, Buffon’s needle problem, and
some new applications, e.g., the Maxwell-Boltzmann and the Bose-Einstein
distributions in physics.

In Section 2.2 the previous treatment of the algebra of sets was quite
superficial, because we assumed that this material was familiar to most stu-
dents. Apparently, however, many students needed more, and so we have
included a more detailed and rigorous discussion of set operations.

Section 5.3, Functions of Random Variables, was rewritten by adding
more examples and omitting the theorems. It seemed to be adequate and
pedagogically preferable just to provide brief suggestions for the necessary
procedures and to use those in the examples always from scratch, instead of
substituting into formulas of theorems.

The first edition had about 370 exercises; we have added about 30 more,
especially in sections where their number was inadequate.

The students’ online solution manual has been removed, since it was not
very useful. Apparently, most students have not even looked at it, and now
its removal has created a large number of new exercises available for home-
work. However, the appendix with brief answers and hints for selected odd-
numbered exercises has been retained, and there is a complete online solution
manual for instructors.

The author thanks his wife Maria and son Peter for their support and
patience.

Boston, MA, USA Géza Schay
January 2016
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1. Introduction

Probability theory is a branch of mathematics that deals with repetitive
events whose occurrence or nonoccurrence is subject to chance variation.
Statistics is a related scientific discipline concerned with the gathering, repre-
sentation, and interpretation of data and with methods for drawing inferences
from them.

While the preceding statements are necessarily quite vague at this point,
their meaning will be made precise and elaborated in the text. Here we can
shed some light on them though by a few examples.

Suppose we toss a coin and observe whether it lands head (H) or tail (T )
up. While the outcome may or may not be completely determined by the
laws of physics and the conditions of the toss (such as the initial position
of the coin in the tosser’s hand, the kind of flick given the coin, the wind,
the properties of the surface on which the coin lands, etc.), these conditions
are usually not known anyway, and we cannot be sure which side the coin
will fall on. We usually assign the number 1/2 as the probability of either
result. This can be interpreted and justified in several ways. First, it is just
a convention that we take the numbers from 0 to 1 as probability values and
the total probability for all the outcomes of an experiment to be 1. (We could
use any other scale instead. For instance, when probabilities are expressed as
percentages, we use the numbers from 0 to 100, and when we speak of odds,
we use a scale from 0 to infinity.) Hence, the essential part of the probability
assignment 1/2 to both H and T is the equality of the probabilities of the
two outcomes. Some people have explained this equality by a “principle of
insufficient reason,” that is, that the two probabilities should be equal because
we have no reason to favor one outcome over the other, especially in view
of the symmetrical shape of the coin. This reasoning does not stand up well
in more complicated experiments. For instance, in the eighteenth century,
several eminent mathematicians believed that in the tossing of two coins,
there are three equally likely outcomes, HH,HT , and TT , each of which
should have probability 1/3. It was only through experimentation that people
observed that when one coin shows H and the other T , then it makes a
difference which coin shows which outcome, that is, that the four outcomes,
HH,HT, TH, and TT , each show up about one fourth of the time, and so
each should be assigned probability 1/4. It is interesting to note, however,

© Springer International Publishing Switzerland 2016
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2 1. Introduction

that in modern physics, for elementary particles exactly the opposite situation
holds, that is, they are, very strangely, indistinguishable from each other.
Also, the laws of quantum theory directly give probabilities for the outcomes
of measurements of various physical quantities, unlike the laws of classical
physics, which predict the outcomes themselves.

The coin tossing examples above illustrate the generally accepted form of
the frequency interpretation of probabilities: we assign probability values to
the possible outcomes of an experiment so as to reflect the proportions of the
occurrence of each outcome in a large number of repetitions of the experi-
ment. Due to this interpretation, probability assignments and computations
must follow certain simple rules, which are taken as axioms of the theory.
The commonly used form of probability theory, which we present here, is
based on this axiomatic approach. (There exist other approaches and inter-
pretations of probability, but we are not going to discuss these. They are
mostly incomplete and unsettled.) In this theory we are not concerned with
the justification of probability assignments. We make them in some manner
that corresponds to our experience, and we use probability theory only to
compute other probabilities and related quantities. On the other hand, in
the theory of statistics, we are very much concerned, among other things,
with the determination of probabilities from repetitions of experiments.

An example of the kind of problem probability theory can answer is the
following: Suppose we have a fair coin, that is, one that has probability 1/2
for showing H and 1/2 for T , and we toss it many times. I have 10 dollars
and bet one dollar on each toss, playing against an infinitely rich adversary.
What is the probability that I would lose all of my money within, say, 20
tosses (About 0.026.) Or, to ask for a quantity that is not a probability: For
how many tosses can I expect my $10 to last? (Infinitely many.) Similarly,
how long can we expect a waiting line to grow, whether it involves people in
a store or data in a computer? How long can a typical customer expect to
wait?

Examples of the kinds of problems that statistical theory can answer are
the following: Suppose I am playing the above game with a coin supplied
by my opponent, and I suspect that he has doctored it, that is, that the
probabilities of H and T are not equal. How many times do we have to toss
to find out with reasonable certainty whether the coin is fair or unfair? What
are reasonable assignments of the probabilities of H and T? Or in a different
context, how many people need to be sampled in a preelection poll to predict
the outcome with a certain degree of confidence? (Surprisingly, a sample of a
few hundred people is usually enough, even though the election may involve
millions.) How much confidence can we have in the effectiveness of a drug
tested on a certain number of people? How do we conduct such tests?

Probability theory originated in the sixteenth century in problems of gam-
bling, and even today, most people encounter it, if at all, only in that context.
In this book we too shall frequently use gambling problems as illustrations,
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because of their rich history and because they can generally be described
more simply than most other types of problems. Nevertheless we shall not
lose sight of the fact that probability and statistics are used in many fields,
such as insurance, public opinion polls, medical experiments, computer sci-
ence, etc., and we shall present a wide-ranging set of real-life applications
as well.



2. The Algebra of Events

2.1 Sample Spaces, Statements, and Events

Before discussing probabilities, we discuss the kinds of events whose proba-
bilities we want to consider, make their meaning precise, and study various
operations with them.

The events to be considered can be described by such statements as “a
toss of a given coin results in head,” “a card drawn at random from a regular
52-card deck is an Ace,” or “this book is green.”

What are the common characteristics of these examples?
First, associated with each statement, there is a set S of possibilities or

possible outcomes.

Example 2.1.1. Tossing a Coin.

For a coin toss, S may be taken to consist of two possible outcomes, which
we may abbreviate asH and T for head and tail. We say thatH and T are the
members, elements, or points of S, and write1 S = {H,T}. Another choice
might be S′ = {HH,HT, TH, TT}, where we toss two coins, but ignore one
of them. In this case, for instance, the outcome “the first coin shows H” is
represented by the set {HH,HT}, that is, this statement is true if we obtain
HH or HT and false if we obtain TH or TT . Here the toss of the first coin
is regarded as a subexperiment of the tossing of two coins. �
Example 2.1.2. Drawing a Card.

For the drawing of a card from a 52-card deck, we can see a wide range
of choices for S, depending on how much detail we want for the description
of the possible outcomes. Thus, we may take S to be the set {A,A}, where
A stands for Ace and A for non-Ace. Or we may take S to be a set of 52
elements, each corresponding to the choice of a different card. Another choice
might be S = {S,H,D,C}, where the letters stand for the suit of the card:
spade, heart, diamond, and club. Not every statement about drawing a card
can be represented in every one of these sample spaces. For example, the

1 Recall that the usual notation for a set is a list of its members between braces,
with the members separated by commas. More about this in the next section.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 2
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6 2. The Algebra of Events

statement “an Ace is drawn” cannot be represented in the last sample space,
but it corresponds to the simple set {A} in the sample space {A,A}. �
Example 2.1.3. Color of a Book.

In this example S may be taken to be the set {G,G}, where G stands
for green and G for not green. Or S may be the set {G,R,B,O}, where the
letters stand for green, red, blue, and other. Another choice for S may be
{LG,DG,G}, where the letters stand for light green, dark green, and not
green. �
Example 2.1.4. Tossing a Coin Until an H Is Obtained.

If we toss a coin until an H is obtained, we cannot say in advance
how many tosses will be required, and so the natural sample space is
S = {H,TH, TTH, TTTH, . . .}, an infinite set. We can use, of course, many
other sample spaces as well: for instance, we may be interested only in whether
we had to toss more than twice or not, and then S = {1 or 2, more than 2}
is adequate. �
Example 2.1.5. Selecting a Number from an Interval.

Sometimes, we need an uncountable set for a sample space. For instance,
if the experiment consists of choosing a random number between 0 and 1, we
may use S = {x : 0 < x < 1}. �

As can be seen from these examples, many choices for S are possible in
each case. In fact, infinitely many. This may seem confusing, but we must
put every statement into some context, and while we have a choice over the
context, we must make it definite; that is, we must specify a single, maximal
set S whenever we want to assign probabilities. It would be very difficult to
speak of the probability of an event if we did not know the alternatives.

The set S that consists of all the possible outcomes of an experiment is
called the universal set or the sample space of the experiment. (The word
“universal” refers to the fact that S is the largest set we want to consider
in connection with the experiment; “sample” refers to the fact that in many
applications the outcomes are statistical samples; and the word “space” is
used in mathematics for certain types of sets.) The members of S are called
the possible outcomes of the experiment or the (sample) points or elements
of S. For instance, in Example 2.1.1 the points of S are H and T, and the
points of S′ are {HH,HT} and {TH, TT}. Thus, what we call the possible
outcomes of an experiment depend on the choice of the sample space; they
correspond to the points of the sample space. For instance, in Example 2.1.2,
for the drawing of a card, if we use S = {A,A}, then we consider the possible
outcomes to be those of obtaining an Ace or a non-Ace. On the other hand, if
we use S = {S,H,D,C}, then we consider the possible outcomes to be those
of obtaining a spade, a heart, a diamond, or a club2.

2 In the equation S = {S,H,D,C}, the S on the left denotes the sample space and
the S on the right denotes “spade.” We did not want to change these convenient
notations to avoid the conflict, since the meaning should be obvious.
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The second common characteristic of the examples is that the relevant
statements are expressed as declarative sentences that are true (t) for some
of the possible outcomes and false(f) for the others. For any given sample
space, we do not want to consider statements whose truth or falsehood cannot
be determined for each possible outcome, or conversely, once a statement is
given, we must choose our sample space so that the statement will be t or f
in each point.

For instance, in Example 2.1.2, the statement p = “an Ace is drawn”
is t for A and f for A, if the first sample space is used. If we choose the
more detailed sample space of 52 elements, then p is t for the four sample
points AS,AH,AD, and AC (these stand for the drawings of the Ace of
spades, hearts, diamonds, and clubs, respectively), and p is f for the other
48 possible outcomes. On the other hand, the sample space {black, red} is
not suitable if we want to consider this statement, since we cannot determine
whether this p is true or false if all we know is whether the card drawn is
black or red.

All this can be summarized as follows:
We consider experiments that are described by:

1. The sample space S, i.e., the set of what we want to consider possible
outcomes,

2. A statement or several statements which are true for certain outcomes
in S and false for others. Such a statement is in effect a function from
the set S to the two-element set {t, f}, that is, an assignment of t to the
outcomes for which the given statement is true and f to the outcomes for
which the statement is false. Only statements of this kind are considered.

Any performance of such an experiment results in one and only one point
of S. Once the experiment has been performed, we can determine whether any
allowed statements are t or f for this outcome. Thus, given S, the experiment
we consider consists of selecting one point of the set S, and we perform it
only once. If we want to model repetitions, then we make a single selection
from a new sample space whose points represent the possible outcomes of
the repetitions. For example, to model two tosses of a coin, we may use
the sample space S = {HH,HT, TH, TT} and the experiment consists of
selecting exactly one of the four points HH,HT, TH, or TT , and we do this
selection only once.

The set of sample points for which a statement p is t is called the truth
set of p or the event described by or corresponding to p. For example, the
event corresponding to the statement p = “an Ace is drawn” is the set P =
{AS,AH,AD,AC} if the 52-element sample space is used. Thus, we use
the word “event” to describe a subset3 of the sample space. Actually, if S
is a finite set, then we consider every subset of S to be an event. (If S

3 Recall that a set A is said to be a subset of a set B if every element of A is also
an element of B.
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is infinite, some subsets may have to be excluded.) For example, if S =
{LG,DG,G} is the sample space for the color of a book, then the event
P = {LG,DG} corresponds to the statement p = “the book is green,” and
the event Q = {DG,G} corresponds to q = “the book is dark green or not
green” = “the book is not light green.” Incidentally, this example also shows
that a statement can usually be phrased in several equivalent forms.

We say that an event P occurs if in a performance of the experiment the
statement p corresponding to P turns out to be true.

Warning: As can be seen from the foregoing, when we make a statement
such as p = “a card drawn is an Ace,” we do not imply that this is necessarily
true, as is generally meant for statements in ordinary usage. Also, we must
carefully distinguish the statement p from the statement q =“p is true.” In
fact, even the latter statement may be false. Furthermore, we could have an
infinite hierarchy of different statements based on this p. The next two would
be r =“q is true” and s =“r is true.”

In closing this section, let us mention that the events that consist of a
single sample point are called elementary events or simple events. For in-
stance, {LG}, {DG}, and{G} are the elementary events in the sample space
{LG,DG,G}. (The point LG and the set {LG} are conceptually distinct,
somewhat as the person who is the president is conceptually different from
his or her role as president. More on this in the next section.)

Exercises

Exercise 2.1.1.

A coin is tossed twice. A sample space S can be described in an obvious
manner as {HH,HT, TH, TT}:
a) What are the sample points and the elementary events of this S?
b) What is the event that corresponds to the statement “at least one tail is

obtained”?
c) What event corresponds to “at most one tail is obtained”?

Exercise 2.1.2.

A coin is tossed three times. Consider the sample space
S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} for this experi-
ment:

a) Is this S suitable to describe two tosses of a coin instead of the S in
Exercise 2.1.1? Explain!
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b) What events correspond in this S to the statements
x = “at least one head is obtained,”
y = “at least one head is obtained in the first two tosses,”
z = “exactly one head is obtained”?

Exercise 2.1.3.

a) List four different sample spaces to describe three tosses of a coin.
b) For each of your sample spaces in part a), give the event corresponding

to the statement “at most one tail is obtained,” if possible.
c) Is it possible to find an event corresponding to the above statement in

every conceivable sample space for the tossing of three coins? Explain!

Exercise 2.1.4.

Describe three different sample spaces for the drawing of a card from a
52-card deck other than the ones mentioned in the text.

Exercise 2.1.5.

In the 52-element sample space for the drawing of a card:

a) Give the events corresponding to the statements p = “an Ace or a red
King is drawn” and q = “the card drawn is neither red, nor odd, nor a
face card.”4

b) Give statements corresponding to the events
U = {AH,KH,QH, JH} and V = {2C, 4C, 6C, 8C, 10C, 2S, 4S, 6S, 8S, 10S}.
(In each symbol the first letter or number denotes the rank of the card,
and the last letter its suit.)

Exercise 2.1.6.

Three people are asked on a news show before an election whether they
prefer candidate A or B or have no preference. Give two sample spaces for
the possible answers.

Exercise 2.1.7.

The birth dates of a class of 20 students are recorded. Describe three
sample spaces for the possible birthday of one of these students chosen at
random.

4 The face cards are J, Q, and K.
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2.2 Operations with Sets

Before turning to a further examination of the relationships between state-
ments and events, let us review the fundamentals of the algebra of sets.

As mentioned before, a common way of describing a set is by listing
its members between braces. For example, {a, b, c} is the set consisting of
the three letters a, b, and c. The order in which the members are listed is
immaterial and so is any possible repetition in the list. Thus {a, b, c}, {b, c, a},
and {a, b, b, c, a} each represent the same set. Two sets are said to be equal if
they have exactly the same members. Thus, e.g., {a, b, c} = {a, b, b, c, a}.

Sometimes we just give a name to a set and refer to it by name. For
example, we may call the above set A.

We use the symbol ∈ to denote membership in a set. Thus a ∈ A means
that a is an element of A or a belongs to A. Similarly d /∈ A means that d is
not a member of A.

Another common method of describing a set is that of using a descriptive
statement, as in the following examples: Say S is the 52-element set that
describes the drawing of a card. Then the set {AS,AH,AD,AC} can also
be written as {x|x ∈ S, x is an Ace} or as {x : x ∈ S, x is an Ace}. These
expressions we read as “the set of x’s such that x belongs to S and x is an
Ace.” Also, if the context is clear, we just write this set as {x is an Ace}.

Similarly, {x|2 < x < 3} = {x : 2 < x < 3} = {2 < x < 3} each denote
the set of all real numbers strictly between 2 and 3. (This example also shows
the real necessity of such a notation, since it would be impossible to list all
the infinitely many numbers between 2 and 3.)

We say that a set A is a subset of a set B if every element of A is also
an element of B and denote this relation by A ⊂ B. For instance, {a, b} ⊂
{a, b, c}. We may also read A ⊂ B as “A is contained in B.” Notice that by
this definition, every set is a subset of itself, too. Thus {a, b, c} ⊂ {a, b, c}.
While this usage may seem strange, it is just a convention, which one finds
often useful in avoiding a discussion of “proper” subsets and the whole of a
set separately. The notation A ⊂ B can also be turned around and written
as B ⊃ A and read as “B is a superset of A.”

Given two sets A and B, a new set, called the intersection of A and B,
is defined as the set consisting of all the members common to both A and
B and is denoted by A ∩ B or by AB. The name “intersection” comes from
the case in which A and B are sets of points in the plane. In Figure 2.1, for
instance, A and B are the sets of points inside the two circles, and AB is the
set of points of the region labeled I.

Another example is {a, b, c, d}∩{b, c, e} = {b, c}. See Figure 2.2. (Note the
distinction of the notations in the figures: In Figure 2.1 the Roman numerals
designate the regions, but in Figure 2.2 the letters are objects within those
regions.) Such diagrams are called Venn diagrams .

Notice that the operation of intersection can be used to verify a relation
of containment: A ⊂ B if and only if AB = A.
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For any two sets A and B, another useful set, called the union of A and
B, is defined as the set whose members are all the members of A and B taken
together and is denoted by A ∪ B. Thus, in Figure 2.1 the regions I, II, and
III together make up A ∪B.

A

l lll

lV

ll

S

B

Fig. 2.1. A general Venn diagram for two sets

A

a b

c

e

d

S

B

Fig. 2.2. A Venn diagram for two sets of letters

Also, {a, b, c, d}∪{b, c, e} = {a, b, c, d, e}. The diagram of Figure 2.2 illus-
trates this relation as well.

Unions too can be used to verify a relation of containment: A ⊂ B if and
only if A ∪B = B.

A third important operation is the subtraction of sets: A−B denotes the
set of those points of A that do not belong to B. Thus in Figure 2.1 A − B
is region II and B −A is region III.
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If we subtract a set A from the universal set S, that is, consider S − A,
the result is called the complement of A, and we denote it by A. (There is
no standard notation for this operation: some books use ∼ A, Ã, A′ or Ac

instead). In Figure 2.1, A consists of the regions III and IV, and B of II
and IV.

Using both intersection and complement, we can represent each of the
regions in Figure 2.1 in a very nice symmetrical manner as

I = AB, II = AB, III = AB, and IV = AB.

Also, we see that A−B = AB and B −A = BA.
Here we end the list of set operations, but, in order to make these opera-

tions possible for all sets, we need to introduce a new set, the so-called empty
set. The role of this set is similar to that of the number zero in operations
with numbers: Instead of saying that we cannot subtract a number from it-
self, we say that the result of such a subtraction is zero. Similarly, if we form
A−A for any set A, we say that the result is the set with no elements, which
we call the empty set and denote by ∅. We obtain ∅ in some other cases too:
If A is contained in B, that is, A ⊂ B, then, A − B = ∅. Also, if A and B
have no common element, then AB = ∅ and they are said to be disjoint. In
view of this relation, ∅ is said to be a subset of every set A, that is, we extend
the definition of ⊂ to include ∅ ⊂ A, for every A.

Warning: the empty set must not be confused with the number zero.
While ∅ is a set, 0 is a number, and they are conceptually distinct from
each other. (The empty set can also be used to illuminate the mentioned
distinction between a one-member set and its single member: {∅} is a set
with one element; and the one element is ∅, a set with no element.)

In the theorem below, we list the basic properties of the algebra of sets.

Theorem 2.2.1. (Properties of the Basic Set Operations).

For all subsets A,B,C of a sample space S, the following relations hold:

1. A∪B = B ∪A, AB = BA (commutative rules)
2. A∪ (B ∪ C) = (A ∪B)∪C, A (BC) = (AB)C (associative rules)
3. A ∪ (BC) = (A ∪B) (A ∪ C) , A (B ∪ C) = AB ∪ AC (distributive

rules)
4. A ∪A = A, AA = A (idempotent rules)
5. A ∪ ∅ = A, A∅ = ∅ (rules for ∅)
6. A ∪ S = S, AS = A (rules for S)
7. A ∪A = S, AA = ∅ (rules for A)
8. S = ∅, ∅ = S (rules for S and ∅)
9. A ∩B = A ∪B, A ∩B = A ∪B (deMorgan’s laws)

10. A = A (rule of double complement)
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Proof. The proofs of these rules follow at once from the definitions of the
operations. Here we just give two of them and several are left as exercises.

For example, the proof of the first commutative rule goes like this: A∪B
is defined as the set whose members are all the members of A and B taken
together, and B ∪A as the set whose members are all the members of B and
A taken together. Clearly, the order in which we put things together does not
matter; we get the same set both ways.

DeMorgan’s second law can be proved as follows: If x ∈ A ∩B, then
x /∈ A ∩ B, and so x /∈ A or x /∈ B. Hence x ∈ A or x ∈ B, that is,
x ∈ A ∪ B. Thus A ∩B ⊂ A ∪ B. Conversely, if x ∈ A ∪ B, then x ∈ A or
x ∈ B, whence x /∈ A or x /∈ B, and so x /∈ A ∩ B and x ∈ A ∩B. Thus
A∪B ⊂ A ∩B. The two inclusions above imply A ∩B = A∪B. Alternatively,
this law can be proved by using a Venn diagram. Referring to Figure 2.1, we
have A ∩B = {I} = {II, III, IV } = {III, IV } ∪ {II, IV } = A ∪B. �

The intersection of several sets A,B,C, . . . , Z is defined as the set of points
that belong to each and is denoted by A∩B∩C∩ . . .∩Z or by ABC · · ·Z. We
can use this definition to eliminate parentheses in expressions with multiple
consecutive intersections. For instance,5 by Figure 2.3, ABC = (AB)C, since
ABC = {1} and (AB)C = {1, 4} ∩ {1, 2, 3, 7} = {1}.

S

A

C

5

4

6

1
2

8

3

7

B

Fig. 2.3. A general Venn diagram for three sets

Similarly, the union A∪B∪C ∪ . . .∪Z of several sets is defined as the set
consisting of all the points of the given sets taken together or, equivalently,
as the set of all points that belong to at least one of the given sets. Again,

5 Note that in Figure 2.3 the numerals designate the regions, but we prefer, some-
what against our conventions, to write braces and commas, e.g., {1, 4} instead
of 1∪ 4 and {1} instead of 1, in order to emphasize the use of these numerals as
labels and not as numbers.
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as for intersections A ∪ B ∪ C = (A ∪B) ∪ C, and so the parentheses are
superfluous here and, similarly, in all expressions with multiple consecutive
unions.

In expressions with multiple different operations, the order of precedence
is intersection first, then union, and then subtraction, and the order of com-
plementation is indicated by the placement of the bar. This convention often
enables us to avoid using parentheses. For example, we write AB ∪ C for
(AB) ∪C. Nevertheless, when in doubt, use parentheses; they do no harm if
used correctly.

The rules of Theorem 2.2.1 can be used to simplify or compare expressions,
as, for instance, in the following examples.

Example 2.2.1. Simplifying Expressions.

1. A ∪AB = AS ∪AB = A (S ∪B) = AS = A.
2. (A ∪ B) (A ∪ C) = A(A ∪ B) ∪ C(A ∪ B) = AA ∪ AB ∪ AC ∪ BC =

(A ∪AB) ∪AC ∪BC = (A ∪AC) ∪BC = A ∪BC.
3. (A∪B) (A ∪ C) (B ∪ C) = (A ∪BC) (B ∪ C) = (A ∪BC)B∪(A ∪BC)C

= AB ∪BBC ∪AC ∪BCC = AB ∪AC ∪BC.
4. (A−B) ∪ (A− C) = AB ∪AC = A

(
B ∪ C

)
= ABC. �

Example 2.2.2. Comparing Two Expressions.

Under what condition is A ∪ (B − C) = (A ∪B)− C?
We can reduce the left side as A∪(B − C) = A∪BC = (A ∪B)

(
A ∪ C

)
=

A ∪ AB ∪ AC ∪ BC = A ∪ BC = AC ∪ AC ∪ BC, and for the right side
we have A ∪ B − C = (A ∪B)C = AC ∪ BC. Now, AC and AC ∪ BC are
disjoint, since one is a subset of C and the other of C. Thus the two sides are
equal if and only if AC = ∅. �

Let us mention that there exist objects other than sets for which we
can build a similar algebra. For example, we have algebras of statements
or propositions in mathematical logic, which will be discussed in the next
section. Also, some electronic circuits with so-called logic gates follow analo-
gous rules. Such sets with operations like those above, subject to the rules in
Theorem 2.2.1, are called Boolean algebras. These rules are highly redundant
though; about half of them are sufficient to define a Boolean algebra, and the
other rules follow from those.

Notice that the regions in the Venn diagrams are all intersections of the
given sets and their complements. For instance, in Figure 2.1 I = AB and
II = AB, and in Figure 2.3, 1 = ABC, 2 = ABC, etc. When dealing with
complicated expressions, it is often helpful to reduce them to unions of such
basic events, for instance, when we want to determine whether two expres-
sions are equal. In fact, that is what we have done when we listed the region
numbers in proofs. For more than three sets, we cannot draw Venn diagrams
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with circles, and the high number of regions would also limit their applica-
bility, but it is, however, still useful to write composite sets as such unions.
To this end, we first define the temporary notations A1 = A and A0 = A, for
all sets A. Then, for any distinct subsets A1, A2, . . . , An of a sample space
S, for n = 2, 3, . . ., we define their basic functions as Aε1

1 Aε2
2 · · ·Aεn

n , where
εi = 0 or 1 for each i. Now, to list all of these for a given n, we consider the
εi values to be the digits of the binary representation ε1ε2 . . . εn of a number
k, for k = 0, 1, . . . , 2n − 1. (Clearly, k runs from 0 to 2n − 1, because that is
the range of n digit binary numbers.) Also, we write the shorthand symbol
Bn,k for Aε1

1 Aε2
2 · · ·Aεn

n .
Suppose a set A is built up from some given sets A1, A2, . . . , An. A de-

composition of A into a union of basic functions of A1, A2, . . . , An is called a
canonical representation of A. For such decompositions, we have the following
theorem.

Theorem 2.2.2. (Basic Decomposition). Let A1, A2, . . . , An be distinct
subsets of a sample space S, for n = 2, 3, . . . . Any set A built up from these
sets with intersections, unions, and complements can be written uniquely,
apart from order, as a union of basic functions, that is, it has a unique canon-
ical representation.

Proof. 6First, we can see that

S =

2n−1⋃

k=1

Bn,k, (2.1)

since, on the one hand, by repeated application of the second distributive
rule,

(
A1 ∪A1

) (
A2 ∪A2

) · · · (An ∪An

)
= ∪2n−1

k=1 Bn,k, (2.2)

and on the other hand

(
A1 ∪A1

) (
A2 ∪A2

) · · · (An ∪An

)
= SS · · ·S = S, (2.3)

by the definitions of complements and of multiple intersections and repeated
application of the second rule for S with A = S.

Second, if we intersect both sides of Equation 2.1 with Ai, for any i, then
we get

Ai =

2n−1⋃

k=1,εk=1

Bn,k, (2.4)

because AiBn,k = Bn,k if εk = 1 and AiBn,k = ∅ if εk = 0.

6 This proof is taken, with some modifications, from Alfred Rényi: Foundations of
Probability, Holden-Day, San Francisco, 1970.
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Next, let A and C be arbitrary sets that have canonical representations,
that is, let

A =
⋃

k∈K

Bn,k and C =
⋃

k∈L

Bn,k (2.5)

for some sets of integers K and L. (Note that ∅ too has such a representation:
A = ∅ if K is the empty set of integers.) Then, clearly

AC =
⋃

k∈KL

Bn,k, (2.6)

A ∪ C =
⋃

k∈K∪L

Bn,k, (2.7)

and

A =
⋃

k∈K

Bn,k, (2.8)

where K = {0, 1, . . . , 2n − 1}−K. Thus all sets built up from A1, A2, . . . , An

by the three basic operations have canonical representations.
To prove the uniqueness of the representation, notice first that

Bn,iBn,k = ∅ if i 	= k, because then there must be a factor in Bn,i that
differs from the corresponding factor in Bn,k, say Aj and Aj , and so Bn,i and
Bn,k are subsets of the disjoint sets Aj and Aj , respectively. Now, assume
that a set A has two different canonical representations:

A =
⋃

k∈K

Bn,k and A =
⋃

k∈L

Bn,k, (2.9)

with K 	= L. In that case there must be a Bn,i that occurs in one of the
representations but not in the other. Let us say i ∈ K, but i /∈ L. Then

Bn,iA = Bn,i

⋃

k∈K

Bn,k =
⋃

k∈K

Bn,iBn,k = Bn,i (2.10)

and

Bn,iA = Bn,i

⋃

k∈L

Bn,k =
⋃

k∈L

Bn,iBn,k = ∅. (2.11)

These two equations contradict each other, and so we cannot have two dif-
ferent canonical representations of A. �
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Example 2.2.3. A Canonical Form.

Find the canonical form of ABC.
ABC = A

(
B ∪ C

)
= AB ∪ AC = AB

(
C ∪ C

) ∪ A
(
B ∪B

)
C = ABC ∪

ABC ∪ABC ∪ABC = ABC ∪ABC ∪ABC. �

Exercises

Exercise 2.2.1.

Use alternative notations to describe the following sets:

a) The set of odd numbers between 0 and 10,
b) {2, 4, 6, 8, 10},
c) The set of black face cards in a regular deck,
d) {x : −3 ≤ x ≤ 3 and x2 = 1, 4, or 9},
e) The set of all real numbers strictly between −1 and +1.

Exercise 2.2.2.

Referring to the Venn diagram in Figure 2.3, identify by numbers the
regions corresponding to:

a) (A ∪B) ∩ C,
b) A ∩ (B ∩ C),
c) A ∩ (B ∩ C), (the complement of the set in part b)
d) (A ∪B) ∪ C,
e) A ∩ (B ∩ C),
f) (A ∩B) ∩ C,
g) A− (B ∩ C).

Exercise 2.2.3.

List all the subsets of {a, b, c}. (There are eight.)

Exercise 2.2.4.

Referring to Figure 2.1, prove DeMorgan’s first law, by listing the regions
corresponding to both sides of the equations, that is, prove that A ∪B =
A ∩B.
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Exercise 2.2.5.

Prove the second associative rule, using Figure 2.3.

Exercise 2.2.6.

Show using Figure 2.3 that A ∪ B ∪ C = A ∪ (B ∪ C) = (A ∪ B) ∪ C =
(A ∪ C) ∪B.

Exercise 2.2.7.

Show using Figure 2.3 that in general:

a) A ∩ (B ∪ C) 	= (A ∩B) ∪ C, but
b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
c) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Exercise 2.2.8.

Referring to Figure 2.3, express the following regions by using A,B,C
and unions, intersections, and complements:

a) {8}
b) {3}
c) {1, 4, 5}
d) {1, 4, 5, 8}
e) {2, 6}
f) {2, 6, 7}

Exercise 2.2.9.

If A ∩ B = ∅, what is A ∩ B, and what is A ∪ B? Illustrate by a Venn
diagram.

Exercise 2.2.10.

We have A = B if and only if A ⊂ B and B ⊂ A. Use this equivalence to
prove DeMorgan’s first law, A ∪B = A ∩B.

Exercise 2.2.11.

Prove that A ⊂ B if and only if A ∪B = B.
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Exercise 2.2.12.

Prove that A ⊂ B if and only if A ∩B = A.

Exercise 2.2.13.

Show using Figure 2.3 that in general:

a) (A−B)− C = (A− C)− (B − C)
b) A− (B ∪ C) = (A−B)− C,
c) (AB)− C = (A− C)(B − C).

Exercise 2.2.14.

Show using the definition of subtraction and the rules of Theorem 2.2.1
that:

a) A−BC = (A−B) ∪ (A− C),
b) (A−B) ∪ C = ((A ∪ C)−B) ∪BC.

2.3 Relationships Between Compound
Statements and Events

When dealing with statements, we often consider two or more at a time
connected by words such as “and” and “or.” This is also true when we want
to discuss probabilities. For instance, we may want to know the probability
that a card drawn is an Ace and red or that it is an Ace or a King. Often we
are also interested in the negation of a statement, as in “the card drawn is
not an Ace.” We want to examine how these operations with statements are
reflected in the corresponding events.

Example 2.3.1. Drawing a Card.

Consider the statements p = “the card drawn is an Ace” and q = “the
card drawn is red.” The corresponding sets are P = {AS,AH,AD,AC} and
Q = {2H, 2D, 3H, 3D, . . . , AH,AD}. Now the statement “p and q” can be
abbreviated to “the card drawn is an Ace and red” (which is short for “the
card drawn is an Ace and the card drawn is red”). This is obviously true for
exactly those outcomes of the drawing for which p and q are both true, that
is, for those sample points that belong to both P and Q. The set of these
sample points is exactly P ∩ Q = {AH,AD}. Thus, the truth set of “p and
q,” that is, the event corresponding to this compound statement, is P ∩Q.
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Similarly, “p or q” is true for those outcomes for which p is true or q is
true, that is, for the points of P and of Q put together.7 This is by definition
the union of the two sets. Thus the truth set of “p or q” is P ∪Q. In our case
“p or q” = “the card drawn is an Ace or red” has the 28-element truth set
P ∪Q = {AS,AC, 2H, 2D, 3H, 3D, . . . , AH,AD}.

Furthermore, the statement “not p” = “the card drawn is not an Ace” is
obviously true whenever any of the 48 cards other than one of the Aces is
drawn. The set consisting of the 48 outcomes not in P is by definition the
complement of P . Thus the event corresponding to “not p” is P . �

The arguments used in the above example obviously apply to arbitrary
statements, too, not just to these specific ones. Thus we can state the follow-
ing general result.

Theorem 2.3.1. Correspondence between Logical Connectives and
Set Operations. If P and Q are the events that correspond to any given
statements p and q, then the events that correspond to “p and q,” “p or q,”
and “not p” are P ∩Q, P ∪Q, and P , respectively.

Some other, less important connectives for statements will be mentioned
in the next example and in the exercises.

Example 2.3.2. Choosing a Letter.

Let S = {a, b, c, d, e}, A = {a, b, c, d}, and B = {b, c, e}. (See Figure 2.2.)
Thus S corresponds to our choosing one of these five letters. Let us name the
statements corresponding to A and B, p and q. In other words, let p = “a, b, c,
or d is chosen” and q = “b, c, or e is chosen.” Then A−B = {a, d} obviously
corresponds to the statement “p but not q” = “a, b, c, or d, but not b, c, or e is
chosen.” (As we know, we can also write AB for A−B.) Similarly B−A = {e}
corresponds to “q but not p,” and (A−B)∪ (B −A) = {a, d, e} corresponds
to “either p or q (but not both).” (The set A � B = (A − B) ∪ (B − A) is
called the symmetric difference of A and B, and the corresponding “or” used
here is called the exclusive or.) �

Example 2.3.3. Two Dice.

Two dice are thrown, say, a black one and a white one. Let b stand for
the number obtained on the black die and w for the number on the white die.
A convenient diagram for S is shown in Figure 2.4. The possible outcomes
are pairs of numbers such as (2, 3) or (6, 6). (We write such pairs within
parentheses, rather than braces, and call them ordered pairs, because, unlike
in sets, the order of the numbers is significant: the first number stands for

7 In mathematics, we use “or” in the inclusive sense, that is, including tacitly the
possibility “or both.”
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the result of the throw of one die, say the black one, and the second number
for the other die.) The set S can be written as S = {(b, w) : b = 1, 2, . . . , 6
and w = 1, 2, . . . , 6}.

Let p = “b+ w = 7,” that is, p = “the sum of the numbers thrown is 7,”
and q = “w ≤ 3.′′ The corresponding truth sets P = {(b, w) : b+w = 7} and
Q= {(b, w) : w ≤ 3} are shown shaded in Figure 2.4. The event corresponding
to “p and q” = “the sum of the numbers thrown is 7 and the white die shows
no more than 3” is the doubly shaded set P ∩Q = {(4, 3), (5, 2), (6, 1)}. The
event corresponding to “p or q” is represented by the 18 + 3 = 21 shaded
squares in Figure 2.4; it is P ∪ Q = {(b, w) : b + w = 7 or w ≤ 3}. The 15
unshaded squares represent the event P ∩Q, which corresponds to “neither
p nor q.” �

b

w

1

1 2 3 4 5 6

2

3

4

5

6

Fig. 2.4. Throwing two dice

Exercises

Exercise 2.3.1.

Consider the throw of two dice as in Example 2.3.3. Let S, p, and q be
the same as there, and let r = “b is 4 or 5.” Describe and illustrate as in
Figure 2.4 the events corresponding to the statements:
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a) r,
b) q or r,
c) r but not q,
d) p and q and r,
e) q and r, but not p.

Exercise 2.3.2.

Let a, b, c be statements with truth sets A, B, and C, respectively.
Consider the following statements:

p1 = “exactly one of a, b, c occurs”
p2 = “at least one of a, b, c occurs”
p3 = “at most one of a, b, c occurs”
In Figure 2.3 identify the corresponding truth sets P1,P2, P3 by the num-

bers of the regions, and express them using unions, intersections, and com-
plements of A,B, and C.

Exercise 2.3.3.

Again, let a, b, c be statements with truth sets A, B, and C, respectively.
Consider the following statements:

p4 = “exactly two of a, b, c occur”
p5 = “at most two of a, b, c occur”
p6 = “at least two of a, b, c occur”
In Figure 2.3 identify the corresponding truth sets P4,P5, P6 by the num-

bers of the regions, and express them using unions, intersections, and com-
plements of A,B, and C.

Exercise 2.3.4.

Let a = “an Ace is drawn” and b = “a red card is drawn,” and let S be
our usual 52-point sample space for the drawing of a card and A and B the
events corresponding to a and b:

i. What logical relations for these statements correspond to DeMorgan’s
laws (Part 9, Theorem 2.2.1)?

ii. What statement does S correspond to?

Exercise 2.3.5.

Suppose A and B are two subsets of a sample space S, such that A ∪ B
= S. If A and B correspond to some statements a and b, what can you say
about the latter?

Exercise 2.3.6.

Again, let A and B be events corresponding to statements a and b. How
are a and b related if A ∩B = ∅?
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Exercise 2.3.7.

For any two events A and B, the expression A�B = AB ∪AB is called
their symmetric difference and corresponds to the “exclusive or” of the cor-
responding statements, that is, to “one or the other but not both.” (See
Example 2.3.2.) Prove, using Figure 2.3:

1. That it is associative, that is, (A�B)� C = A� (B � C),
2. That intersection is distributive over symmetric difference, that is,

A (B � C) = AB �AC.

Exercise 2.3.8.

Is union distributive over symmetric difference, that is, is A∪ (B � C) =
(A ∪B)� (A ∪ C)?
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3.1 The Addition Principle

As mentioned in the Introduction, if we assume that the elementary events
of an experiment with finitely many possible outcomes are equally likely,
then the assignment of probabilities is quite simple and straightforward.1 For
example, if we want the probability of drawing an Ace, when the experiment
consists of the drawing of a card under the assumption that any card is as
likely to be drawn as any other, then we can say that 1

52 is the probability of
drawing any of the 52 cards, and 4

52 = 1
13 is the probability of drawing an Ace,

since there are four Aces in the deck. We obtain the probability by taking the
number of outcomes making up the event that an Ace is drawn and dividing
it by the total number of outcomes in the sample space. Thus the assignment
of probabilities is based on the counting of numbers of outcomes, if these are
equally likely. Now the counting was very simple in the above example, but
in many others it can become quite involved. For example, the probability of
drawing two Aces if we draw two cards at random (this means “with equal
probabilities for all possible outcomes”) from our deck is 4·3

52·51 = .0045, since,
as we shall see in the next section, 4 · 3 = 12 is the number of ways in which
two Aces can be drawn and 52 · 51 = 2652 is the total number of possible
outcomes, that is, of possible pairs of cards.

Since the counting of cases can become quite complicated, we are going
to present a systematic discussion of the methods required for the most im-
portant counting problems that occur in the applications of the theory. Such
counting problems are called combinatorial problems, because we count the
numbers of ways in which different possible outcomes can be combined.

The first question we ask is: What do our basic set operations do to the
numbers of elements of the sets involved? In other words if we let n(X) denote
the number of elements of the set X for any X, then how are n(A), n(B),
n(A ∪B), n(AB), n(A), n(A−B), etc. related to each other?

We can obtain several relations from the following obvious special case:

1 In this chapter every set will be assumed to be finite.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 3
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Addition Principle:

If A ∩B = ∅, then n(A ∪B) = n(A) + n(B). (3.1)

We can restate this as follows: if A and B do not overlap, then the number
of elements in their union equals the sum of the number of elements of A and
of B. Basically this is nothing else but the definition of addition: the sum of
two natural numbers has been defined by putting two piles together.

When two sets do not overlap, that is, A ∩ B = ∅, then we call them
disjoint or mutually exclusive. Similarly, we call any number of sets disjoint
or mutually exclusive if no two of them have a point in common. For three
sets, A,B, andC, for instance, we require that A ∩ B = ∅, A ∩ C = ∅, and
B ∩ C = ∅, if we want them to be disjoint. Notice that it is not enough to
require A∩B∩C = ∅. While the latter does follow from the former equations,
we do not have it the other way around, and obviously we need the first three
conditions if we want to extend the addition principle to A,B, and C. By
repeated application of the addition principle, we can generalize it to any
finite number of sets:

Theorem 3.1.1. (Additivity of Several Disjoint Sets). If A1, A2, . . . ,
Ak are k disjoint sets, then

n(A1 ∪A2 ∪ · · · ∪Ak) = n(A1) + n(A2) + · · ·+ n(Ak). (3.2)

We leave the proof as an exercise.
If the sets involved in a union are not necessarily disjoint, then the addi-

tion principle leads to:

Theorem 3.1.2. (Size of the Union of Two Arbitrary Sets). For any
two sets A and B,

n(A ∪B) = n(A) + n(B)− n(A ∩B). (3.3)

Proof. We have A∪B = A∪AB with A and AB disjoint and B = AB∪AB,
with AB and AB disjoint (see Figure 3.1).Thus, by the addition principle,

n(A ∪B) = n(A) + n(AB) (3.4)

and

n(B) = n(AB) + n(AB). (3.5)

Subtracting, we get

n(A ∪B)− n(B) = n(A)− n(AB), (3.6)

and adding n(B) to both sides, we get the formula of the theorem. �
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S

BA

AB AB AB

AB

Fig. 3.1. General Venn diagram for two sets with basic decomposition

Example 3.1.1. Survey of Drinkers and Smokers.

In a survey, 100 people are asked whether they drink or smoke or do both
or neither. The results are 60 drink, 30 smoke, 20 do both, and 30 do neither.
Are these numbers compatible with each other?

If we let A denote the set of drinkers, B the set of smokers, N the set
of those who do neither, and S the set of all those surveyed, then the data
translate to n(A) = 60, n(B) = 30, n(AB) = 20, n(N) = 30, and n(S) = 100.
Also, A ∪ B ∪ N = S, and A ∪ B and N are disjoint. So we must have
n(A ∪ B) + n(N) = n(S), that is, n(A ∪ B) + 30 = 100. By Theorem 3.1.2,
n(A ∪ B) = n(A) + n(B) − n(AB). Therefore in our case n(A ∪ B) = 60 +
30− 20 = 70, and n(A ∪ B) + 30 = 70 + 30 is indeed 100, which shows that
the data are compatible. �

Let us mention that we could have argued less formally that Theorem 3.1.2
must be true because, if we form n(A)+n(B), we count all the points of A∪B,
but those in AB are then counted twice (once as part of n(A) and once as
part of n(B)). So, in forming n(A) + n(B)− n(AB), the subtraction undoes
the double counting, and each point in A ∪B is counted exactly once.

Theorem 3.1.2 can be generalized to unions of three or more sets. For
three sets we have

n(A∪B∪C) = n(A)+n(B)+n(C)−n(AB)−n(AC)−n(BC)+n(ABC). (3.7)

We leave the proof of this equation by using a Venn diagram as Exercise
3.1.5. It is also a special case of the theorem below.

Theorem 3.1.3. (Inclusion-Exclusion Theorem). For any positive
integer N and arbitrary sets A1, A2, . . . , AN ,
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n

(
N⋃

i=1

Ai

)

=
∑

1≤i≤N

n(Ai)−
∑

1≤i<j≤N

n(AiAj)

+
∑

1≤i<j<k≤N

n(AiAjAk)− · · ·+ (−1)
N−1

n(A1A2 · · ·AN ).

(3.8)

Proof. The indicator function2 IA of an event A in any sample space S is
defined by

IA (s) =

{
1 if s ∈ A
0 if s ∈ A.

(3.9)

Let A =
⋃N

i=1 Ai. Then

(IA − IA1
) (IA − IA2

) · · · (IA − IAN
) = 0, (3.10)

because if s ∈ A, then every factor is 0−0, and if s ∈ A, then also s ∈ Ak for
some k, and for such an s, the factor IA−IAk

= 1−1 = 0. Now we expand the
product and use the results of Exercise 3.1.7. Then one of the terms will be
INA = IA. Also, we get terms in which we choose −IAi

from one factor and IA
from the others; these terms yield −∑

1≤i≤N IAi
IN−1
A = −∑

1≤i≤N IAiA =
−∑

1≤i≤N IAi
. Similarly, we get terms with two IAi

factors, then with three,
and so on. If we put the IA term on the left and collect all other terms on
the right, then the expansion results in

IA =
∑

1≤i≤N

IAi
−

∑

1≤i<j≤N

IAiAji
+ · · ·+ (−1)

N−1
IA1A2···AN

. (3.11)

Now, if we sum both sides over all s ∈ S, then we get the statement of the
theorem. �

Example 3.1.2. Counting the Number of Integers with Three
Properties.

How many positive integers ≤ 1000 are there that are not divisible3 by 6,
7, and 8?

We use Equation 3.7 with S = {1, . . . , 1000}, A = {multiples of 6 in S},
B = {multiples of 7 in S}, and C = {multiples of 8 in S}. Then4 n(A) =
�1000/6 = 166, n(B) = �1000/7 = 142, n(C) = �1000/8 = 125, n(AB) =

2 In other branches of mathematics, IA is called the characteristic function of A,
but in probability theory, that name is reserved for a different function.

3 Recall that an integer m is called divisible by an integer k if m/k is an integer.
In that case m is also called a multiple of k.

4 Here �x� denotes the greatest integer or floor function, that is, for any x, the
integer such that �x� ≤ x < �x�+ 1.
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�1000/42 = 23, n(AC) = �1000/24 = 41, n(BC) = �1000/56 = 17, and
n(ABC) = �1000/168 = 5. Thus,

n(A ∪B ∪ C) = 1000− 166− 142− 125 + 23 + 41 + 17− 5 = 643. (3.12)

�
From Theorem 3.1.2 it is easy to see that in general

n(B −A) = n(B)− n(AB) (3.13)

and

n(B −A) = n(B)− n(A) if and only if A ⊂ B. (3.14)

(This relation is sometimes called the subtraction principle.) Substituting
S for B, we get

n(A) = n(S)− n(A). (3.15)

Exercises

Exercise 3.1.1.

If in a survey of 100 people, 65 people drink, 28 smoke, and 30 do neither,
then how many do both?

Exercise 3.1.2.

Give an example of three pairwise nondisjoint sets A,B, and C such that
A ∩B ∩ C = ∅.

Exercise 3.1.3.

Prove that any one of the conditions A∩B = ∅, A∩C = ∅, or B ∩C = ∅
implies A ∩B ∩ C = ∅.

Exercise 3.1.4.

Prove Theorem 3.1.1:

a) For k = 3,
b) For arbitrary k.
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Exercise 3.1.5.

Prove the formula given in Equation 3.7 for n(A ∪ B ∪ C) by using the
Venn diagram of Figure 2.3 on page 13.

Exercise 3.1.6.

How many cards are there in a deck of 52 that are:

a) Aces or spades,
b) Neither Aces nor spades
c) Neither Aces nor spades nor face cards (J,Q,K)?

Exercise 3.1.7.

Prove that for any indicator functions:

1. IAB = IAIB .
2. IA1A2···An

= IA1
IA2

· · · IAn
for any n ≥ 2.

3. IA∪B = IA + IB if A and B are disjoint.
4. IA = 1− IA.

Exercise 3.1.8.

How many positive integers ≤ 1000 are there that are divisible by 3, 6,
or 8?

3.2 Tree Diagrams and the Multiplication Principle

In the previous section, we worked with fixed sample spaces and counted
the number of points in single events. Here we are going to consider the
construction of new sample spaces and events from previously given ones
and count the number of possibilities in the new sets. For example, we throw
a die three times and want to relate the number of elements of a sample space
for this experiment to the three six-element sample spaces for the individual
throws. Or we draw two cards from a deck and want to find the number of
ways in which the two drawings both result in Aces, by reasoning from the
separate counts in the two drawings.

The best way to approach such multistep problems is by drawing a so-
called tree diagram. In such diagrams we first list the possible outcomes of
the first step and then draw lines from each of those to the elements in a list
of the possible outcomes that can occur in the second step depending on the
outcome in the first step. We continue likewise for the subsequent steps, if
any.

The above description may be unclear at this point; let us clarify it by
some examples.
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Example 3.2.1. Drawing Two Aces.

Let us illustrate the possible ways of successively drawing two Aces from
a deck of cards (we do not replace the first one before drawing the second).
In the first step, we can obtain AS,AH,AD,AC, but in the second step,
we can only draw an Ace that has not been drawn before. This is shown in
Figure 3.2.

Start:

First step: AS

AH AS AS ASAH AH AD

AH

AD AD

AD

AC AC

AC

ACSecond step:

Fig. 3.2. Tree diagram for dealing two Aces without replacement

As we see, for each choice in the first step, there are three possible choices
in the second step; thus altogether there are 4 · 3 = 12 choices for the two
Aces. In the figure, for the sake of completeness, we included a harmless extra
point on the top, labeled “Start,” so that the four choices in the first step
would not hang loose. We could turn the diagram upside down (or sideways,
too), and then it would resemble a tree: this is the reason for the name.
The number 12 shows up two ways in the diagram: first, it is the number
of branches from the Start to the bottom, and second, it is the number of
branch tips, that is, entries in the bottom row, whether they are distinct
or not. �

Example 3.2.2. Primary Elections.

Before primary elections, voters are polled about their preferences in a
certain state. There are two Republican candidates R1 and R2 and three
Democratic candidates D1, D2, and D3. The voters are first asked whether
they are registered Republicans (R), Democrats (D), or independents (I)
and, second, which candidate they prefer. The independents are allowed to
vote in either primary, so in effect they can choose any of the five candidates.
The possible responses are shown in the tree of Figure 3.3.

Notice that the total number of branches in the second step is 10, which
can be obtained by using the addition principle: we add the three branches
through D, the two through R, and the five through I. The branches cor-
respond to mutually exclusive events in the 10-element compound sam-
ple space {DD1, DD2, DD3, RR1, RR2, ID1, ID2, ID3, IR1, IR2}. This is the
new sample space built up in a complicated manner from the simpler ones
{D,R, I}, {D1, D2, D3}, and {R1, R2}. �
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D

D1 D2 D3 D1 D2 D3
R1 R2 R1 R2

R l

Fig. 3.3. Tree diagram for Example 3.2.2

Example 3.2.3. Tennis Match.

In a tennis match, two players, A and B, play several sets until one of
them wins three sets. (The rules allow no ties.) The possible sequence of
winners is shown in Figure 3.4.

A

A

A A A A AA

A A

A

A

A B

B

B B B B B B

B B A B A B A B

B

B A

A

AB

B

B

B

Fig. 3.4. Tree diagram for tennis match

The circled letters indicate the ends of the 20 possible sequences. As
can be seen, the branches have different lengths, and this makes the count-
ing more difficult than in the previous examples. Here, by repeated use
of the sample space {A,B}, we built up the 20-element sample space
{AAA,AABA,AABBA,AABBB,ABAA,ABABA,ABABB, . . . , BBB}.

Notice that if we look upon these strings of A’s and B’s as words, then
they are arranged in alphabetical order (e.g., AAA before AABA). Arranging
selections in alphabetical or numerical order is often very helpful in making
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counts accurate, since it helps 1) to avoid unwanted repetitions and 2) to
ensure that everything is listed. �

We discussed in Example 3.2.2 how the addition principle was applicable
there. Now, it is easy to see that it is applicable in Example 3.2.1 and Ex-
ample 3.2.3 as well. The latter was intended to illustrate branches of various
lengths, and we cannot extract any important regularity from it. In Exam-
ple 3.2.1, however, we see the operation of multiplication showing up for the
first time. The four choices in the first step fan out into three branches each,
and so, by the addition principle, we obtain the total number of branches
for the second step if we add 3 to itself four times. This operation, however,
is the same as multiplication of 3 by 4. In general, since multiplication by a
natural number is repeated addition, if we have n1 choices in the first step of
an experiment and each of those gives rise to n2 choices in the second step,
then the number of possible outcomes for both steps together, that is, the
number of paths from top to bottom of the corresponding two-step tree, is
n1n2.

We can easily generalize this statement to experiments with several steps
and call it a new principle:

The Multiplication Principle: If an experiment is performed in m
steps, and there are n1 choices in the first step, and for each of those there
are n2 choices in the second step, and so on, with nm choices in the last step
for each of the previous choices, then the number of possible outcomes, for
all the steps together, is given by the product n1n2n3 · · ·nm.

Example 3.2.4. Three Coin Tosses.

Toss a coin three times. Then the number of steps is m = 3, and in each
step we have two possibilities H or T ; hence, n1 = n2 = n3 = 2. Thus the
total number of possible outcomes, that is, of different triples of H’s and T ’s,
is 2 · 2 · 2 = 23 = 8. Similarly in m tosses, we have 2m possible sequences of
H’s and T ’s. �

Example 3.2.5. Number of Subsets.

The number of subsets of a set of m elements is 2m. This can be seen by
considering any subset as being built up in m steps: We take in turn each of
the m elements of the given set and decide whether it belongs to the desired
subset or not. Thus we have m steps and in each step two choices, namely, yes
or no, to the question of whether the element belongs to the desired subset.
The 2m subsets include ∅ and the whole set. (Why?) �
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Example 3.2.6. Drawing Three Cards.

The number of ways three cards can be drawn one after the other from a
regular deck is 523 if we replace each card before the next one is drawn and
52 ·51 ·50 ways if we do not replace them. For, obviously, we have three steps
in both cases, i.e., m = 3; and with replacement we can pick any of the 52
cards in each step, that is, n1 = n2 = n3 = 52; and without replacement we
can pick any of the n1 = 52 cards in the first step, but for the second step,
only n2 = 51 cards remain to be drawn from, and for the third step only
n3 = 50. �

Example 3.2.7. Seating People.

There are four seats and three people in a car, but only two can drive. In
how many ways can they be seated if one is to drive?

For the driver’s seat, we have two choices and for the next seat three,
because either of the remaining two people can sit there or it can remain
empty. For the third seat, we have two possibilities in each case; if the second
seat was left empty, then either of the remaining two people can be placed
there, and if the second seat was occupied, then the third one can either be
occupied by the remaining person or be left empty. The use of the fourth seat
is uniquely determined by the use of the others. Consequently, the solution
is 2 · 3 · 2 · 1 = 12.

Alternatively, once the driver has been selected in two possible ways, the
second person can take any one of three seats and the third person one of
the remaining two seats. Naturally, we get the same result: 2 · 3 · 2 = 12.

Notice that in this problem, we had to start our counting with the driver,
but then had a choice whether to assign people to seats or seats to people.
Such considerations are typical in counting problems, and often the nature
of the problem favors one choice over another. �

Example 3.2.8. Counting Numbers with Odd Digits.

How many natural numbers are there under 1000 whose digits are odd?
Since all such numbers have either one, two, or three digits, we count those

cases separately and add up the three results. First, there are five single-digit
odd numbers. Second, there are 52 numbers with two odd digits, since each
of the two digits can be chosen in five ways. Third, we can form 53 three-digit
numbers with odd digits only. Thus the solution is 5 + 52 + 53 = 155. �
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Exercises

Exercise 3.2.1.

a) What sample space does Figure 3.2 illustrate?
b) What are the four mutually exclusive events in this sample space that

correspond to the drawing of AS,AH,AD,AC, respectively, in the first
step?

c) What is the event corresponding to the statement “one of the two cards
drawn is AH”?

Exercise 3.2.2.

In a survey, voters are classified according to sex (M or F ), party
affiliation (D,R, or I), and educational level (say A,B, or C). Illustrate
the possible classifications by a tree diagram! How many are there?

Exercise 3.2.3.

In an urn there are two black and four white balls. (It is traditional to
call the containers urns in such problems.) Two players alternate drawing a
ball until one of them has two white ones. Draw a tree to show the possible
sequences of drawings.

Exercise 3.2.4.

In a restaurant a complete dinner is offered for a fixed price in which a
choice of one of three appetizers, one of three entrees, and one of two desserts
is given. Draw a tree for the possible complete dinners. How many are there?

Exercise 3.2.5.

Three different prizes are simultaneously given to students from a class
of 30 students. In how many ways can the prizes be awarded:

a) If no student can receive more than one prize,
b) If more than one prize can go to a student?

Exercise 3.2.6.

How many positive integers are there under 5000 that:

a) Are odd,
b) End in 3 or 4,
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c) Consist of only 3’s and/or 4’s,
d) Do not contain 3’s or 4’s?

(Hint: In some of these cases, it is best to write these numbers with four
digits, for instance, 15 as 0015, to choose the four digits separately and use
the multiplication and addition principles.)

Exercise 3.2.7.

In the Morse code, characters are represented by code words made up of
dashes and dots:

a) How many characters can be represented with three or fewer dashes
and/or dots?

b) With four or fewer?

Exercise 3.2.8.

A car has six seats including the driver’s, which must be occupied by a
driver. In how many ways is it possible to seat:

a) Six people if only two can drive,
b) Five people if only two can drive,
c) Four people if each can drive?

Exercise 3.2.9.

How many sets can be built up from given distinct subsets A1, A2, . . . , An

of a sample space S, for n = 2, 3, . . . , with intersections, unions, and com-
plements? The collection of such sets is called the Boolean algebra generated
by A1, A2, . . . , An, and so the question can also be phrased as ”how many
members does the Boolean algebra generated by n sets have?” (Hint : Count
the number of different canonical representations as in Theorem 2.2.1.)

3.3 Permutations and Combinations

Certain counting problems recur so frequently in applications that we have
special names and symbols associated with them. These will now be discussed.

Any arrangement of things in a row is called a permutation of those things.
We denote the number of permutations of r different things out of n different
ones by nPr. This number can be obtained by the multiplication principle.
For example, 8P3 = 8 · 7 · 6 = 336, because we have r = 3 places to fill in a
row, out of n = 8 objects. The first place can be filled in eight ways and the
second place seven ways, since one object has been used up, and for the third
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place, six objects remain. Because all these selections are performed one after
the other, 8P3 is the product of the three numbers 8, 7, and 6.

In general, nPr can be obtained by counting backwards r numbers starting
with n and multiplying these r factors together. If we want to write a formula
for nPr (which we need not use, we may just follow the above procedure
instead), we must give some thought to what the expression for the last factor
will be: In place 1 we can put n objects, which we can write as n− 1 + 1; in
place 2 we can put n− 1 = n− 2 + 1 objects; and so on. Thus the rth factor
will be n− r + 1, and so, for any5 positive integers n and r ≤ n,

nPr = n(n− 1)(n− 2) · · · (n− r + 1). (3.16)

We can check that for our example, in which n = 8 and r = 3, we obtain
n− r + 1 = 8− 3 + 1 = 6, which was indeed the last factor in 8P3.

For the product that gives nPn, we have a special name and a symbol.
We call it n-factorial and write it as n!. Thus, for any positive integer n,

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1. (3.17)

The symbol n! is just a convenient abbreviation for the above product,
that is, for the product of all natural numbers from 1 to n (the order does
not really matter). For example, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6,
4! = 4 · 3 · 2 · 1 = 24.

As we have said, the number of permutations of n things out of n is

nPn = n!.
From the definitions of n!, (n− r)!, and nPr, we can obtain the following

relation: n! = [n(n − 1)(n − 2) . . . (n − r + 1)][(n − r)(n − r − 1) . . . 2 · 1] =
nPr · (n− r)!, and so

nPr =
n!

(n− r)!
. (3.18)

Formulas 3.16 and 3.17 defined nPr and n! for all positive integer values
of n and r ≤ n. The above formula, however, becomes meaningless for r = n,
since then n− r = 0, and we have not defined 0!. To preserve the validity of
this formula for the case of r = n, we define 0! = 1.

Then, for r = n, Formula 3.18 becomes

nPn =
n!

0!
= n!, (3.19)

5 Note that the product on the right of Equation 3.16 does not have to be taken
literally as containing at least four factors. This expression is the usual way of
indicating that the factors should start with n and go down in steps of 1 to
n − r + 1. For instance, if r = 1, then n − r + 1 = n, and the product should
start and end with n, that is, nP1 = n. The obvious analog of this convention
is generally used for any sums or products in which a pattern is indicated, for
example, in Equation 3.17 as well.
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as it should be by Equation 3.16. We shall see later that by this definition
many other formulas also become meaningful whenever 0! appears. We can
also extend the definition of nPr to the case of r = 0, by setting

nP0 = 1, (3.20)

as required by Equation 3.18, and we can further extend the definition to
n = 0, by defining 0P0 = 1 as well.

Example 3.3.1. Dealing Three Cards.

In how many ways can three cards be dealt from a regular deck of 52
cards?

The answer is 52P3 = 52 ·51 ·50 = 132, 600. Notice that in this answer, the
order in which the cards are dealt is taken into consideration, not only the
result of the deal. Thus a deal of AS,AH,KH is counted as a case different
from AH,KH,AS. �

In many problems, as in the above example, for instance, it is unnatural
to concern ourselves with the order in which things are selected, and we want
to count only the number of different possible selections without regard to
order. The number of possible unordered selections of r different things out
of n different ones is denoted by nCr, and each such selection is called a
combination of the given things.

To obtain a formula for nCr, we can argue the following way. If we select
r things out of n without regard to order, then, as we have just said, this can
be done in nCr ways. In each case we have r things which can be ordered r!
ways. Thus, by the multiplication principle, the number of ordered selections
is nCr ·r!. On the other hand, this number has been denoted by nPr. Therefore

nCr · r! = nPr, and so

nCr =
nPr

r!
=

n!

r!(n− r)!
. (3.21)

The quantity on the right is usually abbreviated as
(
n
r

)
and is called a

binomial coefficient, for reasons that will be explained in the next section.
We have, for example,

(
3
2

)
= 3!

2!(3−2)! =
6
2·1 = 3 and

(
7
3

)
= 7!

3!4! =
7·6·5
3·2·1 = 35.

In the latter example, the 4! could be cancelled, and we could similarly
cancel (n−r)! in the general formula, as we did for nPr. Thus, for any positive
integer n and r = 1, 2, . . . , n,

nCr =

(
n

r

)
=

n(n− 1)(n− 2) · · · (n− r + 1)

r!
. (3.22)

For r = 0 the cancellation, together with 0! = 1, gives

nC0 =

(
n

0

)
=

n!

0!(n− 0)!
= 1, (3.23)

and we extend the validity of this formula to n = 0 as well.
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The formula
(
n

r

)
=

n!

r!(n− r)!
(3.24)

remains unchanged if we replace r by n− r, and so

(
n

n− r

)
=

(
n

r

)
. (3.25)

This formula says that the number of combinations of n− r things out of
n equals the number of combinations of r things out of n. We can easily see
that this must be true, since whenever we make a particular selection of n−r
things out of n, we are also selecting the r things that remain unselected,
that is, we are splitting the n things into two sets of n − r and r things
simultaneously.

Example 3.3.2. Selecting Letters.

Let us illustrate the relationship between permutations and combinations,
that is, between ordered and unordered selections, on a simple example, in
which all cases can easily be enumerated. Say we have four letters A,B,C,D
and want to select two. If order counts, then the possible selections are

AB,AC,AD,BC,BD,CD,
BA,CA,DA,CB,DB,DC.
Their number is 4P2 = 4·3 = 12. If we want to disregard the order in which

the letters are selected, then AB and BA stand for the same combination,
also AC and CA for another single combination, and so on. Thus the number
of selections written in the first row above, that is, 6, gives us 4C2. Indeed,(
4
2

)
= 4·3

2·1 = 6. In this case, the argument we used for obtaining nCr amounts
to saying that each unordered selection gives rise to two ordered selections,
and there are 12 of the latter; hence 2·4C2 = 12, and so 4C2 = 12

2 = 6.
We can also look at this slightly differently: We have 12 permutations.

To make them into combinations, we must identify pairs such as AB and
BA with each other. Thus, the number of combinations is the number of
unordered pairs into which a set of 12 objects can be partitioned, and this is,
by the definition of division, 12

2 . �
The argument above can be generalized as follows.

Division Principle: If we have m things and k is a divisor6 of m, then
we can divide the set of m elements into m/k subsets of k elements each.

Applied to permutations and combinations, this principle says that m =

nPr permutations can be grouped into subsets with k = r! elements, with
those permutations that have the same letters making up each subset, and

6 This means that m/k is a whole number.
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the number of these subsets is nPr

r! . Since these subsets represent all the
combinations, their number is, on the other hand, nCr. Thus, the division
principle can give us directly the previously obtained relationship nCr = nPr

r! .

Example 3.3.3. Three-Card Hands.

The number of different three-card hands from a deck of 52 cards is

52C3 =
(
52
3

)
= 52·51·50

3·2·1 = 22, 100. �

Example 3.3.4. Committee Selection.

In a class there are 30 men and 20 women. In how many ways can a
committee of two men and two women be chosen?

We have to choose 2 men out of 30 and 2 women out of 20. These choices
can be done in

(
30
2

)
and

(
20
2

)
ways, respectively. By the multiplication prin-

ciple, the whole committee can be selected in
(
30
2

) · ( 202
)
= 30·29

2·1 · 20·19
2·1 =

15 · 29 · 10 · 19 = 82, 650 ways. �

Exercises

Exercise 3.3.1.

Evaluate 5P2, 6P3, 8P1, 5P0, 6P6.

Exercise 3.3.2.

How many three-letter “words” can be formed, without repetition of any
letter, from the letters of the word “symbol”? (We call any permutation of
letters a word.)

Exercise 3.3.3.

Prove that n! = n · (n− 1)!.

Exercise 3.3.4.

Evaluate 5C2, 6C3, 8C1, 5C0, 6C6.

Exercise 3.3.5.

List all permutations of three letters taken at a time from the letters
A,B,C,D, mark the groups whose members must be identified to obtain
the combinations of three letters out of the given four, and explain how the
division principle would give the number of combinations in this case.
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Exercise 3.3.6.

In how many ways can a committee of 4 be formed from 10 men and 12
women if it is to have:

a) Two men and two women,
b) One man and three women,
c) Four men,
d) Four people regardless of sex?

Exercise 3.3.7.

A salesman has to visit any four of the cities A,B,C,D,E, F , starting
and ending in his home city, which is other than these six. In how many ways
can he schedule his trip?

Exercise 3.3.8.

A die is thrown until a 6 comes up, but only five times if no 6 comes up
in five throws. How many possible sequences of numbers can come up?

Exercise 3.3.9.

In how many ways can five people be seated on five chairs around a round
table if:

a) Only their positions relative to each other count (i.e., the arrangements
obtained from each other by rotation of everybody are considered to be
the same),

b) Only who sits next to whom counts, but not on which side (rotations and
reflections do not change the arrangement)?

Exercise 3.3.10.

Answer the same questions as in Exercise 3.3.9, but for five people and
seven chairs.

Exercise 3.3.11.

How many positive integers are there under 5000 that are:

a) Multiples of 3,
b) Multiples of 4,
c) Multiples of both 3 and 4,
d) Not multiples of either 3 or 4?

(Hint: Use the division principle adjusted for divisions with remainder!)
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3.4 Some Properties of Binomial Coefficients
and the Binomial Theorem

The binomial coefficients have many interesting properties, and some of these
will be useful to us later, so we describe them now.

If we write the binomial coefficients in a triangular array, so that
(
0
0

)
goes

into the first row;
(
1
0

)
and

(
1
1

)
into the second row;

(
2
0

)
,
(
2
1

)
, and

(
2
2

)
into

the third row; and so on, then we obtain the following table, called Pascal’s
triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

. . .
It is easy to see that each entry other than 1 is the sum of the two nearest

entries in the row immediately above it; for example, the 6 in the fifth row is
the sum of the two threes in the fourth row. In general, we have the following
theorem.

Theorem 3.4.1. Sums of Adjacent Binomial Coefficients.

For any positive integers r and n > r,
(
n− 1

r − 1

)
+

(
n− 1

r

)
=
(n
r

)
. (3.26)

Proof. We give two proofs.
To prove this formula algebraically, we only have to substitute the ex-

pressions for the binomial coefficients and simplify. For r = 1 the left side
becomes

(
n− 1

0

)
+

(
n− 1

1

)
= 1 + (n− 1) = n =

(n
1

)
, (3.27)

and for r > 1

(n− 1)(n− 2) . . . (n− r + 1)

(r − 1)!
+

(n− 1)(n− 2) . . . (n− r + 1) (n− r)

r!

=
[(n− 1)(n− 2) . . . (n− r + 1)] · r

r · (r − 1)!
+

[(n− 1)(n− 2) . . . (n− r + 1)] · (n− r)

r!

=
[(n− 1)(n− 2) . . . (n− r + 1)] · (r + n− r)

r!

=
(n− 1)(n− 2) . . . (n− r + 1) · n

r!
=

(n
r

)
. (3.28)
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An alternative, so-called combinatorial proof of Equation 3.26, is as fol-
lows:

(
n
r

)
equals the number of ways of choosing r objects out of n. Let x

denote one of the n objects. (It does not matter which one.) Then the selected
r objects will either contain x or will not. The number of ways of selecting

r objects with x is
(

n−1
r−1

)
· 1, because there are n − 1 objects other than x,

and we must choose r − 1 of those, in addition to x, which we can choose in
just one way. On the other hand, the number of ways of selecting r objects
without x is

(
n−1
r

)
, because there are n − 1 objects other than x, and we

must choose r of those. Using the addition principle for these two ways of
choosing r objects out of n completes the proof. �

The next topic we want to discuss is the binomial theorem.
An expression that consists of two terms is called a binomial, and the

binomial theorem gives a formula for the powers of such expressions. The bi-
nomial coefficients are the coefficients in that formula, and this circumstance
explains their name. Let us first see how they show up in some simple cases.

We know that

(a+ b)2 = a2 + 2ab+ b2 (3.29)

and

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3. (3.30)

The coefficients on the right sides are 1, 2, 1 and 1, 3, 3, 1, and these are
the numbers in the rows for n = 2 and 3 in Pascal’s triangle. In general we
have:

Theorem 3.4.2. The Binomial Theorem. For any natural number7 n
and any numbers a, b,

(a+b)n =
(n
0

)
an+

(n
1

)
an−1b+

(n
2

)
an−2b2+ · · ·+

(n
n

)
bn =

n∑
k=0

(n
k

)
akbn−k.

Proof. Let us first illustrate the proof for n = 3. Then

(a+ b)3 = (a+ b)(a+ b)(a+ b), (3.31)

and we can perform the multiplication in one fell swoop, instead of obtaining
(a+b)2 first and then multiplying that by (a+b). When we do both multipli-
cations simultaneously, then we have to multiply each letter in each pair of
parentheses by each letter in the other pairs of parentheses and add up these

7 In fact, the theorem can be extended to arbitrary real exponents as discussed
in calculus courses, but then the combinatorial meaning shown in the present
proof, which is what we need, is lost.
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products of three factors each. Thus the products we add up are obtained by
multiplying one letter from each expression in parentheses in every possible
way. Since we choose from two letters three times, we have 23 = 8 products
such as aaa, aab, etc. to add up. Now, some of these products are equal to
each other, for example, aab = aba = baa = a2b. The number of ways in
which we can choose the three a’s from the three (a + b)’s is one. Thus, we
have one a3 in the result. The number of a2b terms is

(
3
1

)
= 3, since we can

choose the one (a+ b) from which the factor b comes in
(
3
1

)
ways. Similarly,

the number of ab2 terms is
(
3
2

)
= 3, since we can choose the two (a + b)’s

from which the two b’s come in
(
3
2

)
ways. Finally, we have just one b3 term.

Thus,

(a+ b)3 = a3 +

(
3

1

)
a2b+

(
3

2

)
ab2 + b3. (3.32)

To make each term conform to the general pattern, we could write the
first and last terms as

(
3
0

)
a3b0 and

(
3
3

)
a0b3 and write b1 for b and a1 for a in

the second and third terms. Then, for instance,
(
3
0

)
b0 = 1 means that there

is only one way to select zero b’s, and the product with no b is the same as
the one multiplied by b0.

In the general case of (a + b)n, the result will have all possible kinds of
terms in which a total of n a’s and b’s are multiplied together: one letter
from each of the n factors (a+ b). If the number of a’s chosen is k, then the
number of b’s must be n− k, since a total of n letters must be multiplied for
each term of the result. Furthermore, the coefficient of akbn−k must be

(
n
k

)
,

since we can select the k factors (a+ b) from which we take the a’s in exactly
that many ways. Thus the expansion of (a+ b)n must consist of terms of the
form

(
n
k

)
akbn−k, with k taking all possible values from 0 to n. �

We can of course use the binomial theorem for the expansion of binomials
with all kinds of expressions in place of a and b, as in the next example.

Example 3.4.1. A Binomial Expansion.

(3x− 2)4 = (3x+ (−2))4

= (3x)4 +

(
4

1

)
(3x)3(−2) +

(
4

2

)
(3x)2(−2)2

+

(
4

3

)
(3x)(−2)3 + (−2)4

= 34x4 − 4 · 33 · 2x3 + 6 · 32 · 22x2 − 4 · 3 · 23x+ 24

= 81x4 − 216x3 + 216x2 − 96x+ 16. (3.33)

�
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Example 3.4.2. Counting Subsets.

If we put a = b = 1 in the binomial theorem, then it gives

(n
0

)
+
(n
1

)
+
(n
2

)
+ . . .+

(n
n

)
= (1 + 1)n = 2n. (3.34)

This can also be seen directly from the combinatorial interpretations of
the quantities involved: If we have a set of n elements, then

(
n
0

)
is the number

of its zero-element subsets,
(
n
1

)
is the number of its one-element subsets, and

so on, and the sum of these is the total number of subsets of the set of n
elements, which is 2n, as we know from Example 3.2.5. �

Example 3.4.3. Alternating Sum of Binomial Coefficients.

Putting a = 1 and b = −1 in the binomial theorem, we obtain

(n
0

)
−
(n
1

)
+
(n
2

)
− · · · ±

(n
n

)
= (1− 1)n = 0. (3.35)

This would be more difficult to interpret combinatorially; we do not do it
here (but see Exercise 3.4.6). �

There is one other property of binomial coefficients that is important for
us; we approach it by an example.

Example 3.4.4. Counting Ways for a Committee.

In Exercise 3.3.6 we asked a question about forming a committee of four
people out of 10 men and 12 women. Such a committee can have either zero
men and four women, or one man and three women, or two men and two
women, or three men and one woman, or four men and zero women. Since
these are the disjoint possibilities that make up the possible choices for the
committee, regardless of sex, we can count their number on the one hand
by using the addition and multiplication principles and on the other hand
directly without considering the split by sex. Thus

(
10

0

)(
12

4

)
+

(
10

1

)(
12

3

)
+

(
10

2

)(
12

2

)
+

(
10

3

)(
12

1

)
+

(
10

4

)(
12

0

)
=

(
22

4

)
.

(3.36)

�
We can generalize this example as follows: If we have n1 objects of one

kind and n2 objects of another kind and take a sample of r objects from
these, with r ≤ n1 and r ≤ n2, then the number of choices can be evaluated
in two ways, and we get

(n1

0

)(n2

r

)
+
(n1

1

)( n2

r − 1

)
+ · · ·+

(n1

r

)(n2

0

)
=

(
n1 + n2

r

)
. (3.37)
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Exercises

Exercise 3.4.1.

Write down Pascal’s triangle to the row with n = 10.

Exercise 3.4.2.

Use Pascal’s triangle and the binomial theorem to expand (a+ b)6.

Exercise 3.4.3.

Expand (1 + x)5.

Exercise 3.4.4.

Expand (2x− 3)5.

Exercise 3.4.5.

What would be the coefficient of x8 in the expansion of (1 + x)10?

Exercise 3.4.6.

Explain the formula
(
3
0

)− (
3
1

)
+
(
3
2

)− (
3
3

)
= 0 by using the expansion of

n(A ∪B ∪ C) from Equation 3.7.

Exercise 3.4.7.

Use the binomial theorem to evaluate:

a)
∑n

k=0

(
n
k

)
4k,

b)
∑n

k=0

(
n
k

)
xk for any x 	= 0.

Exercise 3.4.8.

In how many ways can a committee of 4 be formed from 10 men (including
Bob) and 12 women (including Alice and Claire) if it is to have two men and
two women but:
a) Alice refuses to serve with Bob,
b) Alice refuses to serve with Claire,
c) Alice will serve only if Claire does, too,
d) Alice will serve only if Bob does, too?
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Exercise 3.4.9.

How many subsets does a set of n > 4 elements have that contain:

a) At least two elements,
b) At most four elements?

Exercise 3.4.10.

Generalize Theorem 3.4.1 by considering two special objects x and y
instead of the single object x in the combinatorial proof.

3.5 Permutations with Repetitions

Until now, we have discussed permutations of objects different from each
other, except for some special cases to which we will return below. In this
section, we consider permutations of objects, some of which may be identical
or which amounts to the same thing of different objects that may be repeated
in the permutations.

The special cases we have already encountered are the following: First,
the number of possible permutations of length n out of r different objects
with an arbitrary number of repetitions, that is, with any one of the r things
in any one of the n places, is rn. (e.g., the number of two letter “words” made
up of a, b, or c is 32: aa, ab, ac, ba, bb, bc, ca, cb, cc.)

The second case we have seen in a disguise is that of the permutations of
length n of two objects, with r of the first object and n − r of the second
objects chosen. The number of such permutations is obviously nCr, since
to obtain any one of them, we may just select the r places out of n for the
first object.

In general, if we have k different objects and we consider permutations of
length n, with the first object occurring n1 times, the second n2 times, and
so on, with the kth object occurring nk times, then we must have n1 + n2 +
· · ·+ nk = n, and the number of such permutations is

n!

n1!n2! · · ·nk!
. (3.38)

This follows at once from our previous counts for permutations and the
division principle. Since, if all the n objects were different, then the number
of their permutations would be n!. When, however, we identify the n1 objects
of the first kind with each other, then we are grouping the permutations into
sets with n1! members in each; and so we must divide the n! by n1! to account
for the indistinguishability of the objects of the first kind. Similarly, we must
divide the count by n2! to reflect the indistinguishability of the n2 objects of
the second kind and so on.
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The quantity above is called a multinomial coefficient and is sometimes
denoted by the symbol

(
n

n1, n2, · · · , nk

)
. (3.39)

Note that for k = 2, the multinomial coefficient equals the corresponding
binomial coefficient, that is,

(
n

n1, n2

)
=

(
n

n1

)
=

(
n

n2

)
. (3.40)

The reason for this relation is that when we have n1 objects of one kind and
n2 objects of another kind, then the number of ways of arranging them in a
row is the same as the number of ways of selecting the n1 spaces for the first
type from the total of n1 + n2 = n spaces or the number of ways of selecting
the n2 spaces for the second type from the same total.

Example 3.5.1. Number of Words.

How many seven-letter words can be made up of two a’s, two b’s, and
three c’s?

Here n = 7, k = 3, n1 = 2, n2 = 2, and n3 = nk = 3. Thus the answer is

(
7

2, 2, 3

)
=

7!

2! · 2! · 3! = 210. (3.41)

�

The reason for calling the quantities above multinomial coefficients is that
they occur as coefficients in a formula giving the nth power of expressions of
several terms, called multinomials:

Theorem 3.5.1. Multinomial Theorem. For any real numbers x1, x2, . . . ,
xk and any natural number n,

(x1 + x2 + . . .+ xk)
n =

∑(
n

n1, n2, · · · , nk

)
xn1
1 xn2

2 · · ·xnk

k , (3.42)

with the sum taken over all nonnegative integer values n1, n2, . . . , nk such
that n1 + n2 + · · ·+ nk = n.

The proof of this theorem is omitted; it would go much like the proof of
the binomial theorem.
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Example 3.5.2. A Multinomial Expansion.

(x+ y + z)4 = x4 + y4 + z4 + 4(x3y + xy3 + x3z + xz3 + y3z + yz3)

+ 6(x2y2 + x2z2 + y2z2) + 12(x2yz + xy2z + xyz2), (3.43)

since
(

4

4, 0, 0

)
=

4!

4! · 0! · 0! = 1,

(
4

3, 1, 0

)
=

4!

3! · 1! · 0! = 4,

(
4

2, 2, 0

)
=

4!

2! · 2! · 0! = 6,

(
4

2, 1, 1

)
=

4!

2! · 1! · 1! = 12, (3.44)

and permuting the numbers in the lower row in any multinomial coefficient
leaves the latter unchanged. �

In closing this section, let us consider a problem that can be reduced to
one of counting permutations with two kinds of indistinguishable objects:

Example 3.5.3. Placing Indistinguishable Balls Into Distinguish-
able Boxes.

In how many ways can k indistinguishable8 balls be distributed into n
different boxes?

If there are k = 2 balls and n = 3 boxes, then the possible distributions
can be listed as ordered triples of nonnegative whole numbers that give the
numbers of balls in the boxes. The numbers of each triple must add up to
two, since we are distributing two balls. Thus the possible distributions are
(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), and (0, 1, 1), and so in this
case, the answer is 6.

In the general case, the problem can be solved by the following trick:
Each distribution can be represented by a sequence of circles and bars,

with the circles representing the balls and the bars the walls of the boxes (we
put only one bar as a wall between two boxes). For instance, Figure 3.5 shows
the distribution (0, 3, 1, 2, 0, 2) of k = 8 balls into n = 6 boxes arranged in
a row.

Fig. 3.5. Distribution of 8 balls in 6 boxes

8 Actually, the balls may be distinguishable, but we may not want to distinguish
them. In some applications, for instance, involving distribution of money to
people, all we care about is how many dollars someone gets, not which dollar
bills.
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Now, if there are six boxes, then we have seven bars. Two of those must
be fixed at the ends, and the remaining five can have various positions among
the eight balls. Thus, out of 5 + 8 = 13 positions for balls and bars together,
we must choose 5. We can do this in

(
13
5

)
= 1287 ways.

In general, if we have n boxes, then we can choose the positions of n− 1
bars freely. Thus, the problem becomes that of counting the number of per-
mutations of n − 1 bars and k circles. We know that the number of such
permutations is

(
n−1+k
n−1, k

)
=

(
n−1+k

k

)
=

(
n−1+k
n−1

)
. This expression is the an-

swer to our question. If k = 2 and n = 3, then it becomes
(
3−1+2

2

)
= 6, as we

have seen above by a direct enumeration. �

Exercises

Exercise 3.5.1.

In how many ways can we form six-letter words:

a) From a’s and/or b’s,
b) From two a’s and four b’s,
c) From two a’s, one b, and three c’s,
d) From two a’s and four letters each of which may be b or c?

Exercise 3.5.2.

On how many paths can a rook move from the lower left corner of a
chessboard to the diagonally opposite corner by moving only up or to the
right at each step?

Exercise 3.5.3.

a) How many permutations are there of the letters of the word “success”?
b) How many of the above have exactly three s’s together (Hint: Consider

sss as if it were a single letter.)
c) How many have two or three s’s together? (Hint: Regard ss as a single

letter)
d) How many have exactly two s’s together?

Exercise 3.5.4.

Prove, both algebraically and combinatorially (i.e., in terms of selections)
that if n1 + n2 + n3 = n, then

(
n

n1, n2, n3

)
=
(
n
n1

)(
n−n1

n2

)
.
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Exercise 3.5.5.

What is the coefficient of:

a) a2b3c2 in the expansion of (a+ b+ c+ d)7,
b) a2b3c2 in the expansion of (2a− 3b+ c− d)7?

Exercise 3.5.6.

Expand (2+3+1)4 by the multinomial theorem, and show that the terms
add up to 64 = 1, 296.

Exercise 3.5.7.

a) In how many ways can 10 cents be distributed among three children?
(All that matters is how much each child gets and not which coins, that
is, cents are considered indistinguishable.)

b) In how many ways if each child is to get at least one cent? (Hint : From
the spaces between circles, choose some for bars, or first give 1 cent to
each and then distribute the remaining 7 cents.)

Exercise 3.5.8.

In how many ways can k indistinguishable balls be distributed into n ≤ k
different boxes if each box is to get at least one ball? (Hint: From the spaces
between circles, choose some for bars.)

Exercise 3.5.9.

In how many ways can k indistinguishable balls be distributed into n ≥ k
different boxes if no box is to get more than one ball?

Exercise 3.5.10.

How many distinct terms are there in the multinomial expansions of:

a) (a+ b+ c)6

b) (a+ b+ c+ d)5?

Explain!
(Hint : Use Example 3.5.3.)



4. Probabilities

4.1 Relative Frequency and the Axioms
of Probabilities

We begin our discussion of probabilities with the definition of relative
frequency, because this notion is very concrete and probabilities are, in a
sense, idealizations of relative frequencies.

Definition 4.1.1. Relative Frequency. If we perform an experiment n
times (each performance is called a trial) and the event A occurs in nA trials,
then the ratio nA

n is called the relative frequency of A in the n trials and will
be denoted by fA.

For example, if we toss a coin n = 100 times and observe heads nH =
46 times, then the relative frequency of heads in those trials is fH = nH

n
= 46

100 = .46.
For two mutually exclusive events A and B the relative frequency of A∪B

in n trials turns out to be the sum of the relative frequencies of A and B,
because nA∪B = nA+nB , by the addition principle, and so fA∪B = fA+fB .

As mentioned in the Introduction, we assign probabilities to events in such
a way that the relative frequency of an event in a large number of trials should
approximate the probability of that event. We can expect this to happen only
if we define probabilities so that they have the same basic properties that
relative frequencies have. Thus we make the following definition.

Definition 4.1.2. Probabilities. Given a sample space S and a certain col-
lection F of its subsets, called events,1 an assignment P of a number P(A)
to each event A in F is called a probability measure and P(A) the probability
of A, if P has the following properties:

1. P(A) ≥ 0 for every A,

1 If S is a finite set, then the collection F of events is taken to be the collection
of all subsets of S. If S is infinite, then F must be a so-called sigma-field, which
we do not discuss here.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 4
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2. P(S) = 1,
3. P(A1∪A2∪· · · ) = P(A1)+P(A2)+· · · for any finite or countably infinite

set of mutually exclusive events A1, A2, . . ..

The sample space S together with F and P is called a probability space.

The properties of P in the definition are also called the axioms of the the-
ory. Furthermore, if Axiom 3 were stated for merely two sets, then from that
form, it could be proved for an arbitrary finite number of sets (finite addi-
tivity) by mathematical induction but not for an infinite number (countable
additivity), which we also need.

From this definition, several other important properties of probabilities
follow rather easily, which we give as theorems. In each of these theorems, an
underlying arbitrary probability space will be tacitly understood.

Theorem 4.1.1. The Probability of the Empty Set Is 0.

In every probability space, P(∅) = 0.

Proof. Consider an event A. Then A ∪ ∅ = A, and A and ∅ are mutually
exclusive, since A∩∅ = ∅. Hence P(A∪∅) = P(A) on the one hand, and on the
other, by Property 3 applied to A1 = A and A2 = ∅, P(A∪∅) = P(A)+P(∅).
Thus P(A) = P(A) + P(∅), and so P(∅) = 0. �

Note, however, that the empty set need not be the only set with zero
probability, that is, in some probability spaces we have events A 	= ∅ for
which P(A) = 0. There is nothing in the axioms that would prevent such
an occurrence. In fact, such events need not be impossible. For instance, if
the experiment consists of picking a point at random (that is, with equal
probabilities) from the interval [0, 1] of real numbers, then each number must
have zero probability, because otherwise Axiom 3 would imply that the sum
of the probabilities of an infinite sequence of such numbers is infinite, in
contradiction to Axiom 2. (Why?) To make useful probability statements in
this case, we assign probabilities to subintervals of nonzero length of [0, 1],
rather than to single numbers. Details will be discussed in Chapter 5 and
thereafter.

Theorem 4.1.2. The Probability of the Union of Two Events.

For any two events A and B,

P(A ∪B) = P(A) + P(B)− P(AB). (4.1)

Proof. A ∪ B = A ∪ AB with A and AB disjoint.(See Figure 3.1.) Thus, by
Axiom 3,

P (A ∪B) = P (A) + P
(
AB

)
. (4.2)
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Similarly,

P(AB) + P (AB) = P (B) (4.3)

Adding the two equations and canceling P
(
AB

)
, we get

P (A ∪B) + P (AB) = P (A) + P (B) , (4.4)

which is equivalent to the formula of the theorem. �

Theorem 4.1.3. The Probability of the Union of Three Events.

For any three events,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC).

Proof. We apply Theorem 4.1.2 three times:

P(A ∪B ∪ C)

= P(A ∪ (B ∪ C)) = P(A) + P(B ∪ C))− P(A(B ∪ C))

= P(A) + P(B) + P(C)− P(BC)− P(AB ∪AC)

= P(A) + P(B) + P(C)− P(BC)− [P(AB) + P(AC)− P(ABAC)]

= P(A) + P(B) + P(C)− P(AB)− P(AC)− P(BC) + P(ABC). (4.5)

�

Theorem 4.1.4. Probability of Complements.

For any event A,

P(A) = 1− P(A). (4.6)

Proof. A ∩ A = ∅ and A ∪ A = S by the definition of A. Thus, by Axiom 3,
P(S) = P

(
A ∪A

)
= P(A) + P(A). Now, Axiom 2 says that P(S) = 1, and

so, comparing these two values of P(S), we obtain P(A)+ P(A) = 1. �

Theorem 4.1.5. Probability of Subsets.

If two events A and B satisfy A ⊂ B, then P(A) ≤ P(B).

Proof. If A ⊂ B, then B = A∪(B∩A), with A and B∩A being disjoint. Thus,
by Property 3, P(B) = P(A) + P(B ∩A), and by Property 1, P(B ∩A) ≥ 0.
Therefore P(B) is P(A) plus a nonnegative quantity, and so greater than or
equal to P(A). �

Corollary 4.1.1. P(A) ≤ 1 for all events A.
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Proof. In Theorem 4.1.5, take B = S. Since A ⊂ S for every event A and
P(S) = 1 by Axiom 2, Theorem 4.1.5 gives P(A) ≤ 1. �

Example 4.1.1. Drawing a Card.

For the drawing of a card at random from a deck of 52 cards, we consider
the sample space S made up of the 52 elementary events corresponding to
the 52 possible choices of drawing any one of the cards. We assign 1

52 as the
probability of each of the elementary events, and for any compound event A,
we define its probability P(A) as the number n(A) of the elementary events
that make up A times 1

52 , that is, as

P(A) = n(A) · 1

52
. (4.7)

For example, the probability of drawing a spade is 13 · 1
52 = 1

4 , since there
are 13 spades and the drawing of each spade is an elementary event, the 13
of which make up the event A = {a spade is drawn}.

It is easy to verify our axioms for this case:

1. Obviously, the assignment, Equation 4.7, makes every P(A) nonnegative.
2. P(S) = 1, since S is made up of all the 52 elementary events, and so

P(S) = 52 · 1
52 = 1.

3. By Theorem 3.1.1, for k pairwise disjoint sets A1, A2, . . . , Ak, Equa-
tion 3.2 gives

n(A1 ∪A2 ∪ · · · ∪Ak)

52
=

n(A1)

52
+

n(A2)

52
+ · · ·+ n(Ak)

52
(4.8)

and, by Equation 4.7, Equation 4.8 becomes

P(A1 ∪A2 ∪ · · · ∪Ak) = P(A1) + P(A2) + · · ·+ P(Ak). (4.9)

�
Much as we did in the special case of the above example, we can prove

Theorem 4.1.6. Assignment of Probabilities in a Finite Sample
Space.

In a finite sample space, we obtain a probability measure by assigning
nonnegative numbers whose sum is 1 as probabilities of the elementary events
and, for general A, by taking the sum of the probabilities of the elementary
events that make up A as P (A).
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Example 4.1.2. An Assignment of Unequal Probabilities.

Let S = {s1,s2,s3,s4} and assign probabilities to the elementary events2

as P(s1) =
1
2 , P(s2) =

1
3 , P(s3) =

1
6 , P(s4) = 0, and, for general A, take P(A)

as the sum of the probabilities of the elementary events that make up A. For
instance, if A = {s1,s2}, then take P(A) = 1

2 +
1
3 = 5

6 . We could easily verify
the axioms for this assignment.

How could we realize an experiment that corresponds to this probability
space? One way of doing this would be to consider picking a number at
random from the interval [0, 1] of real numbers (as random number generators
do on computers, more or less) and letting s1 = [0, 1

2 ), s2 = [ 12 ,
5
6 ), s3 = [ 56 , 1),

s4 = {1} . �

Theorem 4.1.6 has a very important special case, which we state as a
corollary:

Corollary 4.1.2. If a probability space consists of n elementary events of
equal probability, then this common probability is 1

n and, if an event A is the

union of k elementary events, then P(A) = k
n .

If the elementary events have equal probability, then we say that we are
choosing one of them at random. Also, it is customary to call the k outcomes
that make up A the outcomes favorable to A and to call n the total number of
possible outcomes. Thus, for equiprobable elementary events, the assignment
can be summarized as

P(A) =
favorable

total
. (4.10)

For a long time, this formula was considered to be the definition of P(A)
and is still called the classical definition of probabilities. Example 4.1.1 pro-
vided an illustration of this: The probability of drawing a spade from a deck
of 52 cards, if one card is drawn at random (i.e., with equal probability for
each card), is 13

52 , since k = 13 and n = 52.
Note, however, that the probability of drawing a spade is not 13

52 under
all conditions. Corollary 4.1.2 ensures this value only if all cards have the
same probability of being drawn, which will not be true if the deck is not
well shuffled or we use some special method of drawing. In fact, there is no
way of proving that all cards must have the same probability of being drawn,
no matter how we do the shuffling and drawing. The equal probabilities in
this case are assignments based on our experience. In every case, some prob-
abilities must somehow be assigned, and the theory is only intended to show
how to calculate certain probabilities and related quantities from others (also
see the Introduction). For instance, Theorem 4.1.6 and its corollary tell us

2 It is customary to omit the braces in writing the probabilities of the elementary
events, such as writing P(s1) instead of the correct, but clumsy, P({s1}).
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how to calculate the probabilities of compound events from those of the ele-
mentary events. Thus, the so-called classical definition of probabilities is not
really a definition by present-day standards, but a very useful formula for the
calculation of probabilities in many cases.

Example 4.1.3. (The Monty Hall Problem).

The Monty Hall problem is a brain teaser, in the form of a probability
puzzle, loosely based on the American television game show Let’s Make a
Deal and named after its original host, Monty Hall. The problem was origi-
nally posed in a letter by Steve Selvin to the American Statistician in 1975.
It became famous as a question from a reader’s letter quoted in Marilyn vos
Savant’s “Ask Marilyn” column in Parade magazine in 1990 and generated
thousands of letters to her and a huge literature because of the counterintu-
itive nature of the solution.3

Suppose you’re on a game show, and you’re given the choice of three
closed doors: Behind one door is a car; behind the others are goats. You pick
a door, say No. 1, and the host, who knows what’s behind the doors, opens
another door, say No. 3, which has a goat. He then says to you, “Do you
want to switch your pick to door No. 2?” What’s behind your final choice is
yours.

Is it to your advantage to switch your choice?
It is tacitly assumed that the host will always open a door with a goat,

and if your pick hides the car, then he will open one of the other doors
with probability 1/2 for each. (We are going to return to this problem in
Example 4.4.4 and in Exercise 4.5.15 with the conditions modified.)

Vos Savant’s response was that the player should switch to the other door.
Under the standard assumptions, players who switch have a 2/3 chance of
winning the car, while players who stick to their choice have only a 1/3
chance. This is the correct answer as we shall explain below. However, most
of the readers’ comments were wrong and some very rude, like this one:

“You blew it, and you blew it big! Since you seem to have diffi-
culty grasping the basic principle at work here, I’ll explain. After
the host reveals a goat, you now have a one-in-two chance of being
correct. Whether you change your selection or not, the odds are the
same. There is enough mathematical illiteracy in this country, and
we don’t need the world’s highest IQ propagating more. Shame!” –
Scott Smith, Ph.D., University of Florida

Many people were hard to convince that the quoted argument is wrong:
Phrased more precisely, it says: when the decision must be made, there are
two closed doors, and each one is just as likely as the other to conceal the
car. So, it does not matter whether you switch or not; either way P(win
car) = 1/2.

3 See https://en.wikipedia.org/wiki/Monty_Hall_problem

https://en.wikipedia.org/wiki/Monty_Hall_problem
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The fallacy lies in the assumption that after seeing a goat behind door
No. 3, the car is just as likely to be behind door No. 1 as behind door No. 2.

But that would only be true if the host were to go first in opening door
No. 3. The fact that the player goes first to select a door skews the chances
because the host then cannot open the player’s selection. The host is left with
the choice of opening one of the two doors 2 or 3. In one case, when door 1
hides the car, he has the choice of two doors with goats, and in two cases,
that is, when the car is behind door 2 or door 3, he has the choice of one
door with a goat and one with the car. Since he must reveal a goat, in the
latter two out of the three equally likely cases (of the car being behind doors
1, 2, or 3), he has to leave a door with the car to the player. Thus, we see
that switching doors leads the player to the car with probability 2/3, while
staying with the original choice gets the car only with probability 1/3. �

Exercises

Exercise 4.1.1.

We draw a card at random from a deck of 52. Let A = {the card drawn
is a spade}, B = {the card drawn is a face card}, C = {the card drawn is a
King}. Find:
a) P(A),
b) P(B),
c) P(C),
d) P(A ∩B),
e) P(A ∪B),
f) P(B ∩ C),
g) P(B ∩ C),
h) P(B ∪ C).

Exercise 4.1.2.

We throw two dice as in Example 2.3.3, a black one and a white one. If
b denotes the result of the throw of the black die and w that of the white
die, then let A = {b + w = 7}, B = {b ≤ 3}, C = {w > 4}. Find the eight
probabilities listed in Exercise 4.1.1 above, but with this assignment of A,B,
and C.

Exercise 4.1.3.

Let A,B,C be arbitrary events in a probability space. Use the Venn di-
agram, Figure 2.3, to prove that the probability that exactly one of them
occurs is P(A) + P(B) + P(C)− 2 [P(AB) + P(AC) + P(BC)] + 3P(ABC).
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Exercise 4.1.4.

Prove that, for any two events A and B, P(AB) ≥ P(A) + P(B)− 1.

Exercise 4.1.5.

When is P (A−B) = P(A)−P(B)? Prove your answer, paying attention
to events with zero probability other than ∅ (see, e.g., Example 4.1.2.)

Exercise 4.1.6.

As we have seen in Exercise 2.3.7, the expression A� B = AB ∪ AB is
called the symmetric difference of A and B and corresponds to the “exclusive
or” of the corresponding statements, that is, to “one or the other but not
both.”

1. Find an expression for P(A�B) in terms of P(A),P(B), and P(AB) and
prove it.

2. Prove that this operation satisfies a “triangle inequality”: For any three
events, P(A�B) ≤ P(A� C) + P(C �B).

Exercise 4.1.7.

Prove, for arbitrary events and any integer n > 1,

a) P(A ∪B) ≤ P(A) + P(B),
b) P(A ∪B ∪ C) ≤ P(A) + P(B) + P(C),
c) P(

⋃n
i=1 Ai) ≤

∑n
i=1 P(Ai) for n = 2, 3, . . . . (Boole’s inequality)

Exercise 4.1.8.

Consider the sample space S = {a, b, c, d} and assign probabilities to the
elementary events as P({a}) = 1

7 ,P({b}) = 2
7 ,P({c}) = 4

7 ,P({d}) = 0.

a) Compute the probabilities of all compound events, as described in
Theorem 4.1.6.

b) Find two nonempty sets A and B from the S above such that AB 	= B,
but P (AB) = P (B) .
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4.2 Probability Assignments by Combinatorial Methods

In this section, we consider several examples of probability assignments
to complex events, under the assumption that the elementary events are
equiprobable. In such problems, with coins, cards, and dice, it is always as-
sumed that all elementary events are equally likely. Thus, we use the classical
definition and, because of the complexity of the problems, the combinatorial
methods developed in Chapter 3.

Example 4.2.1. Probability of Drawing Two Given Cards.

We draw two cards from a deck of 52 without replacement. What is the
probability of drawing a King and an Ace without regard to order?

We solve this problem in two ways, by using two different sample spaces.
First, we use S = set of all ordered pairs of Aces and Kings. Then the

total number of ways of drawing two cards with regard to order is 52 ·51, and
there are 42 ways of drawing a King first and an Ace second, and another 42

ways of drawing an Ace first and a King second. Thus,

P(K and A) =
2 · 42
52 · 51 . (4.11)

The other way to solve this problem is to start by disregarding the order
from the outset, that is, by using S = set of all unordered pairs of Aces and
Kings. Then the total number of possible outcomes is

(
52
2

)
, which are again

equally likely, and the number of ways of choosing one King out of four is
(
4
1

)

and of one Ace out of four also
(
4
1

)
. Thus,

P(K and A) =

(
4
1

)(
4
1

)

(
52
2

) =
42

(52 · 51) / (2 · 1) =
2 · 42
52 · 51 , (4.12)

the same as before. �

Example 4.2.2. Probability of Head and Tail.

We toss two coins. What is the probability of obtaining one head and one
tail?

If we denote the outcomes of the toss of the first coin by H1 and T1, those
of the second by H2 and T2, then the possible outcomes of the toss of both are
the sets {H1, H2}, {H1, T2}, {T1, H2}, {T1, T2}. These outcomes are equally
probable, and the second and third ones are the favorable ones. Thus P(one
H and one T ) = 2

4 = 1
2 .

For two successive tosses of a single coin instead of simultaneous tosses of
two coins, the possible outcomes could be listed exactly the same way, with
H1 and T1 denoting the result of the first toss, and H2 and T2 that of the
second toss, or more simply asHH,HT, TH, and TT , and so the probabilities
remain the same.
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Notice, that we cannot solve this problem by the alternate method of
combining the ordered pairs into unordered ones, as in Example 4.2.1, since
{HH} , {HT, TH}, and {TT} are not equally likely. Their probabilities are
1
4 ,

1
2 , and

1
4 , respectively. By ignoring the inequality of the probabilities of the

elementary events, we would get P(one H and one T ) = 1
3 , which is incorrect.

�
Example 4.2.3. Six Throws of a Die.

A die is thrown six times. What is the probability of obtaining at least
one six?

It is easiest to calculate this probability by using Theorem 4.1.4, that is,
from P(at least one six) = 1 - P(no six). Now the total number of possible
(ordered) outcomes is 66, and since on each throw there are 5 ways of obtain-
ing something other than six, in six throws, we can get numbers other than
six in 56 ways. Thus, P(at least one six) = 1− 56/66 ≈ .665.

Notice, that in this problem, as in the previous one, we must use ordered
outcomes, because the unordered ones would not be equally likely, which is
a prerequisite for computing probabilities by the classical definition. �
Example 4.2.4. Sampling Good and Bad Items without Replace-
ment.

In a batch of N manufactured items, there are N1 good ones and N2

defective ones, with N1 + N2 = N . We choose a random sample of n items
without replacement, that is, once an item is chosen, we take it out of the
pool from which the next items are picked. Here n is called the size of the
sample and N the size of the population. We ask: what is the probability of
the sample having n1 good items and n2 bad ones, where n1 + n2 = n?

We solve this problem with unordered selections. (It could be done with
ordered selections as well, see Exercise 4.2.20.) The total number of equally
probable ways of choosing n items out of N different ones is

(
N
n

)
; the number

of ways of choosing n1 good ones out of N1 is
(
N1

n1

)
, and that of n2 defectives

out of N2 is
(
N2

n2

)
. Thus, the required probability is given by

P(n1;n,N1, N2) =

(
N1

n1

)(
N2

n2

)

(
N
n

) . (4.13)

We have used the notation P(n1;n,N1, N2) for this probability, since it
is the probability of the sample containing n1 good items under the given
experimental data of sample size n, and N1 and N2 good and bad items in
the total population (n2 is given by n − n1). The variable n1 can take on
any nonnegative integer value satisfying n1 ≤ n, n1 ≤ N1 and n− n1 ≤ N2,
that is, max(0, n − N2) ≤ n1 ≤ min(n,N1). (See Exercise 4.2.21.) Since the
events described by the different values of n1 are mutually exclusive and their
union is the sure event, the above probabilities sum to 1 as n1 varies from
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max(0, n−N2) to min(n,N1), for any fixed values of n, N1, and N2. (See also
Equation 3.37.) Thus, the above formula describes how the total probability
1 is distributed over the events corresponding to the various values of n1.

Whenever we give the probabilities of disjoint events whose union is the
whole sample space, we call such an assignment of probabilities a probability
distribution. The distribution just given is called the hypergeometric distri-
bution with parameters n, N1, and N2. �

Example 4.2.5. Sampling with Replacement.

Let us modify the previous problem by asking what the probability of
obtaining n1 good items is if we choose a random sample of n items with
replacement from N1 good and N2 bad ones, that is, we choose one item at a
time, note whether it is good or bad, and replace it in the population before
choosing the next one.

Since in each of the n steps of the sampling we have N = N1 +N2 items
to choose from, the total number of equally probable elementary events is
Nn. Next, we have to count how many of these are favorable, that is, how
many elementary events have n1 good items and n2 bad ones. Now, at each
of the n steps of the sampling, we can choose either a good or a bad item,
but in n1 of them, we must choose a good one. We can choose these n1 steps
in

(
n
n1

)
ways. Then at each of these n1 steps, we have a choice of N1 items

and at each of the remaining n2 = n − n1 steps a choice of N2 items, for a
total of Nn1

1 ·Nn2
2 choices. Thus the required probability is

f(n1;n,N1, N2) =

(
n
n1

)
Nn1

1 Nn2
2

Nn
. (4.14)

If we write Nn = Nn1+n2 = Nn1Nn2 and replace n2 by n− n1, then we
can write the above formula as

f(n1;n,N1, N2) =

(
n

n1

)
.

(
N1

N

)n1
(
N2

N

)n−n1

. (4.15)

Here N1/N is the probability of choosing a good item at any given step
and N2/N is that of choosing a bad item. It is customary to denote these
probabilities by p and q (with p+ q = 1), and then the required probability
of obtaining n1 good items can be written as

f(n1;n, p) =

(
n

n1

)
pn1qn−n1 . (4.16)

Since these probabilities are the terms of the expansion of (p + q)n by
the binomial theorem and they are the probabilities of disjoint events (the
different values of n1) whose union is the sure event, they are said to describe
the so-called binomial distribution with parameters n and p.
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It is easy to check that, indeed,
n∑

n1=0

(
n

n1

)
pn1qn−n1 = (p+ q)n = 1. (4.17)

�
Example 4.2.6. The Birthday Problem.

What is the probability that at least two people, out of a given set of n
persons, for 1 ≤ n ≤ 365, have the same birthday? Disregard February 29
and assume that the 365n possible birthday combinations are equally likely.

If all the n persons had different birthdays, then there would be 365
choices for the birthday of the first person, 364 for that of the second, and so
on. Thus,

P(at least two have same birthday) = 1− 365Pn

365n
.

It is interesting and very surprising that this probability is about 0.5 for
as few as 23 people and about 0.99 for 60 people. �
Example 4.2.7. The Ballot Problem.

Consider an election in which two candidates A and B run for an office
and A wins with a total of m votes over B’s n < m votes. What is the
probability that A is ahead throughout the counting of the ballots? Although
this problem had been posed and solved earlier by W. A. Whitworth and J.
Bertrand, we present a simplified version of the solution given by D. André
from 1887, utilizing the so-called reflection principle.

Let us illustrate the vote-counting process by a polygonal path in the xy
coordinate system that starts at the origin and ends at (m,n) , with a unit
step to the right for each vote for A and a unit step up for each vote for B.
(See Figure 4.1.) We assume that these paths are all equally likely.

A path for which A is ahead throughout the count is under the y = x line,
except for its starting point. We shall call such paths good and all others bad.
Clearly, all good paths from the origin O must go through the point (1, 0) ,
and those that start through (0, 1) are all bad and they must meet the y = x
line somewhere, because (0, 1) is above the y = x line and the path ends at
(m,n) under that line. On the other hand, a bad path through (1, 0) must
also touch or cross the y = x line. Call the first point where this happens P.
Every path through (0, 1) can be paired one-to-one with a bad path through
(1, 0) by reflecting its section between O and P across the y = x line. Thus,

P (path is bad and starts through (1, 0)) = P (path starts through (0, 1))

=
n

m+ n
. (4.18)
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0

1

2

3

y

P

y = x

(m,n)

x1 2 3

Fig. 4.1. Each bad path from O to (m,n) that starts horizontally must meet the
y = x line at some point P and can be paired with a path through P that starts
vertically.

This relation is called the reflection principle.
Now, since the bad paths from the origin must start either north or east

and those that start north are all bad,

P (bad) = P (path starts through (0, 1))

+P (path is bad and starts through (1, 0)) =
2n

m+ n
. (4.19)

Hence the probability that A is ahead throughout the counting of the
ballot is

P (good) = 1− 2n

m+ n
=

m− n

m+ n
=

1− (n/m)

1 + (n/m)
.

Notice that, interestingly, this probability depends only on the ratio n/m
and not on the sizes of m and n separately. Thus, even if a million votes are
cast, the probability that A is ahead of B throughout the counting of the
ballots is the same as if there were only a hundred ballots, as long as A wins
with the same ratio. �
Example 4.2.8. Particle Distributions in Physics.

In statistical physics, the problem of randomly distributing k particles into
n distinguishable cells has been considered under three different assumptions
about the nature of the particles. The cells are the possible states of the
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system such as the various modes of electromagnetic waves in the theory of
heat radiation or the quantum states of electrons in atoms.

1. Historically, the first case considered was the Maxwell-Boltzmann distri-
bution (or “statistics” as physicists call it), in which the particles are
assumed to be distinguishable. In this case, the probability of obtaining
k1, k2, . . . , kn ≥ 0 particles, respectively, in n ≥ 1 cells is

k!

k1!k2! · · · kn! ·
1

nk
, (4.20)

where k1 + k2 + . . .+ kn = k. This distribution, as it turned out, applies
only to macroscopic particles.

2. To everybody’s great surprise, it was discovered that the spectrum of
heat radiation can only be explained by the Bose-Einstein distribution
(statistics), in which the particles are assumed to be indistinguishable
(roughly, because the particles may be represented by waves and when
those waves fuse the particles lose their identity), and each arrangement of
k > 0 particles in n > 0 cells has the same probability (see Example 3.5.3)

1
(
k+n−1

k

) . (4.21)

This distribution applies to photons and atoms or ions that contain an
even number of elementary particles.

3. Experiments have lead physicists to consider a third type of distribution
as well, the Fermi-Dirac distribution (statistics), in which the particles
are again assumed to be indistinguishable but no more than one particle
can occupy a cell. So there are

(
n
k

)
possible arrangements for k ≤ n, which

are assumed to be equiprobable, that is, each one having probability

1
(
n
k

) . (4.22)

This distribution applies to electrons, protons, neutrons, and atoms or
ions that contain an odd number of elementary particles.

Consider, for instance, the arrangement shown in Figure 4.2 as in

Fig. 4.2. Distribution of 8 balls in 6 boxes

Example 3.5.3, where we have distributed k = 8 particles into n = 6 cells. Its
probability is
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8!

0!3!1!2!0!2!
· 1

68
≈ 10−3 (4.23)

with the Maxwell-Boltzmann distribution, and

1
(
8+6−1

8

) =
1

1287
≈ 7.77× 10−4 (4.24)

with the Bose-Einstein distribution. It is impossible with the Fermi-Dirac
distribution. �

Example 4.2.9. Seating Men and Women.

m men and n women are seated at random in a row on m+n chairs, with
m ≤ n. What is the probability that no men sit next to each other?

The total number of possible arrangements is (m+ n)! and the number
of favorable arrangements can be obtained as follows.

Consider any arrangement of the n women in a row. Then there are n+1
spaces between or around them, from which we must choose m for the men.
Thus, we have

(
n+1
m

)
choices for the seats of the men once the women’s order

is set. For any of the just counted choices, the men can be ordered in m! ways
and the women in n! ways, and so the number of favorable arrangements is(
n+1
m

)
m!n!. Hence

P(no men sit next to each other) =

(
n+1
m

)
m!n!

(m+ n)!
. (4.25)

�

Example 4.2.10. Four of a Kind in Poker.

In a variant of the game of poker, players bet on the value of a five-card
hand dealt to them from a standard 52-card deck. The value of the hand
is determined by the type of combination of cards. In playing the game,
it is helpful to know the probabilities of various combinations. In “four of a
kind,” the player’s hand consists of all four cards of a certain kind, say all four
Aces, plus one other card. The probability of being dealt four of a kind can be
computed with both ordered and unordered selection, because the unordered
selections are equiprobable, each consisting of 5! ordered selections.

With ordered selection, the total number of possible hands is 52P5, and
the number of favorable hands is 13 · 48 · 5!, because the four like cards can
be chosen 13 ways, the odd card can be any one of the remaining 48 cards,
and any of the 5! orders of dealing the same cards results in the same hand.
Thus,

P(four of a kind) =
13 · 48 · 5!

52P5
≈ 0.00024. (4.26)
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With unordered selection, the total number of possible hands is
(
52
5

)
(these

hands are now equally likely), and the number of favorable hands is 13 · 48,
because the four like cards can be chosen 13 ways and the odd card can be
any one of the remaining 48 cards. (Now we don’t multiply by 5! because the
order does not matter.) Thus

P(four of a kind) =
13 · 48
(
52
5

) . (4.27)

�

Example 4.2.11. Two Pairs in Poker Dice.

The game of poker dice is similar to poker but uses dice instead of cards.
We want to find the probability of obtaining two pairs with five dice, that is,
a combination of the type x, x, y, y, z in any order, with x, y, z being distinct
numbers from one to six.

Now the total number of possible outcomes is 65.(For this problem, we
must use ordered outcomes, because the unordered ones would not be equally
likely.) For the favorable cases, the numbers x and y can be chosen

(
6
2

)
=

15 ways and the number z four ways. Furthermore, the number of ways
x, x, y, y, z can be ordered is

(
5

2, 2, 1

)
= 30. Thus,

P(two pairs) =
15 · 4 · 30

65
≈ 0.23. (4.28)

�
An analog of the inclusion-exclusion principle (Theorem 3.1.3) holds for

probabilities:

Theorem 4.2.1. (Inclusion-Exclusion Theorem for Probabilities).
For any positive integer n and arbitrary nonnull events A1, A2, . . . , An,

P

(
n⋃

i=1

Ai

)

=
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(AiAj)

+
∑

1≤i<j<k≤n

P(AiAjAk)− · · ·+ (−1)
n−1

P(A1A2 · · ·An).

(4.29)

Proof. By Theorem 2.2.2, the union on the left can be written as the proba-
bility of the union of the disjoint sets B = Ai1 . . . AikAik+1

, . . . , Ain for every
k in {1, . . . , n} and every pair of combinations {i1, . . . , ik}.and {ik+1, . . . , in}.
We can show that P(B) is counted exactly once on the right, too, for every
such B. Indeed, for a fixed k, such a B is a subset of each of Ai1 , . . . , Aik

and so it will contribute P(B) to k terms of the first sum. Also, B is a
subset of the intersection of each pair of Ai1 , . . . , Aik and so it will con-
tribute P(B) to

(
k
2

)
terms of the second sum,. . . , to

(
k
k

)
terms of the kth sum,
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and nothing to the others. Thus the total contribution of B on the right is[(
k
1

)− (
k
2

)
+ · · ·+ (−1)

k−1 (k
k

)]
P(B). The sum in the brackets is 1, because,

by the binomial theorem, (1− 1)
k
= 1−

[(
k
1

)− (
k
2

)
+ · · ·+ (−1)

k−1 (k
k

)]
= 0.

While the proof above is valid in arbitrary probability spaces, we give an
additional, alternate proof for finite spaces. Thus, assume that our sample
space S is finite and the probabilities P(s) of the elementary events are given.
Consider Equation 3.11:

IA =
∑

1≤i≤n

IAi
−

∑

1≤i<j≤n

IAiAji
+ · · ·+ (−1)

n−1
IA1A2···An

. (4.30)

Then, by Theorem 4.1.6,

P(A) =
∑

s∈S

IA (s) P(s) (4.31)

for any event A. Thus, multiplying Equation 4.30 by P(s) for each s and
summing over all s, we get the statement of the theorem. �

This theorem has an important special case in which the probability of
an intersection depends only on the number of sets in the intersection and
not on the sets themselves.

Corollary 4.2.1. If for every k in {1, . . . , n}, there is a pk such that

P(Ai1 . . . Aik) = pk (4.32)

for all permutations (i1, . . . , ik) of k elements of {1, . . . , n}, then

P

(
n⋃

i=1

Ai

)

=

n∑

k=1

(−1)
k−1

(
n

k

)
pk. (4.33)

Proof. The number of terms in the kth sum in Equation 4.29 is
(
n
k

)
for each

k and the probability of each term there is pk. �

Example 4.2.12. (Montmort’s Matching Problem).

In a book on the mathematics of games of chance, P. Montmort published
the following problem and its solution in 1708.

Suppose we have two identical decks of cards with the cards numbered
from 1 to n in each deck. The decks are shuffled and the order of the cards
compared. If, for any i, the ith card is the same in both decks, we say that a
match has occurred. What is the probability of k matches, for k = 0, 1, . . . , n?
This problem can clearly be equivalently stated as asking for the probability
of k matches in a random permutation (i1, . . . , in) of the ntuple (1, . . . , n) ,
where a match occurs at the jth place if ij = j. Instead of cards, the problem
is frequently stated with hats and then it is called the hatcheck problem:
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Suppose n people leave their hats in a checkroom and receive them back in
a random order. What is then the probability that exactly k people get their
own hats, for k = 0, 1, . . . , n?

Let Aj be the set of permutations with a match at the jth place. Then
p1 = P(Aj) = (n− 1)!/n! = 1/n since the total number of permutations is
n! and the favorable number of permutations is (n− 1)! for each j because
j is fixed and the remaining n − 1 numbers can be arbitrarily permuted.
Similarly, the probability of a match at the ith and the jth place, for any
i, j, is p2 = P(AiAj) = (n− 2)!/n! = 1/n (n− 1) , and pk = (n− k)!/n! for
any k. Substituting these pk values into Equation 4.33, we obtain for the
probability of obtaining at least one match:

P

(
n⋃

i=1

Ai

)

=
n∑

k=1

(−1)
k−1

(
n

k

)
(n− k)!

n!
(4.34)

=
n∑

k=1

(−1)
k−1 n!

k! (n− k)!

(n− k)!

n!
=

n∑

k=1

(−1)
k−1 1

k!
. (4.35)

A permutation with no matches is called a derangement. Hence the prob-
ability that a random permutation of (1, . . . , n) is a derangement is

p0,n = 1−
n∑

k=1

(−1)
k−1 1

k!
=

n∑

k=0

(−1)
k 1

k!
. (4.36)

Notice that the sum on the right is a truncation of the Maclaurin series of
e−1 and its value is about 0.37 for every n > 2. Thus, very surprisingly, the
probability that nobody gets his hat back is about the same whether there
are three hats or three million.

The probability of k matches, for k > 0, will be discussed in Exam-
ple 4.2.13, but first we need to generalize the inclusion-exclusion theorem for
probabilities (Theorem 4.2.1.). �

Theorem 4.2.2. (Inclusion-Exclusion Theorem for the Probability
of k Events). For any positive integers n and k, with 1 ≤ k ≤ n, and
arbitrary nonnull events A1, A2, . . . , An, the probability of exactly k events
occurring is given by

P
(⋃

Ai1 . . . AikAik+1
, . . . , Ain

)

=
∑

P(Ai1 . . . Aik)−
(
k + 1

k

)∑
P(Ai1 . . . Aik+1

)

+

(
k + 2

k

)∑
P(Ai1 . . . Aik+2

)− · · · ±
(
n

k

)
P(A1A2 · · ·An), (4.37)

where the union is taken over all combinations of k numbers i1, . . . , ik from
the set {1, . . . , n} and the sums are taken over all combinations of k, k + 1,
. . . , n numbers, respectively.
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Proof. The union on the left is the probability of the union of the disjoint sets
Ai1 . . . AikAik+1

, . . . , Ain for every combination {i1, . . . , ik} from {1, . . . , n}.
On the right, however, the individual terms include sets of the form B =

Ai1 . . . AijAij+1
, . . . , Ain with j 	= k as well (for instance, A1A2A3A4 is a

subset of A1A2A3, A1A2, A1A3, A2A3, A1, A2, A3), and we must show that
their total contribution is 0, while those with j = k contribute just once.

Now P(B) does not contribute to any sum on the right if j < k, because
each term there is the probability of a subset of Aik , but when j < k, then
B is a subset of Aik .

If j = k, then P(B) is counted exactly once on the right, just in the first
sum, for every such B.

However, if j > k, then P(B) is counted in every sum up to the jth one.
Thus, the coefficient of P(B) on the right side is

(
j

k

)
−
(
k + 1

k

)(
j

k + 1

)
+

(
k + 2

k

)(
j

k + 2

)
− · · ·

=
j!

k! (j − k)!
− j!

k! (j − k − 1)!
+

j!

2!k! (j − k − 2)!
− · · ·

=

(
j

k

)[
1− (j − k) +

(j − k) (j − k − 1)

2!
− · · ·

]

=

(
j

k

)[(
j − k

0

)
−
(
j − k

1

)
+

(
j − k

2

)
− · · · ±

(
j − k

j − k

)]

=

(
j

k

)
(1− 1)

j−k
= 0. (4.38)

�

Example 4.2.13. (Montmort’s Matching Problem Continued).

We are now able to solve Montmort’s matching problem for any number
of matches.

As in Example 4.2.12, P(Ai1 . . . Aik) = (n− k)!/n! for all permutations
(i1, . . . , ik) of k elements of {1, . . . , n} for every k. Substituting this into
Equation 4.37, we get

P (exactly k matches)

=

(
n

k

)
(n− k)!

n!
−
(
k + 1

k

)(
n

k + 1

)
(n− k − 1)!

n!

+

(
k + 2

k

)(
n

k + 2

)
(n− k − 2)!

n!
· · · ±

(
n

k

)
1

n!

=
1

k!

[
1− 1 +

1

2!
− 1

3!
+ · · · ± 1

(n− k)!

]
=

1

k!
p0,n−k, for k = 0, 1, 2, . . . , n.

(4.39)
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Note that, in terms of hats, if there are k matches, then there are k “good”
hats and n− k “bad” hats. Then the result is the product of the probability
1/k! that the k good hats all go to their owners and of the probability p0,n−k

that none of the n− k bad hats are matched. �

Exercises

Exercise 4.2.1.

From a deck of cards, use only AS,AH,KS,KH and choose two of these
cards without replacement.

a) List all possible ordered pair outcomes.
b) Using the above, find the probability of obtaining an Ace and a King in

either order.
c) Find the same probability by using unordered pairs.
d) Explain why the unordered pairs have equal probabilities unlike those in

Example 4.2.2

Exercise 4.2.2.

If in Exercise 4.2.1 the drawing is done with replacement, find the prob-
ability of obtaining an Ace and a King. Can you find this probability by
counting unordered pairs? Explain.

Exercise 4.2.3.

Explain why in Example 4.2.3 we did not get P(at least one six) = 1, in
spite of the fact that on each throw the probability of getting a six is 1

6 and
6 times 1

6 is 1.

Exercise 4.2.4.

What is the probability that a 13-card hand dealt from a deck of 52 cards
will contain:

a) The Queen of spades,
b) Five spades and 8 cards from other suits,
c) Five spades, five hearts, two diamonds, and the Ace of clubs?

Exercise 4.2.5.

Three dice are rolled. What is the probability that they show different
numbers?
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Exercise 4.2.6.

m men and n women are seated at random in a row on m + n chairs.
What is the probability that all the men sit next to each other?

Exercise 4.2.7.

m men and n women are seated at random around a round table on m+n
chairs. What is the probability that all the men sit next to each other?

Exercise 4.2.8.

An elevator in a building starts with six people and stops at eight floors.
Assuming that all permutations of the passengers getting off at various floors
are equally likely, find the probability that at least two of them get off on the
same floor.

Exercise 4.2.9.

In the Massachusetts Megabucks game, a player selects six distinct num-
bers from 1 to 42 on a ticket, and the Lottery Commission draws six distinct
numbers at random from 1 to 42. If all the player’s numbers match the drawn
ones, then she/he wins the jackpot and if five numbers match, then a smaller
prize. Find the probability of each event.

Exercise 4.2.10.

A random sample of size 10 is chosen from a population of 100 without
replacement. If A and B are two individuals among the 100, what is the
probability that the sample will contain

a) Both,
b) Neither,
c) A,
d) Either A or B, but not both?

Simplify the answers.

Exercise 4.2.11.

Three integer digits (0, 1, . . . , 9) are chosen at random with repetitions
allowed. What is the probability that

a) Exactly one digit will be even,
b) Exactly one digit will be less than three,
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c) Exactly two digits will be divisible by three?

Exercise 4.2.12.

Two cards are dealt from n decks of 52 cards mixed together. (Mixing
several decks is common in the game of 21 in casinos.) Find the probability of
getting a pair, that is, two cards of the same denomination, for n = 1, 2, 4, 6, 8.

Exercise 4.2.13.

Assuming Bose-Einstein statistics (Part 2 of Example 4.2.8) with n cells
and k particles, the probability that a given cell contains exactly m particles,
for 0 ≤ m ≤ k, is

(
k + n−m− 2

k −m

)/(
k + n− 1

k

)
. (4.40)

Explain why (see Exercise 3.5.8.)

Exercise 4.2.14.

Assuming Bose-Einstein statistics (Part 2 of Example 4.2.8) with n cells
and k particles, the probability that exactly m cells remain empty, for 0 ≤
m < n, is

(
n

m

)(
k − 1

n−m− 1

)/(
k + n− 1

k

)
. (4.41)

Explain why (see Exercise 3.5.8.)

Exercise 4.2.15.

Compute the probability that a poker hand dealt from a deck of 52 cards
contains five different denominations (that is, no more than one of each kind:
no more than one ace, one 2, etc.).

Exercise 4.2.16.

Compute the probability that a poker hand dealt from a deck of 52 cards
contains two pairs.
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Exercise 4.2.17.

Compute the probability that a poker hand dealt from a deck of 52 cards
is a full house, that is, contains a pair and a triple (that is, x, x, y, y, y).

Exercise 4.2.18.

Compute the probability that in poker dice we get four of a kind.

Exercise 4.2.19.

Compute the probability that in poker dice we get a full house.

Exercise 4.2.20.

Show combinatorially that the probability in Example 4.2.4 can be ob-
tained by using ordered selections as

P(n1;n,N1, N2) =

(
n

n1, n2

)
N1

Pn1 N2
Pn2

NPn
, (4.42)

and show algebraically that this quantity equals the one obtained in Equa-
tion 4.13.

Exercise 4.2.21.

Prove that in Example 4.2.4, the four inequalities 0 ≤ n1 ≤ n, n1 ≤ N1

and n−n1 ≤ N2, together, are equivalent to the double inequality max(0, n−
N2) ≤ n1 ≤ min(n,N1).

Exercise 4.2.22.

A 13-card hand is dealt from a standard deck of 52 cards. What is the
probability that

a) It contains exactly three spades and all four aces,
b) At least three of each suit?

4.3 Independence

The calculation of certain probabilities is greatly facilitated by the knowledge
of any relationships, or lack thereof, between the events under consideration.
In this section, we want to examine the latter case, that is, the case in which
the occurrence of one event has no influence on the probability of the other’s
occurrence. We want to call such events independent of each other, and want
to see how this is reflected in the probabilities. We begin with two examples.
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Example 4.3.1. Repeated Tosses of Two Coins.

Suppose we toss two coins repeatedly. We describe this experiment by
the sample space S = {HH,HT, TH, TT}, and want to estimate the relative
frequency of HH. Of course, we know that it should be about 1

4 , but we want
to look at this in a novel way. We can argue that the first coin shows H in
about 1

2 of the trials, and since the outcome of the first coin’s toss does not
influence that of the second, the second coin shows H in not only about 1

2 of
all trials but also among those in which the first coin turned up H. Thus, HH
occurs in about 1

2 of 1
2 , that is, in about 1

4 of the trials. So P(HH) = P(the first
coin shows H) · P(the second coin shows H), that is, the probability of both
events occurring equals the product of the probabilities of the separate events.
If we denote the event {the first coins shows H} = {HH,HT} by A, and the
event {the second coin shows H} = {HH,TH} by B, then {HH} = A ∩B,
and the above result can be written as P(AB) = P(A) · P(B). �

1

1b

w
2 3 4 5 6

2

3

4

5

6

Fig. 4.3. Two dice with neither of them showing 6

Example 4.3.2. Two Dice.

We throw two dice, a black and a white one. The probability of neither of

them showing a six is 52

62 , which can be written as 5
6 · 5

6 . Now P(b 	= 6) = 5
6 ,

P(w 	= 6) = 5
6 , and so P(b 	= 6 and w 	= 6) = P(b 	= 6) · P(w 	= 6).

Again, the probability of both one event and the other occurring equals
the product of the probabilities of the two events. This relation is illustrated
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by the diagram of Figure 4.3 in which the one shading represents {b 	= 6},
the other {w 	= 6}, and the double shaded 5 × 5 square represents {b 	= 6
and w 	= 6} = {b 	= 6} ∩ {w 	= 6}. If we consider the length of each side of
the big square to be one unit, then the length of the segment marked b 	= 6
is 5

6 , which is also the area of the corresponding vertical strip of 5 · 6 = 30
small squares. Thus, both this length and area have the same measure as the
probability of {b 	= 6}. (The length can be thought of as representing the
probability of {b 	= 6} in the 6-point sample space for b alone and the area
as representing P(b 	= 6) in the 36-point sample space for b and w together.)
Similarly P(w 	= 6) too shows up as a vertical length of 5

6 units and also as
the area of the corresponding horizontal strip. P(b 	= 6 and w 	= 6) shows up
only as an area, namely, that of the corresponding 5× 5 square. �

From these examples, we abstract the following definition:

Definition 4.3.1. Independence of Two Events. Two events A and B
are said to be (statistically) independent4 (of each other) if

P(AB) = P(A) · P(B). (4.43)

Also, two collections F1 and F2 of events are independent if Equation 4.43
holds for all pairs of events A ∈ F1 and B ∈ F2, and two experiments E1 and
E2 are independent if the corresponding collections F1 and F2 of events are
independent.

The main use of this definition is in the assignment of probabilities to
the joint occurrence of pairs of events that we know are independent in the
everyday sense of the word. Using this definition, we make them statistically
independent, too, as in the following example.

Example 4.3.3. Distribution of Voters.

Assume that the distribution of voters in a certain city is as described in
the two tables below.

Party affiliation: Republican Democrat Independent
% of all voters: 25 40 35

Age group: Under 30 30 to 50 Over 50
% of all voters: 30 40 30

The probability of a randomly picked voter belonging to a given group is
the decimal fraction corresponding to the group’s percentage in the table, and
the two tables each describe a probability distribution on the sample spaces

4 Note that, terminology notwithstanding, it is the events with their probabilities
that are here defined to be independent, not just the events themselves.
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S1 = {Republican, Democrat, Independent} and S2 = {under 30, 30–50, over
50}, respectively.

Assuming that party affiliation is independent of age, we can find each
of the nine probabilities of a randomly picked voter belonging to a given
possible classification according to party and age. These probabilities can be
obtained according to Definition 4.3.1 by multiplying the probabilities (that
were given as percentages) of the previous tables. The products are listed
in the next table, describing a probability distribution on the sample space
S = S1 × S2.

Age\ Party Republican Democrat Independent Any affiliation
Under 30 .075 .12 .105 .30
30 to 50 .10 .16 .14 .40
Over 50 .075 .12 .105 .30

Any age .25 .40 .35 1

The probabilities in this table are called the joint probabilities of party
affiliation and age group, and the probabilities given in the first two tables are
called the marginal probabilities of the two-way classification, because they
are equal to the probabilities in the margins of the last table. For instance,
P(Any age∩Republican) = 0.25 in the nine-element sample space S = S1 ×
S2, equals P(Republican) = 0.25 in the three-element sample space S1. Notice
that the marginal probabilities are the row and column sums of the joint
probabilities of the nine elementary events, and all add up to 1, of course. �

The notion of independence can easily be extended to more than two
events:

Definition 4.3.2. Independence of Several Events. Let A1, A2, . . . be
any events. We say that they are independent (of each other), if for all possible
sets of two or more of them the probability of the intersection of the events in
the set equals the product of the probabilities of the individual events in the
set, that is,

P(A1 ∩A2) = P(A1)P(A2),P(A1 ∩A3) = P(A1)P(A3), . . .

P(A1 ∩A2 ∩A3) = P(A1)P(A2)P(A3), . . .

· · · (4.44)

Also, collections F1, F2, . . . of events are independent if the Equations 4.44
hold for all events A1 ∈ F1, A2 ∈ F2, . . . . Furthermore, experiments E1,
E2, . . . are independent if the corresponding collections F1, F2, . . . of events
are independent.

Note that it is not enough to require the product formula just for the
intersections of all pairs of events or just for the intersection of all the events
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under consideration, but we have to require it for the intersections of all
possible combinations. (See Exercises 4.3.3 and 4.3.4.)

A frequent misconception is to think that independence is a property of
individual events. No, it is a relation among the members of a set of at least
two events.

We can use this definition to derive the formula of the binomial distribu-
tion anew in a very general setting:

Example 4.3.4. Binomial Distribution.

Consider an experiment that consists of n identical subexperiments called
trials. In each trial we have:

1. Two possible outcomes, which we call success and failure;
2. The trials are independent of each other,
3. The probability of success is the same number p in each trial, while the

probability of failure is q = 1− p.

Such trials are called Bernoulli trials.5 For example, tossing a coin or
throwing a die repeatedly or selecting a person from a given population with
replacement and observing whether he or she has a certain trait are such
trials. We ask for the probability b(k;n, p) of obtaining exactly k successes
in the n trials. Now, by the assumed independence, the probability of having
k successes and n − k failures in any fixed order is pkqn−k, and since the k
successes and n− k failures can be ordered in

(
n
k

)
mutually exclusive ways:

b(k;n, p) =

(
n

k

)
pkqn−k. (4.45)

Thus we have obtained the same binomial distribution as in Exam-
ple 4.2.5, but in a more general setting.

The great importance of this distribution stems from the many possible
applications of its scheme. Success and failure can mean head or tail in coin
tossing, winning or losing in any game, curing a patient or not in a medical
experiment, people answering yes or no to some question in a poll, people
with life insurance surviving or dying, etc. �

Example 4.3.5. De Méré’s Paradox.

In the seventeenth century, a French nobleman, the Chevalier de Méré,
posed the following question to the famous mathematician Blaise Pascal: If
you throw a die four times, he said, gamblers know from experience that
the probability of obtaining at least one six is a little more than 1

2 , and if
you throw two dice 24 times, the probability of getting at least one double

5 Named after one of the founders of the theory of probability, Jacob Bernoulli
(1654–1705), the most prominent member of a Swiss family of at least six famous
mathematicians.
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six is a little less than 1
2 . How is it possible that you do not get the same

probability in both cases, in view of the fact that P(double six for a pair of
dice) = 1

36 = 1
6 · P(a six for a single die), but you compensate for the factor

of 1
6 by throwing not 4 but 6 · 4 = 24 times when using two dice?
Well, the facts do not lie, and so there must be a mistake in the argument.

Indeed, there is one in the last step: If we multiply the number of throws by
6, the probability of getting at least one double six is not 6 times what it is
in 4 throws or 24 times what it is in one throw.6

Applying de Méré’s argument to throws of a single die, we can see at
once that such multiplication must be wrong: If we throw one die six times,
then his reasoning would give for the probability of getting at least one 6
6 · 1

6 = 1, and if we throw it seven times, the probability of at least one 6
would be 7 · 1

6 > 1; clearly impossible. The source of the error lies in the
inappropriate use of the additivity axiom, because the events Ai = “the ith
throw yields six,” for i = 1, 2, 3, 4, are not mutually exclusive, and so P(at
least one 6 in four throws of a single die) = P(A1∪A2∪A3∪A4) is not equal
to P(A1) + P(A2) + P(A3) + P(A4) = 4 · 1

6 .
Similarly, the events Bi = “the ith throw yields a double six for a pair of

dice,” for i = 1, 2, . . . , 24, are not mutually exclusive, and so P(at least one
double six in 24 throws of a pair of dice) = P(B1∪B2∪· · ·∪B24) 	= 24· 1

36 = 2
3 .

We could write correct formulas for P(A1 ∪ A2 ∪ A3 ∪ A4) and P(B1 ∪
B2 ∪ · · · ∪B24) using Theorem 4.2.1, but it is easier to compute the required
probabilities by complementation: P(at least one 6 in four throws of a single

die) = 1 − P(no six in four throws of a single die) = 1 − (
5
6

)4 ≈ .5177.
Similarly, P(at least one double six in 24 throws of a pair of dice) = 1−P(no

double six in 24 throws of a pair of dice) = 1− (
35
36

)24 ≈ .4914. �

In closing this section, let us mention that the marginal probabilities do
not determine the joint probabilities without some assumption like indepen-
dence, that is, it is possible to have different joint probabilities with the same
marginals. For instance, the joint probability distribution in the following
example has the same marginals as the one in Example 4.3.3

Example 4.3.6. Another Distribution of Voters.

Let the joint distribution of voters in a certain city be described by the
table below.

Age\ Party Republican Democrat Independent Any affiliation
Under 30 .05 .095 .155 .30
30 to 50 .075 .21 .115 .40
Over 50 .125 .095 .08 .30

Any age .25 .40 .35 1

6 Note, however, that such a multiplication rule does hold for expected values.
In this case, the expected number of double sixes in n throws is n times the
expected number in one throw, as we shall see in Section 6.1.
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It is easy to check that the various ages and party affiliations are not
independent of each other. For instance, P(under 30)P(Republican) = .30 ·
.25 = .075, while P(under 30 and Republican) = .05. �

Exercises

Exercise 4.3.1.

Three dice are thrown. Show that the events A = {the first die shows an
even number} and B = {the sum of the numbers on the second and third
dice is even} are independent.

Exercise 4.3.2.

If b and w stand for the results of a throw of two dice, show that the
events A = {b + w < 8} and B = {b = 3 or 4} are statistically independent
(although it is difficult to see why they should be in the usual sense of the
word).

Exercise 4.3.3.

Toss two dice. Let A = {b < 4}, B = {b = 3, 4, or 5} and C = {b+w = 9}.
Show that these events are not independent pairwise, but P(A ∩ B ∩ C) =
P(A)P(B)P(C).

Exercise 4.3.4.

Toss two coins. Let A = {HH,HT}, B = {TH,HH} and C = {HT, TH}.
Show that these events are independent pairwise, but P(A ∩ B ∩ C) 	=
P(A)P(B)P(C).

Exercise 4.3.5.

Let A and B be independent events. Show that

a) A and B are also independent,
b) And so are A and B.
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Exercise 4.3.6.

a) Can two independent events with nonzero probabilities be mutually
exclusive?

b) Can two mutually exclusive events with nonzero probabilities be inde-
pendent?

(Prove your answers.)

Exercise 4.3.7.

A coin is tossed five times. Find the probabilities of obtaining exactly
0, 1, 2, 3, 4, and 5 heads and plot them in a coordinate system.

Exercise 4.3.8.

A die is thrown six times. Find the probabilities of obtaining

a) Exactly 4 sixes,
b) Exactly 5 sixes,
c) Exactly 6 sixes,
d) At least 4 sixes,
e) At most 3 sixes.

Exercise 4.3.9.

An urn contains five red, five white, and five blue balls. We draw six balls
independently, one after the other, with replacement. What is the probability
of obtaining two of each color?

Exercise 4.3.10.

Let A,B, and C be independent events for which A ∪ B ∪ C = S. What
are the possible values of P(A), P(B), and P(C)?

Exercise 4.3.11.

Let A,B, and C be pairwise independent events and A be independent
of B ∪ C. Prove that A,B, and C are totally independent.

Exercise 4.3.12.

Let A,B, and C be pairwise independent events and A be independent
of BC. Prove that A,B, and C are totally independent.
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4.4 Conditional Probabilities

In this section, we discuss probabilities if certain events are known to have
occurred. We start by considering two examples.

Example 4.4.1. Relative Frequencies in Repeated Tossings of Two
Coins.

Suppose we toss two coins n = 10 times and observe the following out-
comes: HT , TT , HT , HH, TT , HH, HH, HT , TH, HT.

If we denote the event that the first coin shows H by A and the event
that the second coin shows H by B, then A occurs nA = 7 times, B occurs
nB = 4 times, and A ∩ B occurs nAB = 3 times. The relative frequencies of
these events are fA = 7

10 , fB = 4
10 , and fAB = 3

10 .
Let us now ask the question: what is the relative frequency of A among

the outcomes in which B has occurred? Then we must relate the number
nAB of occurrences of A among these outcomes to the total number nB of
outcomes in which B has occurred. Thus, if we denote this relative frequency
by fA|B , then we have

fA|B =
nAB

nB
=

3

4
. (4.46)

We call fA|B the conditional relative frequency of A, given B (or, under
the condition B). It is very simply related to the old “unconditional” relative
frequencies:

fA|B =
nAB/n

nB/n
=

3/10

4/10
=

fAB

fB
. (4.47)

According to this example, we would want to define conditional proba-

bilities in an analogous manner by P(A|B) = P(AB)
P(B) , for any events A and

B with P(B) 	= 0. Indeed, this is what we shall do, but let us see another
example first. �

Example 4.4.2. Conditional Probabilities for Randomly Picked
Points.

Assume that we pick a point at random from those shown in Figure 4.4.
If P(A), P(B), and P(AB) denote the probabilities of picking the point from
A, B, and A ∩ B, respectively, then P(A) = 5

10 , P(B) = 4
10 , P(AB) = 3

10 . If
we restrict our attention to only those trials in which B has occurred, that
is, if we know that the point has been picked from B, then obviously we want
to define the conditional probability P(A|B) of A given B as 3

4 , that is, as

P(A|B) = P(AB)
P(B) again. �

These examples lead us to
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Definition 4.4.1. Conditional Probability. Let A and B be arbitrary
events in a given probability space, with P(B) 	= 0. Then we define the con-
ditional probability of A, given B, as

P(A|B) =
P(AB)

P(B)
. (4.48)

Notice that actually every probability may be regarded as a conditional
probability, with the condition S, since

P(A|S) = P(AS)

P(S)
=

P(A)

P(S)
= P(A), (4.49)

A

S

B

Fig. 4.4. Illustration of conditional probabilities by picking points at random

Conversely, every conditional probability P(A|B) may be regarded as an
unconditional probability in a new, reduced sample space, namely, in B, in
place of S. (This fact is clearly true in sample spaces with equally likely
outcomes, as in Example 4.4.2, but, in general, it needs to be proved from
Definition 4.4.1. It will be the subject of Theorem 4.4.1 below.)

Let us see some further examples.

Example 4.4.3. Two Dice.

Two dice are thrown. What is the probability that the sum of the numbers
that come up is two or three, given that at least one die shows a 1?

Let us call these events A and B, that is, let A = {(1, 1), (1, 2), (2, 1)} and
B = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)}.
Then AB = A, and so P(AB) = 3

36 , P(B) = 11
36 and, by the definition of

conditional probabilities, P(A|B) = 3/36
11/36 = 3

11 .

We could also have obtained this result directly, as the unconditional
probability of the three-point event A in the eleven-point sample space B.�



4.4 Conditional Probabilities 85

Warning: We must be careful not to confuse the probability P(AB) of
A and B occurring jointly (or as we say, their joint probability) with the
conditional probability P(A|B). In the above example, for instance, it would
be wrong to assume that the probability of the sum being two or three, if one
die shows a 1, is 3

36 since, under that condition, the 3 favorable cases must
be related to a total of 11 cases, rather than to all 36.

Example 4.4.4. Modified Monty Hall Problem.

Assume the same setup as in Example 4.1.3, but assume that the host
too does not know which door hides the car, but opens a door, other than
the player’s choice, at random and happens to reveal a goat. The question is
again to switch or not to switch?

Denote the doors by what is behind them, that is, by “car,” “g1,” and
“g2.” Then the player and the host cannot both open the same door, and the
remaining six possibilities for their choices are equally likely. Thus the joint
probabilities for their choices are

Host\ Player car g1 g2

car 0 1/6 1/6
g1 1/6 0 1/6
g2 1/6 1/6 0

Let C = “the player’s choice hides the car” and A = “the host finds a
goat”. Then

P (C|A) = P (AC)

P (A)
=

2/6

4/6
=

1

2
, (4.50)

that is, the probability of winning if we stay with the initial choice is 1/2.
Similarly, the probability of winning if we switch is P

(
C|A) = 1/2. Thus, in

this case, it does not matter which strategy we use.
Incidentally, the fact that the two versions show different results implies

that in order to determine whether switching is advantageous or not, it is not
enough to know that the host has revealed a goat; we must also know how he
arrived at his choice. Further modifications of this choice will be examined in
Exercise 4.5.15 and will show that switching is good in most cases and never
bad. Thus one should always switch regardless of the host’s strategy, and in
the worst case, as above, it still leads to the same result as not switching. �

Example 4.4.5. Sex of Children in Randomly Selected Family.

From all families with three children, we select one family at random.
What is the probability that the children are all boys, if we know that a) the
first one is a boy, and b) at least one is a boy? (Assume that each child is a
boy or a girl with probability 1/2, independently of each other.)
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The sample space is S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg} with 8
equally likely outcomes. The sample points are the possible types of families,
with the children listed in the order of their births; for instance, bgg stands
for a family in which the first child is a boy and the other two are girls.

The reduced sample space for Part a) is {bbb, bbg, bgb, bgg}, and so P(all
are boys | the first one is a boy) = 1/4. Similarly, the reduced sample space
for Part b) is {bbb, bbg, bgb, bgg, gbb, gbg, ggb}, and so P(all are boys | at
least one is a boy) = 1/7.

It may seem paradoxical that the two answers are different. After all, if
we know that one child is a boy, what does it matter whether it is the first
child we know this about or about any one of the three? But in the first case,
we know more: we know not just that one child is a boy but also that it is
the first one who is a boy. Thus, in the first case, the reduced sample space
is smaller than in the second case, and consequently the denominator of the
conditional probability is smaller, while the numerator is the same. �

Example 4.4.6. Sex of Sibling of Randomly Selected Child.

From all families with two children, we select one child at random. If the
selected child is a boy, what is the probability that he comes from a family
with two boys? (Assume that each child is a boy or a girl with probability
1/2, independently of each other.)

The main difference between this example and the preceding one is that we
selected a family and here we select a child. Thus, here the sample points must
be children, not families. We denote the child to be selected by b or g, but we
also want to indicate the type of family he or she comes from. So, denoting
the other child by b or g, we write, for instance, bb for a boy with a younger
brother, gb for a boy with an older sister, etc. Thus, we use the sample space
S = {bb,bg,gb,gg, bb, gb, bg, gg} with eight equally likely outcomes, which
denote the eight different types of child that can be selected. The reduced
sample space for which the selected child is a boy is {bb,bg, bb, gb}, and so
P(both children of the family are boys | the selected child is a boy) = 2/4 =
1/2.

We may also solve this problem by ignoring the birth order. Then S =
{bb,bg,gb,gg}, where bb stands for a boy with a brother, bg for a boy with a
sister, etc. Now the reduced sample space is {bb,bg}. Hence P(both children
of the family are boys | the selected child is a boy) = 1/2 again. �

The definition of conditional probabilities is often used in the multiplica-
tive form:

P(AB) = P(A|B)P(B) (4.51)

for the assignment of probabilities to joint events, much as we used the defini-
tion of independence for that purpose. Let us show this use in some examples.
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Example 4.4.7. Dealing two Aces.

Two cards are dealt without replacement from a regular deck of 52 cards.
Find the probability of getting two aces.

Letting A = {the second card is an Ace} and B = {the first card is an
ace}, we have P(B) = 4

52 and P(A|B) = 3
51 , because, when we get to dealing

the second card, there are 3 aces and a total of 51 cards left. Hence P(both
cards are aces) = P(AB) = P(A|B)P (B) = 4

52 · 3
51 . �

In several of the preceding examples, we saw that conditional probabili-
ties behave like unconditional probabilities on a reduced sample space. The
following theorem shows that indeed they satisfy the three axioms of proba-
bilities.7

Theorem 4.4.1. For a Fixed Condition, Conditional Probabilities
Satisfy the Axioms of Probabilities. Let B be an event with nonzero
probability in a sample space S. The conditional probabilities under the con-
dition B have the following properties:

1. P(A|B) ≥ 0 for every event A,
2. P(S|B) = 1,
3. P(A1∪A2∪· · · |B) = P(A1|B)+ P(A2|B)+· · · for any finite or countably

infinite number of mutually exclusive events A1, A2, . . ..

1. In the definition of P(A|B) the numerator is nonnegative by Axiom 1,
and the denominator is positive by assumption. Thus, the fraction is
nonnegative.

2. Taking A = S in the definition of P(A|B), we get

P(S|B) =
P(S ∩B)

P(B)
=

P(B)

P(B)
= 1. (4.52)

3.

P(A1 ∪A2 ∪ · · · |B) =
P((A1 ∪A2 ∪ · · · )B)

P(B)

=
P(A1B ∪A2B ∪ · · · )

P(B)
=

P(A1B) + P(A2B) + · · ·
P(B)

= P(A1|B) + P(A2|B) + · · · (4.53)

where the next to last equality followed from Axiom 3 and Definition
4.4.1. 8 �

7 This theorem does not quite make P(A|B) for fixed B into a probability measure
on B in place of S though, because in Definition 4.1.2 P(A) was defined for events
A ⊂ S, but in P(A|B) we do not need to have A ⊂ B. See Corollary 4.4.1,
however.

8 Because of this theorem, a few authors use the notation PB (A) for P(A|B) to
emphasize the fact that PB is a probability measure on S and in P(A|B) we do
not have a function of a conditional event A|B but a function of A. In other
words, P(A|B) = (the probability of A) given B, and not the probability of (A
given B). Conditional events have been defined but have not gained popularity.
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Corollary 4.4.1. If the events A and A1, A2, . . .. are subsets of B, then for
fixed B, the function P(.|B) is a probability measure on the reduced sample
space B in place of S.

The definition of conditional probabilities leads to an important test for
the independence of two events:

Theorem 4.4.2. A Condition for Independence. Two events A and B,
with P(B) 	= 0, are independent, if and only if

P(A|B) = P(A). (4.54)

Proof. By Definition 4.3.1 two events are independent, if and only if

P(AB) = P(A)P(B). (4.55)

Substituting into the left side of this equation from Equation 4.51, we get
equivalently, when P(B) 	= 0 (the conditional probability P(A|B) is defined
only if P(B) 	= 0),

P(A|B)P(B) = P(A)P(B) (4.56)

or, by canceling P(B),

P(A|B) = P(A). (4.57)

�
Note that the condition in Theorem 4.4.2 is asymmetric in A and B, but

if P(A) 	= 0, then we could similarly prove that A and B are independent, if
and only if

P(B|A) = P(B). (4.58)

Exercises

Exercise 4.4.1.

Suppose the following sequence of tosses of two coins is observed: HH,
TT , HT , TT , TH, HT , HT , HT , TH, TT , TH, HT , TT , TH, HH, TH,
TT , HH, HT , TH.

Let A = {the first coin shows H} and B = {the second coin shows T}.
a) Find the relative frequencies fA, fB , fAB , fA|B and fB|A.
b) Find the corresponding probabilities P(A), P(B), P(AB), P(A|B),

P(B|A). Assume that the coins are fair and the tosses independent.
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Exercise 4.4.2.

Two dice are thrown, with b and w denoting their outcomes. (See Fig-
ure 2.4 on page 21.) Find P(w ≤ 3 and b+ w = 7), P(w ≤ 3|b+ w = 7) and
P(b+ w = 7|w ≤ 3).

Exercise 4.4.3.

A card is drawn at random from a deck of 52 cards. What is the probability
that it is a King or a 2, given that it is a face card (J, Q, K)?

Exercise 4.4.4.

In Example 4.3.6, voters of a certain district are classified according to
age and party registration (e.g., the .05 in the under 30 and Republican
category means that 5% of the total is under 30 and Republican, that is,
P({under 30}∩{Republican}) = .05) for a randomly selected voter. Find the
probabilities of a voter being

a) Republican,
b) Under 30,
c) Republican if under 30,
d) Under 30 if Republican,
e) Democrat,
f) Democrat if under 30,
g) Independent,
h) Independent if under 30.

Exercise 4.4.5.

In the previous problem, the sum of the answers to parts c, f, and h should
be 1. Why?

Exercise 4.4.6.

Consider two events A and B with P(A) = 8/10 and P(B) = 9/10. Prove
that P(A|B) ≥ 7/9.

Exercise 4.4.7.

From a family of three children, a child is selected at random and is found
to be a girl. What is the probability that she came from a family with two
girls and one boy? (Assume that each child is a boy or a girl with probability
1/2, independently of one another.)



90 4. Probabilities

Exercise 4.4.8.

Three dice were rolled. What is the probability that exactly one 6 came
up if it is known that at least one 6 came up.

Exercise 4.4.9.

Two cards are drawn at random from a deck of 52 cards without replace-
ment. What is the probability that they are both Kings, given that they are
both face cards (J, Q, K)?

Exercise 4.4.10.

Prove that any two events A and B, with P(B) 	= 0 and P(B) 	= 0, are
independent of each other if and only if P(A|B) = P(A|B).

Exercise 4.4.11.

Two cards are drawn at random from a deck of 52 cards without replace-
ment. What is the probability that exactly one is a King, given that at most
one is a King?

Exercise 4.4.12.

Two cards are drawn at random from a deck of 52 cards with replacement.
What is the probability that exactly one is a King, given that at most one is
a King?

Exercise 4.4.13.

A 13-card hand is dealt from a standard deck of 52 cards. What is the
probability that

a) It contains no spades if it contains exactly five hearts,
b) It contains at least one spade if it contains exactly five hearts?

4.5 The Theorem of Total Probability
and the Theorem of Bayes

In many applications, we need to combine the definition of conditional prob-
abilities with the additivity property, as in the following examples.
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Example 4.5.1. Picking Balls from Urns.

Suppose we have two urns, with the first one containing two white and six
black balls and the second one containing two white and two black balls. We
pick an urn at random and then pick a ball from the chosen urn at random.
What is the probability of picking a white ball?

Let us denote the events that we choose urn 1 by U1 and urn 2 by U2

and that we pick a white ball by W and a black ball by B. We are given
the probabilities P(U1) = P(U2) = 1

2 , since this is what it means that an
urn is picked at random; and, given that urn 1 is chosen, the random choice
of a ball gives us the conditional probability P(W |U1) = 2

8 , and similarly
P(W |U2) =

2
4 . Then, by Formula 4.51,

P(W ∩ U1) = P(W |U1)P(U1) =
2

8
· 1
2
=

1

8
, (4.59)

and

P(W ∩ U2) = P(W |U2)P(U2) =
2

4
· 1
2
=

1

4
, (4.60)

Now obviously W is the union of the disjoint events W ∩U1 and W ∩U2,
and so by the additivity of probabilities

P(W ) = P(W ∩ U1) + P(W ∩ U2) =
1

8
+

1

4
=

3

8
. (4.61)

Note that this result is not the same as that which we would get if we
were to put all 12 balls into one urn and picked one at random from there.
Then we would get 4

12 = 1
3 for the probability of picking a white ball.

In problems such as this one, it is generally very helpful to draw a tree di-
agram, with the given conditional probabilities on the branches, as indicated
in Figure 4.5.

B W B W

6/8

1/2 1/2

2/4 2/4

U1 U2

2/8

Fig. 4.5. Picking an urn and a ball from it
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The unconditional probabilities of each path from top to bottom are ob-
tained by multiplying the conditional probabilities written over it. For exam-
ple, the probability of the path through U1 and B is P(U1 ∩B) = 1

2 · 6
8 = 3

8 ,
and similarly, P(U2 ∩B) = 1

2 · 2
4 = 1

4 .
The probability of obtaining a given result in the end, regardless of the

path, is the sum of the probabilities of all paths ending in that result. Thus
P(B) = 3

8 + 1
4 = 5

8 . �

The method just shown can be used in situations involving any number
of alternatives and stages, whenever the conditional probabilities are known
and we want to find the unconditional probabilities.

Example 4.5.2. Dealing Three Cards.

From a deck of 52 cards, three are drawn without replacement. What is
the probability of the event E of getting two Aces and one King in any order?

If we denote the relevant outcomes by A,K, and O (for “other”), then we
can illustrate the experiment by the tree in Figure 4.6.

A

A

K

K

O

O

A

2/50

3/51

4/51

44/51

4/52

4/51

4/52

3/51

44/51

44/52

K O A K O A K O

A K O A K O

Fig. 4.6. Dealing three cards

The event E is the union of the three elementary events AAK,AKA,
and KAA. The relevant conditional probabilities have been indicated on the
corresponding paths. (The rest of the diagram is actually superfluous for
answering this particular question.) Now

P(AAK) =
4

52
· 3

51
· 4

50
=

2

5525
, (4.62)

P(AKA) =
4

52
· 4

51
· 3

50
=

2

5525
, (4.63)

and

P(KAA) =
4

52
· 4

51
· 3

50
=

2

5525
. (4.64)
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Thus

P(E) = P(AAK) + P(AKA) + P(KAA) =
6

5525
≈ 0.11%. (4.65)

Let us explain the reasons for these calculations: P(Ace first) = 4
52 , since

there are 4 Aces and 52 cards at the beginning. P(Ace second | Ace first) = 3
51 ,

since after drawing an Ace first, we are left with 3 Aces and 51 cards. Then,
from the definition of conditional probabilities,

P(Ace first and Ace second) = P(Ace first)P(Ace second|Ace first) =
4

52
· 3
51

.

(4.66)

After drawing two Aces, we have 4 Kings and 50 cards left, hence P(King
third | Ace first and Ace second) = 4

50 . Then, again from the definition of
conditional probabilities,

P(AAK) = P(Ace first and Ace second and King third)

= P(Ace first and Ace second)P(King third|Ace first and Ace second)

=
4

52
· 3

51
· 4

50
=

2

5525
, (4.67)

which is the same as our previous value for P(AAK). Now P(AKA) and
P(KAA) can be obtained in a similar manner, and since these are the prob-
abilities of mutually exclusive events whose union is E, we obtain P(E) as
their sum. �

The foregoing examples illustrate two general theorems:

Theorem 4.5.1. Joint Probability of Three Events. For any three
events A, B, and C with P(BC) 	= 0 we have

P(ABC) = P(A|BC)P(B|C)P(C). (4.68)

We leave the proof to the reader.

Theorem 4.5.2. The Theorem of Total Probability. If B1, B2, . . . , Bn

are mutually exclusive events with nonzero probabilities, whose union is B,
and A is any event, then

P(AB) = P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·+P(A|Bn)P(Bn). (4.69)

Proof. Applying Equation 4.51 to each term on the right above, we get

P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·+ P(A|Bn)P(Bn)

= P(AB1) + P(AB2) + · · ·+ P(ABn) = P(AB). (4.70)
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The last sum equals P(AB), because

(AB1) ∪ (AB2) ∪ . . . ∪ (ABn) = A(B1 ∪B2 ∪ . . . ∪Bn) = AB (4.71)

and the ABi’s are mutually exclusive because the Bi’s are, that is,

(ABi)(ABj) = A(BiBj) = A∅ = ∅ (4.72)

for any pair Bi, Bj with i 	= j. �

If B = S or B ⊃ A, then AB = A and the theorem reduces to the
following special case:

Corollary 4.5.1. If A is any event and B1, B2, . . . , Bn are mutually exclu-
sive events with nonzero probabilities, whose union is S or contains A, then

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·+ P(A|Bn)P(Bn). (4.73)

Example 4.5.3. Second Card in a Deal.

From a well-shuffled deck of 52 cards, we deal out two cards. What is the
probability that the second card is a spade?

We present two solutions.
First, letting S1 denote the event that the first card is a spade and S2 the

event that the second one is a spade, Corollary 4.5.1 gives

P(S2) = P(S2|S1)P(S1)+P(S2|S1)P(S1) =
12

51
· 13
52

+
13

51
· 39
52

=
1

4
. (4.74)

On the other hand, we could have argued simply that the second card in
the deck has just as much chance of being a spade as the first card, if we do
not know whether the first card is a spade or not. Similarly, the probability
that the nth card is a spade is also 1/4 for any n from 1 to 52, since we may
cut the deck just above the nth card, and start dealing from there. �

Example 4.5.4. Suit of Cards Under Various Conditions.

From a deck of cards, two are dealt without replacement. Find the prob-
abilities that

a) Both are clubs, given that the first one is a club,
b) Both are clubs, given that one is a club,
c) Both are clubs, given that one is the Ace of clubs,
d) One is the Ace of clubs, given that both are clubs.

a) Clearly, P(both are clubs | the first one is a club) = P(second card is a
club | the first one is a club) = 12

51 = 4
17 .
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b) In this case, the possible outcomes are {CC,CC,CC,C C}, with C denot-
ing a club and C a non-club, and the first letter indicating the first card
and the second letter the second card. The condition that one card is a
club means that we know that one of the two cards is a club but the other
can be anything or, in other words, that at least one of the two cards is a
club. Thus,9 P(one is a club) = P

(
CC,CC,CC

)
= 1

4 · 1251 + 1
4 · 3951 + 3

4 · 1351 ,
and so

P(both are C | one is C) = P
(
CC|CC ∪ CC ∪ CC

)

=
1
4 · 12

51
1
4 · 12

51 + 1
4 · 39

51 + 3
4 · 13

51

=
2

15
. (4.75)

Another way of computing this probability is by using a reduced sample
space: There are 13 · 51 + 39 · 13 ordered ways of dealing at least one club,
because the first card can be a club 13 ways and then the second card can be
any one of the remaining 51 cards or the first card can be other than a club
in 39 ways but then the second card must be one of the 13 clubs. Also, there
are 13 · 12 ways of dealing two clubs and {both are C} ∩ {one is C} = {both
are C}. Thus,

P(both are C | one is C) =
13 · 12

13 · 51 + 39 · 13 =
2

15
, (4.76)

the same as before.
It may seem surprising that the answers to Parts a) and b) are not the

same. After all, why should it make a difference whether we know that the
first card is a club or just that one of the cards is a club? The answer is that
the conditions are different: in case a), we computed P

(
CC|CC ∪ CC

)
=

1
4 · 1251

1
4 · 1251+ 1

4 · 3951
= 4

17 , whereas in case b), we computed P
(
CC|CC ∪ CC ∪ CC

)
.

c) Again, at first glance, it may seem paradoxical that it makes a difference
whether we know that one of the cards is the Ace of clubs or just any
club, but, as we shall see, we are talking here of a different event under
a different condition.

Computing with the reduced sample space, we have 1 · 51+ 51 · 1 ordered
ways of dealing the Ace of clubs, because the first card can be the Ace of
clubs in just 1 way and then the second card can be any one of the remaining
51 cards, or the first card can be other than the Ace of clubs in 51 ways but
then the second card must be the Ace of clubs. Similarly, there are 1·12+12·1
ways of dealing two clubs, one of which is the Ace, and so

P(both are C | one is the AC) =
1 · 12 + 12 · 1
1 · 51 + 51 · 1 =

4

17
. (4.77)

9 We usually omit the braces or union signs around compound events when there
are already parentheses there, and separate the components with commas. Thus
we write P

(
CC,CC,CC

)
rather than P

({CC,CC,CC}) or P(CC ∪ CC ∪ CC
)
.
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d) In this case

P(one is the AC | both are C) =
P(one is the AC and both are C)

P(both are C)

=
1
52 · 12

51 + 12
52 · 1

51
13
52 · 12

51

=
2

13
. (4.78)

�

Example 4.5.5. The Gambler’s Ruin.

A gambler who has m > 0 dollars, bets 1 dollar each time on H in
successive tosses of a coin, that is, he wins or loses 1 dollar each time, until
he ends up with n dollars, for some n > m or runs out of money. Find
the probability of the gambler’s ruin, assuming that his opponent cannot be
ruined.

Let Am denote the event that the gambler with initial capital m is ruined.
Then, if he wins the first toss, he has m + 1 dollars, and the event of ruin
in that case is denoted by Am+1. That is, P(Am|H) = P(Am+1), where H
denotes the outcome of the first toss. Similarly, P(Am|T ) = P(Am−1).

On the other hand, by the Corollary,

P(Am) = P(Am|H)P(H) + P(Am|T )P(T ) for 0 < m < n, (4.79)

which can then also be written as

P(Am) = P(Am+1) · 1
2
+ P(Am−1) · 1

2
for 0 < m < n. (4.80)

If we regard P(Am) as an unknown function f(m), then this type of
equation is called a difference equation and is known to have the general
solution f(m) = a + bm, where a and b are arbitrary constants. (We shall
deduce this fact in Section 6.3, but we need many other facts first.) For a
particular solution, these constants can be determined by initial or boundary
conditions. In the present case, obviously P(A0) = 1 and P(An) = 0. Hence
a + b0 = 1 and a + bn = 0, which give a = 1 and b = −1/n. Thus, the
probability of the gambler’s ruin is

P(Am) = 1− m

n
. (4.81)

This formula is indeed very reasonable. It shows, for instance, that if
n = 2m, that is, that the gambler wants to double his money, then both the
probability of ruin and the probability of success are 1/2. Similarly, if the
gambler wants to triple his money, that is, n = 3m, then the probability of
ruin is 2/3. Generally, the greedier he is, the larger the probability of ruin.�
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Example 4.5.6. Laplace’s Rule of Succession.

The great eighteenth-century French mathematician Laplace used the fol-
lowing very interesting argument to estimate the chances of the sun’s rising
tomorrow.

Let sunrises be independent random events with an unknown probability
p of occurrence. Let N be a large positive integer, Bi = “p is i/N ,” for
i = 0, 1, 2, . . . , N , and A = “the sun has risen every day for n days,” where
Laplace took n to be 1,826,213 days, which is 5,000 years. He assumed, since
we have no advance knowledge of the value of p, that the possible values are
equally likely and so P(Bi) =

1
N+1 for each i. By the assumed independence,

P(A|Bi) =

(
i

N

)n

. (4.82)

Hence, by the Theorem of Total Probability,

P(A) =

N∑

i=0

1

N + 1

(
i

N

)n

. (4.83)

Similarly, if B = “ the sun has risen for n days and will rise tomorrow,”
then

P(B) =

N∑

i=0

1

N + 1

(
i

N

)n+1

. (4.84)

Consequently,

P(B|A) = P(AB)

P(A)
=

P(B)

P(A)
. (4.85)

For large values ofN , the sums can be simplified by noting that
N∑

i=0

1
N

(
i
N

)n

is a Riemann sum for the integral
1∫

0

xndx = 1
n+1 . Therefore

P(A) ≈ N

N + 1
· 1

n+ 1
, (4.86)

and

P(B) ≈ N

N + 1
· 1

n+ 2
. (4.87)

Thus, the probability that the sun will rise tomorrow, if it has risen every
day for n days is
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P(B|A) ≈ n+ 1

n+ 2
. (4.88)

For n = 1, 826, 213, this result is indeed very close to one. Unfortunately,
however, the argument is on shaky grounds. First, it is difficult to see sunrises
as random events. Second, why would sunrises on different days be indepen-
dent of each other? Third, just because we don’t know a probability, we
cannot assume that it has a random value equally likely to be any number
from zero to one. In the eighteenth century, however, probability theory was
in its infancy, and its foundations were murky. Setting aside the application
to the sun, we can easily build a model with urns and balls for which the
probabilities above provide an accurate description. �

The next theorem is a straightforward formula based on the definition of
conditional probabilities and the theorem of total probability. It is important
because it provides a scheme for many applications. Before discussing the
general formula, however, we start with a simple example.

Example 4.5.7. Which Urn Did a Ball Come From?

We consider the same experiment as in Example 4.5.1 but ask a different
question: We have two urns, with the first one containing two white and six
black balls and the second one containing two white and two black balls. We
pick an urn at random and then pick a ball from the chosen urn at random.
We observe that the ball is white and ask: what is then the probability that
it came from urn 1, that is, that in the first step we picked urn 1?

With the notation of Example 4.5.1, we are asking for the conditional
probability P(U1|W ). This probability can be computed as follows:

P(U1|W ) =
P(WU1)

P(W )
=

P(W |U1)P(U1)

P(W |U1)P(U1) + P(W |U2)P(U2)

=
2
8 · 1

2
2
8 · 1

2 + 2
4 · 1

2

=
1

3
. (4.89)

�
The general scheme that this example illustrates is this: we have several

possible outcomes of an experiment, like U1 and U2 of the first stage above,
and we observe the occurrence of some other event like W . We ask then the
question: What are the new probabilities of the original outcomes in light of
this observation? The answer for the general case is given by

Theorem 4.5.3. Bayes’ Theorem. If A is any event with P(A) 	= 0 and
B1, B2, . . . , Bn are mutually exclusive events with nonzero probabilities, whose
union is S or contains A, then

P(Bi|A) = P(A|Bi)P(Bi)

P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·+ P(A|Bn)P(Bn)

for i = 1, 2, . . . , n. (4.90)

The proof is left to the reader.
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Example 4.5.8. A Blood Test.

A blood test, when given to a person with a certain disease, shows the
presence of the disease with a probability of .99 and fails to show it with a
probability of .01. It also produces a false-positive result for healthy persons,
with a probability of .02. We also know that .1% of the population has the
disease. What is the probability that a person really has the disease if the
test says so?

We use Bayes’ theorem for a randomly selected person, with B1 = “the
person has the disease,” B2 = “the person does not have the disease,” and
A = “the test gives a positive result.” Then we are looking for P(B1|A), and
we know that P(A|B1) = .99, P(B1) = .001, P(A|B2) = .02, and P(B2) =
.999. Hence,

P(B1|A) = .99 · .001
.99 · .001 + .02 · .999 =

99

99 + 1998
≈ .047. (4.91)

Thus, the probability that a person really has the disease if the test says so
turns out to be less than 5%. This number is unbelievably low. After all, the
test is 99 or 98 percent accurate, so how can this be true? The explanation is
this: The positive test result can arise in two ways. Either it is a true positive
result, that is, the patient has the disease and the test shows it correctly, or it
is a false-positive result, that is, the test has mistakenly diagnosed a healthy
person as diseased. Now, because the disease is very rare (only one person
in a thousand has it), the number of healthy persons is relatively large, and
so the 2% of them who are falsely diagnosed as diseased still far outnumber,
1998 to 99, the correctly diagnosed, diseased people. Thus, the fraction of
correct positive test results to all positive ones is small.

The moral of the example is that for a rare disease, we need a much
more accurate test. The probability of a false-positive result must be of a
lower order of magnitude than the fraction of people with the disease. On
the other hand, the probability of a false-negative result does not have to be
so low; it just depends on how many diseased persons we can afford to miss,
regardless of the rarity of the disease. �

Bayes’ theorem is sometimes described as a formula for the probabilities
of “causes.” In the above example, for instance, B1 and B2 may be considered
the two possible causes of the positive test result. The probabilities P(B1)
and P(B2) are called the prior probabilities of these causes and P(B1|A) and
P(B2|A) their posterior probabilities, because they represent the probabilities
of B1 and B2 before and after consideration of the occurrence of A. The
terminology of “causes” is, however, misleading in many applications where
no causal relationship exists between A and the Bi.

Although Bayes’ theorem is certainly true and quite useful, it has been
controversial because of philosophical problems with the assignment of prior
probabilities in some applications.
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Exercises

Exercise 4.5.1.

In an urn, there are one white and three black balls and in a second urn
three white and two black balls. One of the urns is chosen at random, and
then a ball is picked from it at random:

a) Illustrate the possibilities by a tree diagram,
b) Find the branch probabilities,
c) Find the probability of picking a white ball.

Exercise 4.5.2.

Given two urns with balls as in the previous problem, we choose an urn
at random, and then we pick two balls from it without replacement.

a) Illustrate the possibilities with a tree diagram,
b) Find the branch probabilities,
c) Find the probability of picking a white and a black ball (in any order).

Exercise 4.5.3.

From a deck of cards, two are drawn without replacement. Find the prob-
abilities that

a) Both are Aces, given that one is an Ace,
b) Both are Aces, given that one is a red Ace,
c) Both are Aces, given that one is the Ace of spades,
d) One is the Ace of spades, given that both are Aces.

Exercise 4.5.4.

Modify the Gambler’s ruin problem as follows: Suppose there are two
players, Alice and Bob, who bet on successive flips of a coin until one of
them wins all the money of the other. Alice has m dollars and bets one dollar
each time on H, while Bob has n dollars and bets one dollar each time on T .
In each play, the winner takes the dollar of the loser. Find the probability of
ruin for each player.
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Exercise 4.5.5.

Modify the Gambler’s ruin problem by changing the probability of winning
from 1/2 to p in each trial. (Hint: Modify Equation 4.80 and try to find con-
stants λ such that P(Am) = λm for 0 < m < n. The general solution should
be of the form P(Am) = aλm

1 + bλm
2 , and the constants a and b are to be

determined from the boundary conditions.)

Exercise 4.5.6.

In a mythical kingdom, a prisoner is given two urns and 50 black and 50
white marbles. The king says that the prisoner must place all the marbles
in the urns with neither urn remaining empty and he will return later and
pick an urn and then a marble from it at random. If the marble is white,
the prisoner will be released, but if it is black, he will remain in jail. How
should the prisoner distribute the marbles? Prove that your answer indeed
maximizes the prisoner’s chances of going free.

Exercise 4.5.7.

In an urn, there are one white and three black balls and in a second urn
three white and two black balls as in Exercise 4.5.1. One of the urns is chosen
at random, and then a ball is picked from it at random and turns out to be
white. What is then the probability that it came from urn 1?

Exercise 4.5.8.

Given two urns with balls as in the previous problem, we choose an urn
at random and then we pick two balls from it without replacement. (See also
Exercise 4.5.2.) What is the probability that the two balls came from urn 1
if they have different colors?

Exercise 4.5.9.

From all families with two children, one is selected at random, and then
a child is selected from it at random and is found to be a girl. What is the
probability that she came from a family with two girls? (Assume that each
child is a boy or a girl with probability 1/2, independently of one another.)
Use Bayes’ theorem.
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Exercise 4.5.10.

From all families with three children, one is selected at random, and then
a child is selected from it at random and is found to be a girl. What is the
probability that she came from a family with two girls and one boy? (Assume
that each child is a boy or a girl with probability 1/2, independently of one
another.) Use Bayes’ theorem.

Exercise 4.5.11.

Given two urns with balls as in Exercise 4.5.1, we choose a ball from each
urn. If one ball is white and the other black, what is the probability that the
white ball came from urn 1?

Exercise 4.5.12.

On a multiple-choice question with five choices, a certain student either
knows the answer and then marks the correct choice or does not know the
answer and then marks one of the choices at random. What is the probability
that he knew the answer if he marked the correct choice? Assume that the
prior probability that he knew the answer is 3

4 .

Exercise 4.5.13.

Keith Devlin attributes this problem to Amos Tversky10: Imagine you are
a member of a jury judging a hit-and-run case. A taxi hit a pedestrian one
night and fled the scene. The entire case against the taxi company rests on
the evidence of one witness, an elderly man, who saw the accident from his
window some distance away. He says that he saw the pedestrian struck by a
blue taxi. In trying to establish her case, the lawyer for the injured pedestrian
establishes the following facts:

1. There are only two taxi companies in town, “Blue Cabs” and “Black
Cabs.” On the night in question, 85% of all taxies on the road were black
and 15% were blue.

2. The witness has undergone an extensive vision test under conditions sim-
ilar to those on the night in question and has demonstrated that he can
successfully distinguish a blue taxi from a black taxi 80% of the time.

If you were on the jury, how would you decide?

10 Tversky’s Legacy Revisited, by Keith Devlin,
www.maa.org/devlin/devlin_july.html, 1996.

www.maa.org/devlin/devlin_july.html
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Exercise 4.5.14.

This is Bertrand’s box problem, published in 1889.

1. There are three boxes: a box containing two gold coins, a box containing
two silver coins, and a box containing one gold coin and one silver coin.
A box is picked at random, and then a coin is picked from it at random
and is found to be a gold coin. What is the probability that the other
coin in the selected box is also gold?

2. This problem is often presented as a paradox with the following wrong
solution: If we obtain a gold coin, then it had to come from box 1 or
from box 3. Since those two boxes are equally likely to be picked, the
probability that the other coin in the selected box is also gold is 1/2.
What is wrong here?

Exercise 4.5.15.

What is the probability that the car is behind door No. 2 in our description
of the Monty Hall problem, that is, given that the player picks door No. 1
and the host opens door No.3 (Example 4.1.3), if we modify it so that the
host knows where the car is and

1. If door No. 1, which the player has picked, hides the car, then the host
will always open door No. 3?

2. If door No. 1, which the player has picked, hides the car, then the host
will open door No. 3 with probability p and door No. 2 with probability
1 − p? Show that P(car is behind 2|3 is opened) > 1/2 holds.for any
p < 1.
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5.1 Probability Functions and Distribution Functions

In many applications, the outcomes of a probabilistic experiment are numbers
or have some numbers associated with them, and we can use these numbers
to obtain important information beyond what we have seen so far. We can,
for instance, describe in various ways how large or small these numbers are
likely to be and compute likely averages and measures of spread. For example,
in three tosses of a coin, the number of heads obtained can range from 0 to
3, and there is one of these numbers associated with each possible outcome.
Informally, the quantity “number of heads” is called a random variable and
the numbers 0 to 3 its possible values. In general, such an association of
numbers with each member of a set is called a function. For most functions
whose domain is a sample space, we have a new name:

Definition 5.1.1. Random Variable. A random variable (abbreviated r.v.)
is a real-valued function on a sample space.

Random variables are usually denoted by capital letters from the end of
the alphabet, such as X,Y, Z, and sets like {s : X(s) = x}, {s : X(s) ≤ x},
and {s : X(s) ∈ I}, for any number x and any interval I, are events1 in S.
They are usually abbreviated as {X = x}, {X ≤ x}, and {X ∈ I} and have
probabilities associated with them. The assignment of probabilities to all such
events, for a given random variable X, is called the probability distribution
of X. Furthermore, in the notation for such probabilities, it is customary
to drop the braces, that is, to write P(X = x), for instance, rather than
P({X = x}).

Hence, the preceding example can be formalized thus:

1 Actually, in infinite sample spaces, there exist complicated functions for which
not all such sets are events, and so we define a r.v. as not just any real-valued
function X, but a so-called measurable function, that is, one for which all such
sets are events. We shall ignore this issue; it is explored in more advanced books.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 5

105© Springer International Publishing Switzerland 2016
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Example 5.1.1. Three Tosses of a Coin.

Let S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} describe
three tosses of a coin, and let X denote the number of heads obtained. Then
the values of X, for each outcome s in S, are given in the following table:

s : HHH
X(s) : 3

HHT HTH HTT THH THT TTH TTT
2 2 1 2 1 1 0

Thus, in the case of three independent tosses of a fair coin, P(X = 0) =
1/8, P(X = 1) = 3/8, P(X = 2) = 3/8, and P(X = 3) = 1/8. �

The following functions are generally used to describe the probability
distribution of a random variable:

Definition 5.1.2. Probability Function. For any probability space and
any random variable X on it, the function f(x) = P(X = x), defined for all
possible values2 x of X, is called the probability function (abbreviated p.f.)
of X.

Definition 5.1.3. Distribution Function. For any probability space and
any random variable X on it, the function F (x) = P(X ≤ x), defined for all
real numbers x, is called the distribution function (abbreviated d.f.) of X.

Example 5.1.2. Three Tosses of a Coin, Continued.

Let X be the number of heads obtained in three independent tosses of a
fair coin, as in the previous example. Then the p.f. of X is given by

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/8 if x = 0
3/8 if x = 1
3/8 if x = 2
1/8 if x = 3

(5.1)

and the d.f. of X is given by

F (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < 0
1/8 if 0 ≤ x < 1
4/8 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if x ≥ 3

(5.2)

The graphs of these functions are shown in Figures 5.1 and 5.2 below.
It is also customary to picture the probability function by a histogram,

which is a bar chart with the probabilities represented by areas. For the X
above, this is shown in Figure 5.3. (In this case, the bars all have width one,
and so their heights and areas are equal.) �
2 Sometimes f(x) is considered to be a function on all of R, with f(x) = 0 if x
is not a possible value of X. This is a minor distinction, and it should be clear
from the context which definition is meant.
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Fig. 5.1. Graph of the p.f. f of a binomial random variable with parameters n = 3
and p = 1/2

0

1/8

1/2

7/8

1

1

2 3 4 x

y

Fig. 5.2. Graph of the d.f. F of a binomial random variable with parameters n = 3
and p = 1/2

Certain frequently occurring random variables and their distributions
have special names. Two of these are generalizations of the number of heads
in the above example. The first one is for a single toss, but with a not neces-
sarily fair coin, and the second one for an arbitrary number of tosses.

Definition 5.1.4. Bernoulli Random Variables. A random variable X
is called a Bernoulli random variable with parameter p, if it has two possible
values, 0 and 1, with P(X = 1) = p and P(X = 0) = 1 − p = q, where
p is any number from the interval [0,1]. An experiment whose outcome is a
Bernoulli random variable is called a Bernoulli trial.
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0
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2 31 x 

Fig. 5.3. Histogram of the p.f. f of a binomial random variable with parameters
n = 3 and p = 1/2

Definition 5.1.5. Binomial Random Variables. A random variable X
is called a binomial random variable with parameters n and p, if it has the
binomial distribution (see Example 4.3.4) with probability function

f(x) =

(
n

x

)
pxqn−x if x = 0, 1, 2,. . . , n. (5.3)

The distribution function of a binomial random variable is given by

F (x) =

⎧
⎨

⎩

0 if x < 0
∑�x�

k=0

(
n
k

)
pkqn−k if 0 ≤ x < n

1 if x ≥ n.

(5.4)

Here �x denotes the floor or greatest integer function, that is, �x = the
greatest integer ≤ x.

Example 5.1.3. Sum of Two Dice.

Let us consider again the tossing of two dice, with 36 equiprobable el-
ementary events, and let X be the sum of the points obtained. Then f(x)
and F (x) are given by the following tables. (Count the appropriate squares
in Figure 2.4 on p. 21.)

x : 2 3 4 5 6 7 8 9 10 11 12

f(x) : 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
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Fig. 5.4. Histogram of the d.f. of the sum thrown with two dice. The y-scale shows
multiples of 1/36

x ∈ (−∞, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7)
F (x) : 0 1/36 3/36 6/36 10/36 15/36

[7, 8) [8, 9) [9, 10) [10, 11) [11, 12) [12,∞)
21/36 26/36 30/36 33/36 35/36 1

The histogram of f(x) and the graph of F (x) are given by Figures 5.4
and 5.5. �
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Fig. 5.5. Graph of the d.f. of the sum thrown with two dice

A random variable is said to be discrete if it has only a finite or a countably
infinite number of possible values. The random variables we have seen so far
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are discrete. In the next section, we shall discuss the most important class of
non-discrete random variables: continuous ones.

Another important type of discrete variable is named in the following
definition:

Definition 5.1.6. Discrete Uniform Random Variables. A random
variable X and its distribution are called discrete uniform if X has a fi-
nite number of possible values, say x1, x2, . . . , xn, for any positive integer n,
and P(X = xi) =

1
n for all i = 1, 2, . . . , n.

Random variables with a countably infinite number of possible values
occur in many applications, as in the next example.

Example 5.1.4. Throwing a Die Until a Six Comes Up.

Suppose we throw a fair die repeatedly, with the throws being independent
of each other, until a six comes up. Let X be the number of throws. Clearly,
X can take on any positive integer value, for it is possible (though unlikely)
that we do not get a six in 100 throws, or 1000 throws, or in any large number
of throws.

The probability function of X can be computed easily as follows:
f(1) = P(X = 1) = P(six on the first throw) = 1

6 ,
f(2) = P(X = 2) = P(non− six on the first throw and six on the second)

= 5
6 · 1

6 ,
f(3) = P(X = 3) = P (non-six on the first two throws and six on the

third) =
(
5
6

)2 · 1
6 , and so on.

Thus

f(k) = P(X = k) =

(
5

6

)k−1

· 1
6

for k = 1, 2, . . . . (5.5)

�
The above example is a special case of another named family of random

variables:

Definition 5.1.7. Geometric Random Variables. Suppose we perform
independent Bernoulli trials with parameter p, with 0 < p < 1, until we obtain
a success. The number X of trials is called a geometric random variable with
parameter p. It has the probability function

f(k) = P(X = k) = pqk−1 for k = 1, 2, . . . . (5.6)

The name “geometric” comes from the fact that the f(k) values are the
terms of a geometric series. Using the formula for the sum of a geometric
series, we can confirm that they form a probability distribution:

∞∑

k=1

f(k) =

∞∑

k=1

pqk−1 =
p

1− q
= 1. (5.7)
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From the preceding examples, we can glean some general observations
about the probability and distribution functions of discrete random variables.

If x1, x2, . . . are the possible values of a discrete random variable X,
then f (xi) ≥ 0 for all these values and f (x) = 0 otherwise. Furthermore,∑

f (xi) = 1, because this sum equals the probability that X takes on any
of its possible values, which is certain. Hence the total area of all the bars
in the histogram of f (x) is 1. Also, we can easily read off the histogram the
probability of X falling in any given interval I, as the total area of those
bars that cover the xi values in I. For instance, for the X of Example 5.1.3,
P(3 < X ≤ 6) = P(X = 4) + P(X = 5) + P(X = 6) = 3

36 + 4
36 + 5

36 = 1
3 ,

which is the total area of the bars over 4, 5, and 6.
The above observations, when applied to infinite intervals of the type

(−∞, x], lead to the equation F (x) = P(X ∈ (−∞, x]) =
∑

xi≤xP(X = xi) =
sum of the areas of the bars over each xi ≤ x and to the following properties
of the distribution function:

Theorem 5.1.1. Properties of Distribution Functions. The distribu-
tion function F of any random variable X has the following properties:

1. F (−∞) = limx→−∞ F (x) = 0, since as x → −∞, the interval (−∞, x]
→ ∅.

2. F (∞) = limx→∞ F (x) = 1, since as x → ∞, the interval (−∞, x] → R.
3. F is a nondecreasing function, since if x < y, then

F (y) = P(X ∈ (−∞, y]) = P(X ∈ (−∞, x]) + P(X ∈ (x, y])

= F (x) + P(X ∈ (x, y]), (5.8)

and so, F (y) being the sum of F (x) and a nonnegative term, we have
F (y) ≥ F (x).

4. F is continuous from the right at every x.

These four properties of F hold not just for discrete random variables but
for all types. Their proofs are outlined in Exercise 5.1.13 and those follow-
ing it. Also, in more advanced courses, it is proved that any function with
these four properties is the distribution function of some random variable.

While the distribution function can be used for any random variable, the
probability function is useful only for discrete ones. To describe continuous
random variables, we need another function, the so-called density function,
instead, as will be seen in the next section.

The next theorem shows that the distribution function of a random vari-
able X completely determines the distribution of X, that is, the probabilities
P{X ∈ I} for all intervals I.

Theorem 5.1.2. Probabilities of a Random Variable Falling in Var-
ious Intervals. For any random variable X and any real numbers x and y,
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1. P(X ∈ (x, y]) = F (y)− F (x),
2. P(X ∈ (x, y)) = limt→y− F (t)− F (x),
3. P(X ∈ [x, y]) = F (y)− limt→x− F (t),
4. P(X ∈ [x, y)) = limt→y− F (t)− limt→x− F (t).

For discrete random variables, the probability function and the distribu-
tion function determine each other: Let xi, for i = 1, 2, . . ., denote the possible
values of X. Then clearly, for any x,

F (x) =
∑

xi≤x

f (xi) (5.9)

and

f(x) = F (x)− lim
t→x−

F (t). (5.10)

The first of these equations shows that F (x) is constant between successive
xi values, and the latter equation shows that f (xi) equals the value of the
jump of F at x = xi.

Exercises

Exercise 5.1.1.

Let X be the number of hearts in a randomly dealt poker hand of five
cards. Draw a histogram for its probability function and a graph for its dis-
tribution function.

Exercise 5.1.2.

Let X be the number of heads obtained in five independent tosses of a
fair coin. Draw a histogram for its probability function and a graph for its
distribution function.

Exercise 5.1.3.

Let X be the number of heads minus the number of tails obtained in
four independent tosses of a fair coin. Draw a histogram for its probability
function and a graph for its distribution function.

Exercise 5.1.4.

Let X be the absolute value of the difference between the number of heads
and the number of tails obtained in four independent tosses of a fair coin.
Draw a histogram for its probability function and a graph for its distribution
function.
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Exercise 5.1.5.

Let X be the larger of the number of heads and the number of tails
obtained in five independent tosses of a fair coin. Draw a histogram for its
probability function and a graph for its distribution function.

Exercise 5.1.6.

Let X be the number of heads minus the number of tails obtained in n
independent tosses of a fair coin. Find a formula for its probability function
and one for its distribution function.

Exercise 5.1.7.

Suppose we perform independent Bernoulli trials with parameter p, until
we obtain two consecutive successes or two consecutive failures. Draw a tree
diagram and find the probability function of the number of trials.

Exercise 5.1.8.

Suppose two players, A and B, play a game consisting of independent
trials, each of which can result in a win for A or for B or in a draw D, until
one player wins a trial. In each trial, P(A wins) = p1, P(B wins) = p2, and
P(draw) = q = 1 − (p1 + p2) . Let X = n if A wins the game in the nth
trial, and X = 0 if A does not win the game ever. Draw a tree diagram and
find the probability function of X. Find also the probability that A wins (in
any number of trials) and the probability that B wins. Show also that the
probability of an endless sequence of draws is 0.

Exercise 5.1.9.

Let X be the number obtained in a single roll of a fair die. Draw a
histogram for its probability function and a graph for its distribution function.

Exercise 5.1.10.

We roll two fair dice, a blue and a red one, independently of each other.
Let X be the number obtained on the blue die minus the number obtained
on the red die. Draw a histogram for its probability function and a graph for
its distribution function.

Exercise 5.1.11.

We roll two fair dice independently of each other. Let X be the absolute
value of the difference of the numbers obtained on them. Draw a histogram
for its probability function and a graph for its distribution function.
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Exercise 5.1.12.

Let the distribution function of a random variable X be given by

F (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < −2
1/4 if −2 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if x ≥ 3

(5.11)

Find the probability function of X and graph both F and f .

Exercise 5.1.13.

Let A1, A2, . . . be a nondecreasing sequence of events on a sample space
S, that is, let An ⊂ An+1 for n = 1, 2, . . ., and let A = ∪∞

k=1Ak. Prove that
P(A) = limn→∞P(An). Hint : Write A as the disjoint union A1 ∪ [∪∞

k=2(Ak −
Ak−1)], and apply the axiom of countable additivity.

Exercise 5.1.14.

Let A1, A2, . . . be a nonincreasing sequence of events on a sample space
S, that is, let An ⊃ An+1 for n = 1, 2, . . ., and let A = ∩∞

k=1Ak. Prove that
P(A) = limn→∞P(An). Hint : Apply DeMorgan’s laws to the result of the
preceding exercise.

Exercise 5.1.15.

Prove that for the distribution function of any random variable,
limx→−∞ F (x) = 0. Hint : Use the result of the preceding exercise and the
theorem from real analysis that if limn→∞ F (xn) = L for every sequence 〈xn〉
decreasing to −∞, then limx→−∞ F (x) = L.

Exercise 5.1.16.

Prove that for the distribution function of any random variable,
limx→∞ F (x) = 1. Hint : Use the result of Exercise 5.1.13 and the theo-
rem from real analysis that if limn→∞ F (xn) = L for every sequence 〈xn〉
increasing to ∞, then limx→∞ F (x) = L.

Exercise 5.1.17.

Prove that the distribution function F of any random variable is contin-
uous from the right at every x. Hint : Use a modified version of the hints of
the preceding exercises.
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5.2 Continuous Random Variables

In this section, we consider random variables X whose possible values con-
stitute a finite or infinite interval and whose distribution function is not a
step function, but a continuous function. Such random variables are called
continuous random variables.

The continuity of F implies that in Equation 5.10 limt→x− F (t) =
limt→x F (t) = F (x), for every x, and so f(x) = 0, for every x. Thus, the
probability function does not describe the distribution of such random vari-
ables because, in this case, the probability of X taking on any single value is
zero. The latter statement can also be seen directly in the case of choosing
a number at random from an interval, say from [0, 1]: If the probability of
every value x were some positive c, then the total probability for obtaining
any x ∈ [0, 1] would be ∞ · c = ∞, in contradiction to the axiom requiring
the total to be 1. On the other hand, we have no problem with f(x) = 0, for
every x, since ∞ · 0 is indeterminate.

However, even if the probability of X taking on any single value is zero,
the probability of X taking on any value in an interval need not be zero.
Now, for a discrete random variable, the histogram of f(x) readily displayed
the probabilities of X falling in an interval I as the sum of the areas of the
rectangles over I. Hence, a very natural generalization of such histograms
suggests itself for continuous random variables: Just consider a continuous
curve instead of the jagged top of the rectangles, and let the probability of X
falling in I be the area under the curve over I. Thus we make the following
formal definition:

Definition 5.2.1. Probability Density. Let X be a continuous random
variable with a given distribution function F . If there exists a nonnegative
function3 f that is integrable over R and for which

x

∫
−∞

f(t)dt = F (x), for all x, (5.12)

then f is called a probability density function4 (or briefly, density or p.d.f.)
of X, and X is called absolutely continuous.

Thus, if X has a density function, then

3 Note that we are using the same letter f for this function as for the p.f. of a
discrete r.v. This notation cannot lead to confusion though, since here we are
dealing with continuous random variables rather than discrete ones. On the other
hand, using the same letter for both functions will enable us to combine the two
cases in some formulas later.

4 The function f is not unique, because the integral remains unchanged if we
change the integrand in a countable number of points. Usually, however, there
is a version of f that is continuous wherever possible, and we shall call this
version the density function of X, ignoring the possible ambiguity at points of
discontinuity.
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P (X ∈ [x, y]) = F (y)− F (x) =
y

∫
x
f(t)dt, (5.13)

and the probability remains the same whether we include or exclude one or
both endpoints x and y of the interval. Also, if we set x = ∞ in Equation 5.12,
we see that every p.d.f. must satisfy

∞
∫

−∞
f(t)dt = 1. (5.14)

In fact, any nonnegative piecewise continuous function f satisfying Equa-
tion 5.14 is a suitable density function and can be used to obtain the distri-
bution function of a continuous random variable via Equation 5.12.

While the density function is not a probability, it is often used with dif-
ferential notation to write the probability of X falling in an infinitesimal
interval as5

P (X ∈ [x, x+ dx]) =
x+dx

∫
x

f(t)dt ∼ f(x)dx. (5.15)

By the fundamental theorem of calculus, the definition of the density
function shows that, wherever f is continuous, F is differentiable and

F ′(x) = f(x). (5.16)

There exist, however, continuous random variables whose F is everywhere
continuous but not differentiable and which therefore do not have a density
function. Such random variables occur only very rarely in applications, and
we do not discuss them in this book. In fact, we shall use the term contin-
uous random variable—as most introductory books do—to denote random
variables that possess a density function, instead of the precise term “abso-
lutely continuous.”

Let us turn now to examples of continuous random variables.

Example 5.2.1. Uniform Random Variable.

Consider a finite interval [a, b], with a < b, and pick a point6 X at random
from it, that is, let the possible values of X be the numbers of [a, b], and let
X fall in each subinterval [c, d] of [a, b] with a probability that is proportional
to the length of [c, d] but does not depend on the location of [c, d] within
[a, b]. This distribution is achieved by the density function7

5 The symbol ∼ means that the ratio of the expressions on either side of it tends
to 1 as dx tends to 0 or, equivalently, that the limits of each side divided by dx
are equal.

6 We frequently use the words “point” and “number” interchangeably, ignoring
the distinction between a number and its representation on the number line,
just as the word “interval” is commonly used for both numbers and points.

7 f is not unique: its values can be changed at a countable number of points, such
as a and b, for instance, without affecting the probabilities, which are integrals
of f .
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f(x) =

{ 1

b− a
if a < x < b

0 if x ≤ a or x ≥ b
. (5.17)

See Figure 5.6. Then, for a ≤ c ≤ d ≤ b,

P (X ∈ [c, d]) =
d

∫
c
f(t)dt =

d− c

b− a
, (5.18)

which is indeed proportional to the length d − c and does not depend on c
and d in any other way.

The corresponding distribution function is given by

F (x) =

⎧
⎪⎨

⎪⎩

0 if x < a
x− a

b− a
if a ≤ x < b

1 if x ≥ b

. (5.19)

See Figure 5.7. �

Definition 5.2.2. Uniform Random Variable. A random variable X
with the above density is called uniform over [a, b] or uniformly distributed
over [a, b]. Its distribution is called the uniform distribution over [a, b] and
its density and distribution functions the uniform density and distribution
functions over [a, b].

y = f(x)

0

1/

a

y

(b-a)

b x

Fig. 5.6. The uniform density function over [a, b]

Often we know only the general shape of the density function, and we
need to find the value of an unknown constant in its equation. Such constants
can be determined by the requirement that f must satisfy ∫∞−∞ f(t)dt = 1,
because the integral here equals the probability that X takes on any value
whatsoever. The next two examples are of this type.
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a0

1

F(x)y =

y

b x

Fig. 5.7. The uniform distribution function over [a, b]

Example 5.2.2. Normalizing a p.d.f.

Let X be a random variable with p.d.f.

f(x) =

{
Cx2 if x ∈ [−1, 1]
0 if x /∈ [−1, 1] .

(5.20)

Find the constant C and the distribution function of X.
Then,

1 =

∫ ∞

−∞
f(t)dt =

∫ 1

−1

Cx2dx = C
x3

3
|1−1 =

2

3
C. (5.21)

Hence, C = 3/2. For x ∈ [−1, 1] , the d.f. is

F (x) =

∫ x

−∞
f(t)dt =

∫ x

−1

3

2
t2dt =

1

2
x3 +

1

2
. (5.22)

Thus,

F (x) =

⎧
⎨

⎩

0 if x < −1
1
2x

3 + 1
2 if −1 ≤ x < 1

1 if x ≥ 1.
(5.23)

�

Example 5.2.3. Exponential Waiting Time.

Assume that the time T in minutes you have to wait on a certain summer
night to see a shooting star has a probability density of the form

f(t) =

{
0 if t ≤ 0

Ce−t/10 if t > 0
. (5.24)
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Find the value of C and the distribution function of T and compute the
probability that you have to wait more than 10 minutes.

Now,

1 =

∫ ∞

−∞
f(t)dt =

∫ ∞

0

Ce−t/10dt = −10Ce−t/10|∞0 = 10C, (5.25)

and so C = 1/10. Thus

f(t) =

{
0 if t ≤ 0

1
10e

−t/10 if t > 0
(5.26)

and, for t > 0,

F (t) = P(T ≤ t) =

∫ t

0

1

10
e−u/10du = 1− e−t/10. (5.27)

Consequently,

P(T > 10) = 1− F (10) = e−1 � 0.368. (5.28)

�
The distribution of the example above is typical of many waiting time

distributions occurring in real life, at least approximately. For instance, the
time between the decay of atoms in a radioactive sample, the time one has
to wait for the phone to ring in an office, and the time between customers
showing up at some store are of this type; just the constants differ. (The
reasons for the prevalence of this distribution will be discussed later under
the heading “Poisson process.”)

Definition 5.2.3. Exponential Random Variable. A random variable T
is called exponential with parameter λ > 0 if it has density

f(t) =

{
0 if t < 0
λe−λt if t ≥ 0

(5.29)

and distribution function

F (t) =

{
0 if t < 0
1− e−λt if t ≥ 0.

(5.30)

There exist random variables that are neither discrete nor continuous;
they are said to be of mixed type. Here is an example:

Example 5.2.4. A Mixed Random Variable.

Suppose we toss a fair coin, and if it comes up H, then X = 1, and if it
comes up T , then X is determined by spinning a pointer and noting its final
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position on a scale from 0 to 2, that is, X is then uniformly distributed over
the interval [0, 2].

Let

F1 (x) = P (X ≤ x|H) =

{
0 if x < 1
1 if x ≥ 1

(5.31)

and

F2 (x) = P (X ≤ x|T ) =
⎧
⎨

⎩

0 if x < 0
1
2x if 0 ≤ x < 2
1 if 2 ≤ x.

(5.32)

Then, according to the theorem of total probability, the distribution func-
tion F is given by

F (x) =
1

2
F1 (x) +

1

2
F2 (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0
1
4x if 0 ≤ x < 1
1
4x+ 1

2 if 1 ≤ x < 2
1 if 2 ≤ x

(5.33)

and its graph is given by Figure 5.8.

0

0.2

0.4

0.6

0.8

1

y 

-0.5 0.5 1 1.5 2 2.5x 

Fig. 5.8. A mixed-type distribution function

Note that

F ′(x) = f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0
1
4 if 0 < x < 1
1
4 if 1 < x < 2
0 if 2 < x

(5.34)
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exists everywhere except at x = 0, 1, and 2, but because of the jump of F at
1, it is not a true density function. Indeed,

F (x) =

{∫ x

−∞ f(t)dt if x < 1∫ x

−∞ f(t)dt+ 1
2 if 1 ≤ x,

(5.35)

and so F (x) 	= ∫ x

−∞ f(t)dt for all x, as required by the definition of density
functions. �

Exercises

Exercise 5.2.1.

A continuous random variable X has a density of the form

f (x) =

{
Cx if 0 ≤ x ≤ 4
0 if x < 0 or x > 4

. (5.36)

1. Find C.
2. Sketch the density function of X.
3. Find the distribution function of X and sketch its graph.
4. Find the probability P(X < 1).
5. Find the probability P(2 < X).

Exercise 5.2.2.

A continuous random variable X has a density of the form f(x) = Ce−|x|,
defined on all of R:

1. Find C.
2. Sketch the density function of X.
3. Find the distribution function of X and sketch its graph.
4. Find the probability P(−2 < X < 1).
5. Find the probability P(2 < |X|).

Exercise 5.2.3.

A continuous random variable X has a density of the form

f (x) =

{
C
x2 if x ≥ 1
0 if x < 1

. (5.37)

1. Find C.
2. Sketch the density function of X.
3. Find the distribution function of X and sketch its graph.
4. Find the probability P(X < 2).
5. Find the probability P(2 < |X|).
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Exercise 5.2.4.

A continuous random variable X has a density of the form

f (x) =

{
C
x2 if |x| ≥ 1
0 if |x| < 1

. (5.38)

1. Find C.
2. Sketch the density function of X.
3. Find the distribution function of X and sketch its graph.
4. Find the probability P(X < 2).
5. Find the probability P(2 < |X|).

Exercise 5.2.5.

Let X be a mixed random variable with distribution function

F (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0
1
6x if 0 ≤ x < 1
1
3 if 1 ≤ x < 2
1 if 2 ≤ x

. (5.39)

1. Devise an experiment whose outcome is this X.
2. Find the probability P(X < 1/2).
3. Find the probability P(X < 3/2).
4. Find the probability P(1/2 < X < 2).
5. Find the probability P(X = 1).
6. Find the probability P(X > 1).
7. Find the probability P(X = 2).

Exercise 5.2.6.

Let X be a mixed random variable with distribution function

F (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0
1
3x+ 1

6 if 0 ≤ x < 1
2
3 if 1 ≤ x < 2
1 if 2 ≤ x

. (5.40)

1. Devise an experiment whose outcome is this X.
2. Find the probability P(X < 1/2).
3. Find the probability P(X < 3/2).
4. Find the probability P(1/2 < X < 2).
5. Find the probability P(X = 1).
6. Find the probability P(X > 1).
7. Find the probability P(X = 3/2).
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Exercise 5.2.7.

Let X be a mixed random variable with distribution function F given by
the graph in Figure 5.9:

1. Find a formula for F (x).
2. Find the probability P(X < 1/2).
3. Find the probability P(X < 3/2).
4. Find the probability P(1/2 < X < 2).
5. Find the probability P(X = 1).
6. Find the probability P(X > 1).
7. Find the probability P(X = 2).
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Fig. 5.9.

Exercise 5.2.8.

Let X be a mixed random variable with distribution function F given by
the graph in Figure 5.10:

1. Find a formula for F (x).
2. Find the probability P(X < 1/2).
3. Find the probability P(X < 3/2).
4. Find the probability P(1/2 < X < 2).
5. Find the probability P(X = 1).
6. Find the probability P(X > 1).
7. Find the probability P(X = 2).
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Fig. 5.10.

5.3 Functions of Random Variables

In many applications we need to find the distribution of a function of a ran-
dom variable. For instance, we may know from measurements the distribution
of the radius of stars, and we may want to know the distribution of their vol-
umes. (Probabilities come in—as in several examples of Chapter 4—from a
random choice of a single star.) Or we may know the income distributions
in different countries and want to change scales to be able to compare them.
We shall encounter many more examples in the rest of the book. We start off
with the change of scale example in a general setting.

Example 5.3.1. Linear Functions of Random Variables.

Let X be a random variable with a known distribution function FX and
define a new random variable as Y = aX + b, where a 	= 0 and b are given
constants.

If X is discrete, then we can obtain the probability function fY of Y very
easily by solving the equation in its definition:

fY (y) = P(Y = y) = P(aX + b = y) = P

(
X =

y − b

a

)
= fX

(
y − b

a

)
.

(5.41)

Equivalently, if x is a possible value of X, that is, fX (x) 	= 0, then fY (y) =
fX (x) for y = ax+ b, which is the corresponding possible value of Y.

If X is continuous, then we cannot imitate the above procedure, because
the density function is not a probability. We can, however, obtain the distri-
bution function FY of Y similarly, by solving the inequality in its definition:
For a > 0,
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FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)
,

(5.42)

and for a < 0,

FY (y) = P(Y ≤ y) = P(aX+b ≤ y) = P

(
X ≥ y − b

a

)
= 1−FX

(
y − b

a

)
.

(5.43)

If X is continuous with density fX , then FX is differentiable and fX =
F ′
X . As Equations 5.42 and 5.43 show, then FY is also differentiable. Hence

Y too is continuous, with density function

fY (y) = F ′
Y (y) = ± d

dy
FX

(
y − b

a

)
=

1

|a|F
′
X

(
y − b

a

)
=

1

|a|fX
(
y − b

a

)
.

(5.44)

�

Example 5.3.2. Shifting and Stretching a Discrete Uniform
Variable.

LetX denote the number obtained in the roll of a die and let Y = 2X+10.
Then the p.f. of X is

fX (x) =

{
1/6 if x = 1, 2, . . . , 6
0 otherwise.

(5.45)

Thus, using Equation 5.41 with this fX and with a = 2 and b = 10, we get
the p.f. of Y as

fY (y) = fX

(
y − 10

2

)
=

{
1/6 if y = 12, 14, . . . , 22
0 otherwise.

(5.46)

We can obtain the same result more simply, by tabulating the possible x
and y = 2x+ 10 values and the corresponding probabilities:

x 1 2 3 4 5 6
y 12 14 16 18 20 22

fX (x) = fY (y) 1/6 1/6 1/6 1/6 1/6 1/6

�

Example 5.3.3. Shifting and Stretching a Uniform Variable.

Let X be uniform on the interval [−1, 1] and let Y = 2X + 10. Then the
p.d.f. of X is
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fX (x) =

{
1/2 if x ∈ [−1, 1]
0 otherwise.

(5.47)

If X = −1, then Y = 2(−1)+10 = 8, and if X = 1, then Y = 2 · 1+10 = 12.
Thus, the interval [−1, 1] gets changed into [8, 12] , and so Equation 5.44,
with the present fX and with a = 2 and b = 10, yields

fY (y) =
1

2
fX

(
y − 10

2

)
=

{
1/4 if y ∈ [8, 12]
0 otherwise.

(5.48)

Notice that here the p.d.f. got shifted and stretched in much the same way
as the p.f. in the preceding example, but there the values of the p.f. remained
1
6 , while here the values of the p.d.f. have become halved. The reason for this
difference is clear: In the discrete case, the number of possible values has not
changed (both X and Y had six), but in the continuous case, the p.d.f. got
stretched by a factor of 2 (from width 2 to width 4) and so, to compensate
for that, in order to have a total area of 1, we had to halve the density.

The foregoing examples can easily be generalized to the case in which
Y = g (X) , for any invertible function g. Rather than summarizing the results
in a theorem, we just give prescriptions for the procedures and illustrate them
with examples:

1. For discrete X tabulate the possible values x of X together with y = g(x)
and fX (x) = fY (y).

2. For continuous X, solve the inequality in FY (y) = P (Y ≤ y)
= P (g(X) ≤ y) to obtain FY (y) in terms of FX

(
g−1 (y)

)
. (We must

be careful to reverse the inequality when solving for X if g is decreasing.)
To obtain the p.d.f. fY (y), differentiate FY (y).

Example 5.3.4. Squaring a Binomial.

Let X be binomial with parameters n = 3 and p = 1
2 and let Y = X2.

Then we can obtain fY by tabulating the possible X and Y = X2 values and
the corresponding probabilities:

x 0 1 2 3
y 0 1 4 9

fX (x) = fY (y) 1/8 3/8 3/8 1/8

�

Example 5.3.5. Squaring a Positive Uniform Random Variable.

Let X be uniform on the interval [1, 3] and let Y = X2. Then the p.d.f.
of X is
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fX (x) =

{
1/2 if x ∈ [1, 3]
0 otherwise.

(5.49)

Now, g(X) = X2 is one-to-one for the possible values ofX, which are positive,
and so, for y ≥ 0,

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P (X ≤ √
y) = FX (

√
y) . (5.50)

Hence, by the chain rule,

fY (y) =
d

dy
FX (

√
y) = fX (

√
y)

d
√
y

dy
=

{ 1
2

1
2
√
y if y ∈ [1, 9]

0 otherwise.
(5.51)

We can check that this fY is indeed a density function:
∫ 9

1

1

4
√
y
dy =

√
y

2

∣
∣
∣
∣

9

1

=
1

2

(√
9−

√
1
)
= 1. (5.52)

�
Example 5.3.6. Random Number Generation.

An important application of the procedures for changing of random vari-
ables described above is to the computer simulation of physical systems with
random inputs. Most mathematical and statistical software packages produce
so-called random numbers (or more precisely, pseudorandom numbers) that
are uniformly distributed on the interval [0, 1]. (Though such numbers are
generated by deterministic algorithms, they are for most practical purposes
a good substitute for samples of independent, uniform random variables on
the interval [0, 1].) Often, however, we need random numbers with a differ-
ent distribution and want to transform the uniform random numbers to new
numbers that have the desired distribution.

Suppose we need random numbers that have the continuous distribution
function F and that F is strictly increasing where it is not 0 or 1. (The
restrictions on F can be removed, but we do not want to get into this.)
Then F has a strictly increasing inverse F−1 over [0, 1], which we can use as
the function g in Part 2 of the general procedure given above. Thus, letting
Y = F−1(X), with X being uniform on [0, 1], we have

FY (y) = P(Y ≤ y) = P(F−1(X) ≤ y) = P(X ≤ F (y)) = F (y), (5.53)

where the last step follows from the fact that P(X ≤ x) = x on [0, 1] for an X
that is uniform on [0, 1], with the substitution x = F (y). (See Equation 5.19.)

Thus, if x1, x2,. . . are random numbers uniform on [0, 1], produced by the
generator, then the numbers y1 = F−1(x1), y2 = F−1(x2),. . . are random
numbers with the distribution function F . �

If g is not one-to-one, we can still follow the procedures of the examples
above, but, for some y, we have more than one solution of the equation
y = g (x) or of the corresponding inequality, and we must consider all of
those solutions, as in the following examples.
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Example 5.3.7. The X 2 Function.

Let X be a random variable with a known distribution function FX and
define a new random variable as Y = X2.

If X is discrete, then we can obtain the probability function fY of Y as

fY (y) = P(X2 = y) =

⎧
⎨

⎩

P
(
X = ±√

y
)
= fX

(√
y
)
+ fX

(−√
y
)
if y > 0

P (X = 0) = fX (0) if y = 0
0 if y < 0.

(5.54)

For continuous X, the distribution function FY of Y is given by

FY (y)=P(X2 ≤ y)=

{
P
(−√

y ≤ X ≤ √
y
)
=FX

(√
y
) −FX

(−√
y
)
if y > 0

0 if y≤ 0,

(5.55)

and for discrete X, we have

FY (y)=

{
P
(−√

y ≤ X ≤ √
y
)
=FX

(√
y
)− FX

(−√
y
)
+ fX

(−√
y
)
if y≥ 0

0 if y < 0.

(5.56)

If X is continuous and has density function fX , then differentiating Equa-
tion 5.55 we get

fY (y) = F ′
Y (y) =

{ 1
2
√
y

[
fX

(√
y
)
+ fX

(−√
y
)]

if y > 0

0 if y ≤ 0.
(5.57)

�
Example 5.3.8. Distribution of (X − 2)

2
for a Binomial.

Let X be binomial with parameters n = 3 and p = 1
2 , and let Y =

(X − 2)
2
. Rather than developing a formula like Equation 5.54, the best way

to proceed is to tabulate the possible values ofX and Y and the corresponding
probabilities, as in Example 5.3.4:

x 0 1 2 3
y 4 1 0 1

fX (x) 1/8 3/8 3/8 1/8

Now, Y = 1 occurs when X = 1 or 3. Since these cases are mutually
exclusive, P(Y = 1) = P(X = 1)+ P(X = 3) = 3/8 + 1/8 = 1/2. Hence, the
table of fY is

y 0 1 4
fY (y) 3/8 1/2 1/8

�
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Example 5.3.9. Distribution of X2 for a Uniform X.

Let X be uniform on the interval [−1, 1] and let Y = X2. Then, by
Formula 5.19,

FX (x) =

⎧
⎪⎨

⎪⎩

0 if x < −1
x+ 1

2
if −1 ≤ x < 1

1 if x ≥ 1.

(5.58)

Substituting this FX into Equation 5.55 and observing that

√
y + 1

2
−

−√
y + 1

2
=

√
y, we get

FY (y) =

⎧
⎨

⎩

0 if y < 0√
y if 0 ≤ y < 1
1 if y ≥ 1.

(5.59)

We can obtain the density of Y by differentiating FY , as

fY (y) =

{ 1
2
√
y if 0 < y < 1

0 otherwise.
(5.60)

�

Example 5.3.10. Distribution of X2 for a Nonuniform X.

Let X be a random variable with p.d.f. f(x) = 3x2

2 on the interval [−1,1]
and 0 elsewhere and Y = X2. Find the distribution function and the density
function of Y .
Solution: If 0 < y < 1, then

FY (y) = P(X2 ≤ y) = P (−√
y ≤ X ≤ √

y) (5.61)

=

∫ √
y

−√
y

3x2

2
dx =

[
x3

2

]√y

−√
y

= y3/2.

Thus

FY (y) =

⎧
⎨

⎩

0 if y ≤ 0
y3/2 if 0 < y < 1
1 if y ≥ 1.

(5.62)

Hence

fY (y) = F ′
Y (y) =

{
3
√
y

2 if 0 < y < 1
0 if y ≤ 0 or y ≥ 1.

(5.63)

�
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Example 5.3.11. Coordinates of a Uniform Random Variable on a
Circle.

Suppose that a point is moving around a circle of radius r centered at the
origin of the xy coordinate system with constant speed, and we observe it at
a random instant. What is the distribution of each of the point’s coordinates
at that time?

Since the point is observed at a random instant, its position is uniformly
distributed on the circle. Thus its polar angle Θ is a uniform random vari-
able on the interval [0, 2π], with constant density fΘ(θ) = 1

2π there and 0
elsewhere. We want to find the distributions of X = r cosΘ and Y = r sinΘ.

Now, for a given x = r cos θ, there are two solutions modulo 2π: θ1 =
arccos x

r and θ2 = 2π − arccos x
r . So if X ≤ x, then Θ falls in the angle on

the left between these two values. Thus

FX(x) = P(X ≤ x) =

⎧
⎨

⎩

0 if x < −r
θ2−θ1
2π = 1− 1

π arccos x
r if − r ≤ x < r

1 if r ≤ x.
(5.64)

Hence

fX(x) = F ′
X(x) =

{ 1
π
√
r2−x2

if − r < x < r

0 otherwise.
(5.65)

The density of X can also be obtained directly from Figure 5.11 by using
Equation 5.15. For x > 0 and dx > 0, the variable X falls into the interval
[x, x + dx] if and only if Θ falls into either of the intervals of size dθ at
θ1 and θ2. (For negative x or dx, we need obvious modifications.) Thus,
fX(x)dx = 2 · 1

2πdθ, and so fX(x) = 1
π · dθ

dx = 1
π · 1/dx

dθ = 1
π
√
r2−x2

as before.

We leave the analogous computation for the distribution of the
y-coordinate as an exercise. �

Exercises

Exercise 5.3.1.

Let X be a discrete uniform random variable with possible values −5,−4,
. . . , 4, 5. Find the probability function and the distribution function of Y =
X2 − 3X.

Exercise 5.3.2.

Let X be a binomial random variable with parameters p = 1
2 and n = 6.

Find the probability function and the distribution function of Y = X2− 2X.
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Fig. 5.11. Density of the x-coordinate of a random point on a circle

Exercise 5.3.3.

Let X be a Bernoulli random variable with p = 1
2 and Y = arctanX.

Find the probability function and the distribution function of Y .

Exercise 5.3.4.

Let X be a discrete random variable with probability function fX . Find
formulas for the probability function and the distribution function of Y =
(X − a)

2
, where a is an arbitrary constant.

Exercise 5.3.5.

Let X be a random variable uniformly distributed on the interval (0,1)
and Y = lnX. Find the distribution function and the density function of Y .

Exercise 5.3.6.

Let X be a random variable uniformly distributed on the interval [−1,1]
and Y = |X|. Find the distribution function and the density function of Y .

Exercise 5.3.7.

Let X be a continuous random variable with density function fX . Find
formulas for the distribution function and the density function of Y = |X|.
Exercise 5.3.8.

Assume that the distribution of the radius R of stars has a density function
fR. Find formulas for the density and the distribution function of their volume
V = 4

3R
3π.
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Exercise 5.3.9.

Find the distribution function and the density function of Y in Exam-
ple 5.3.11.

Exercise 5.3.10.

Let X be a continuous random variable with density fX . Find formulas
for the distribution function and the density function of Y = (X − a)

2
, where

a is an arbitrary constant.

Exercise 5.3.11.

Let X be a continuous random variable with a continuous distribution
function F that is strictly increasing where it is not 0 or 1. Show that the
random variable Y = F (X) is uniformly distributed on the interval [0,1].

Exercise 5.3.12.

Let X be a random variable uniformly distributed on the interval [−2,2]

and Y = (X − 1)
2
:

a) Find the density function and the distribution function of X.
b) Find the distribution function and the density function of Y .

5.4 Joint Distributions

In many applications, we need to consider two or more random variables
simultaneously. For instance, the two-way classification of voters in Exam-
ple 4.3.3 can be regarded to involve two random variables, if we assign num-
bers to the various age groups and party affiliations.

In general, we want to consider joint probabilities of events defined by
two or more random variables on the same sample space. The probabilities
of all such events constitute the joint distribution or the bivariate (for two
variables) or multivariate (for two or more variables) distribution of the given
random variables and can be described by their joint p.f., d.f., or p.d.f., much
as for single random variables.

Definition 5.4.1. Joint Probability Function.

Let X and Y be two discrete random variables on the same sample space.
The function of two variables defined by8 f(x, y) = P(X = x, Y = y), for all
possible values9 x of X and y of Y , is called the joint or bivariate probability
function of X and Y or of the pair (X,Y ).

8 P(X = x, Y = y) stands for P(X = x and Y = y) = P({X = x} ∩ {Y = y}).
9 Sometimes f(x, y) is defined for all real numbers x, y, with f(x, y) = 0 if P(X =
x) = 0 or P(Y = y) = 0.
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Similarly, for a set of n random variables on the same sample space, with
n a positive integer greater than 2, we define the joint or multivariate proba-
bility function of (X1, X2, . . . , Xn) as the function given by f(x1, x2, . . . , xn)
= P(X1 = x1, X2 = x2, . . . , Xn = xn), for all possible values xi of each Xi

or for all (x1, x2, . . . , xn) ∈ R
n.

If for two random variables we sum f(x, y) over all possible values y of Y ,
then we get the (marginal)10 probability function fX (or f1) of X. Indeed,

∑

y

f(x, y) =
∑

y

P(X = x, Y = y) = P({X = x} ∩ (∪y {Y = y}))

= P({X = x} ∩ S) = P(X = x) = fX(x). (5.66)

Similarly, if we sum f(x, y) over all possible values x of X, then we get the
probability function fY (or f2) of Y , and if we sum f(x, y) over all possible
values x of X and y of Y both, in either order then, of course, we get 1.

For n random variables, if we sum f(x1, x2, . . . , xn) over all possible values
xi of any Xi, then we get the joint (marginal) probability function of the n−1
random variables Xj with j 	= i, and if we sum over all possible values of
any k of them, then we get the joint (marginal) probability function of the
remaining n− k random variables.

Definition 5.4.2. Joint Distribution Function.

Let X and Y be two arbitrary random variables on the same sample space.
The function of two variables defined by F (x, y) = P(X ≤ x, Y ≤ y), for all
real x and y, is called the joint or bivariate distribution function of X and
Y or of the pair (X,Y ).

The functions11 FX(x) = F (x,∞) and FY (y) = F (∞, y) are called the
(marginal) distribution functions of X and Y .

Similarly, for a set of n random variables on the same sample space, with
n a positive integer greater than 2, we define the joint or multivariate distribu-
tion function of (X1, X2, . . . , Xn) as the function given by F (x1, x2, . . . , xn) =
P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn), for all real numbers x1, x2, . . . , xn.

If we substitute ∞ for any of the arguments of F (x1, x2, . . . , xn), we get
the marginal d.f.’s of the random variables that correspond to the remaining
arguments.

For joint distributions, we have the following obvious theorem:

Theorem 5.4.1. Joint Distribution of Two Functions of Two Dis-
crete Random Variables. If X and Y are two discrete random variables
with joint probability function fX,Y (x, y) and U = g(X,Y ) and V = h(X,Y )
any two functions, then the joint probability function of U and V is given by

10 The adjective “marginal” is really unnecessary; we just use it occasionally to
emphasize the relation to the joint distribution.

11 F (x,∞) is a shorthand for limy→∞F (x, y), etc.
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fU,V (u, v) =
∑

(x,y):g(x,y)=u,

∑

h(x,y)=v

fX,Y (x, y). (5.67)

Example 5.4.1. Sum and Absolute Difference of Two Dice.

Roll two fair dice as in 2.3.3, and letX and Y denote the numbers obtained
with them. Find the joint probability function of U = X+Y and V = |X−Y |.

First, we construct a table of the values of U and V , for all possible
outcomes x and y (Table 5.1):

y\x 1 2 3 4 5 6

1 2,0 3,1 4,2 5,3 6,4 7,5
2 3,1 4,0 5,1 6,2 7,3 8,4
3 4,2 5,1 6,0 7,1 8,2 9,3
4 5,3 6,2 7,1 8,0 9,1 10,2
5 6,4 7,3 8,2 9,1 10,0 11,1
6 7,5 8,4 9,3 10,2 11,1 12,0

Table 5.1. The values of U = X + Y and V = X − Y for the numbers X and Y
showing on two dice

By assumption, each pair of x and y values has probability 1/36, and so
each pair (u, v) of U and V values has as its probability 1/36 times the number
of boxes in which it appears. Hence, for instance, fU,V (3, 1) = P(U = 3, V =
1) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = 2

36 . Thus, the joint probability
function fU,V (u, v) of U and V is given by the table below (Table 5.2), with
the marginal probability function fU (u) shown as the row sums on the right
margin and the marginal probability function fV (v) shown as the column
sums on the bottom margin:

u\v 0 1 2 3 4 5 fU (u)

2 1/36 0 0 0 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 1/36 0 2/36 0 0 0 3/36
5 0 2/36 0 2/36 0 0 4/36
6 1/36 0 2/36 0 2/36 0 5/36
7 0 2/36 0 2/36 0 2/36 6/36
8 1/36 0 2/36 0 2/36 0 5/36
9 0 2/36 0 2/36 0 0 4/36
10 1/36 0 2/36 0 0 0 3/36
11 0 2/36 0 0 0 0 2/36
12 1/36 0 0 0 0 0 1/36

fV (v) 6/36 10/36 8/36 6/36 4/36 2/36 1

Table 5.2. The joint and marginal probability functions of U = X + Y and V =
X − Y for the numbers X and Y showing on two dice
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Example 5.4.2. Maximum and Minimum of Three Integers.

Choose three numbers X1, X2, X3 without replacement and with equal
probabilities from the set {1, 2, 3, 4}, and let X = max {X1, X2, X3} and
Y = min {X1, X2, X3} . Find the joint probability function of X and Y .

First, we list the set of all 24 possible outcomes (Table 5.3), together with
the values of X and Y :

X1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
X2 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
X3 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
X 3 4 3 4 4 4 3 4 3 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4
Y 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2

Table 5.3. The values of X = max(X1, X2, X3) and Y = min(X1, X2, X3)

Now, each possible outcome has probability 1/24, and so we just have to
count the number of times each pair of X,Y values occurs and multiply it
by 1/24 to get the probability function f(x, y) of (X,Y ) . This p.f. is given
in the following table (Table 5.4), together with the marginal probabilities
fY (y) on the right and fX(x) at the bottom:

y\x 3 4 Any x

1 1/4 1/2 3/4
2 0 1/4 1/4

Any y 1/4 3/4 1

Table 5.4. The joint p.f. and marginals of X = max(X1, X2, X3) and
Y = min(X1, X2, X3)

�

Example 5.4.3. Multinomial Distribution.

Suppose we have k types of objects and we perform n independent trials of
choosing one of these objects, with probabilities p1, p2, . . . , pk for the different
types in each of the trials, where p1 + p2 + · · · + pk = 1. Let N1, N2, . . . , Nk

denote the numbers of objects obtained in each category. Then clearly, the
joint probability function of N1, N2, . . . , Nk is given by

f (n1, n2, . . . , nk) = P(N1 = n1, N2 = n2, . . . , Nk = nk)

=

(
n

n1, n2, . . . , nk

)
pn1
1 pn2

2 · · · pnk

k (5.68)
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for every choice of nonnegative integers n1, n2, . . . , nk with n1+n2+· · ·+nk =
n and f (n1, n2, . . . , nk) = 0 otherwise. �

Next, we consider the joint distributions of continuous random variables.

Definition 5.4.3. Joint Density Function.

Let X and Y be two continuous random variables on the same probability
space. If there exists an integrable nonnegative function f(x, y) on R

2 such
that

P(a < X < b, c < Y < d) =

∫ d

c

∫ b

a

f(x, y)dxdy (5.69)

for all real numbers a, b, c, d, then f is called a joint or bivariate probability
density function12 of X and Y or of the pair (X,Y ), and X and Y are said
to be jointly continuous.

Similarly, for a set of n continuous random variables on the same prob-
ability space, with n a positive integer greater than 2, if there exists an inte-
grable nonnegative function f(x1, x2, . . . , xn) on R

n such that, for any coor-
dinate rectangle13 R of R

n,

P ((X1, X2, . . . , Xn) ∈ R) =

∫
· · ·

∫

R

f(x1, x2, . . . , xn)dx1 . . . dxn, (5.70)

then f is called a joint or multivariate probability density function of
X1, X2, . . . , Xn or of the point or vector (X1, X2, . . . , Xn), and X1, X2, . . . , Xn

are said to be jointly continuous.
Similarly as for discrete variables, in the continuous bivariate case,∫∞

−∞ f(x, y)dx = fY (y) is the (marginal) density of Y , and
∫∞
−∞ f(x, y)dy =

fX(x) is the (marginal) density of X. In the multivariate case, integrating
the joint density over any k of its arguments from −∞ to ∞, we get the
(marginal) joint density of the remaining n− k random variables.

The relationship between the p.d.f. and the d.f. is analogous to the one
for a single random variable: For a continuous bivariate distribution,

F (x, y) = P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
f(s, t)dsdt, (5.71)

and

f(x, y) =
∂2F (x, y)

∂x∂y
, (5.72)

wherever the derivative on the right exists and is continuous. Similar relations
exist for multivariate distributions.

An important class of joint distributions is obtained by generalizing the
notion of a uniform distribution on an interval to higher dimensions:

12 The same ambiguities arise as in the one-dimensional case. (See footnote 4 on
page 115.)

13 That is, a Cartesian product of n intervals, one from each coordinate axis.
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Definition 5.4.4. Uniform Distribution on Various Regions. Let D
be a region of R

n, with n-dimensional volume V . Then the point (X1, X2,
. . . , Xn) is said to be chosen at random or uniformly distributed on D, if its
distribution is given by the density function14

f(x1, x2, . . . , xn) =

{
1
V if (x1, x2, . . . , xn) ∈ D
0 otherwise

. (5.73)

Example 5.4.4. Uniform Distribution on the Unit Square.

Let D be the closed unit square of R2, that is, D = {(x, y) : 0 ≤ x ≤
1, 0 ≤ y ≤ 1}. Then the random point (X,Y ) is uniformly distributed on D,
if its distribution is given by the density function

f(x, y) =

{
1 if (x, y) ∈ D
0 otherwise

. (5.74)

Clearly, the marginal densities are the uniform densities on the [0, 1] in-
tervals of the x and y axes, respectively. �

0 1 x

1

y

Fig. 5.12. D is the shaded area

Example 5.4.5. Uniform Distribution on Part of the Unit Square.

Let D be the union of the lower left quarter and of the upper right quarter
of the unit square of R

2, that is, D = {(x, y) : 0 ≤ x ≤ 1/2, 0 ≤ y ≤
1/2} ∪ {(x, y) : 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1} as shown in Figure 5.12.

14 Note that it makes no difference for this assignment of probabilities whether we
consider the region D open or closed or, more generally, whether we include or
omit any set of points of dimension less than n.
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Then, clearly, the area ofD is 1/2, and so the density function of a random
point (X,Y ), uniformly distributed on D, is given by

f(x, y) =

{
2 if (x, y) ∈ D
0 otherwise

. (5.75)

The surprising thing about this distribution is that the marginal densities
are again the uniform densities on the [0, 1] intervals of the x and y axes, just
as in the previous example, although the joint density is very different and
not even continuous on the unit square. �

Example 5.4.6. Uniform Distribution on a Diagonal of the Unit
Square.

Let D be again the unit square of R2, that is, D = {(x, y) : 0 ≤ x ≤
1, 0 ≤ y ≤ 1}, and let the random point (X,Y ) be uniformly distributed on
the diagonal y = x between the vertices (0, 0) and (1, 1), that is, on the line
segment L = {(x, y) : y = x, 0 ≤ x ≤ 1}. In other words, assign probabilities
to regions A in the plane by

P((X,Y ) ∈ A) =
length(A ∩ L)√

2
. (5.76)

Clearly, here again, the marginal densities are the uniform densities on the
[0, 1] intervals of the x and y axes, respectively. Note, however, that X and
Y are not jointly continuous (nor discrete) and do not have a joint density
function, in spite of X and Y being continuous separately. �

Example 5.4.7. Uniform Distribution on the Unit Disk.

LetD be the open unit disk of R2, that is,D = {(x, y) : x2+y2 < 1}. Then
the random point (X,Y ) is uniformly distributed on D, if its distribution is
given by the density function

f(x, y) =

{
1/π if (x, y) ∈ D
0 otherwise

. (5.77)

The marginal density of X is obtained from its definition fX(x) =∫∞
−∞ f(x, y)dy. Now, for any fixed x ∈ (−1, 1), f(x, y) 	= 0 if and only if

−√
1− x2 < y <

√
1− x2, and so for such x

∫ ∞

−∞
f(x, y)dy =

∫ √
1−x2

−√
1−x2

1

π
dy =

2

π

√
1− x2. (5.78)
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Thus,

fX(x) =

{
2
π

√
1− x2 if x ∈ (−1, 1)

0 otherwise
. (5.79)

By symmetry, the marginal density of Y is the same, just with x replaced
by y :

fY (y) =

{
2
π

√
1− y2 if y ∈ (−1, 1)

0 otherwise
. (5.80)

�
Frequently, as for single random variables, we know the general form of

a joint distribution except for an unknown coefficient, which we determine
from the requirement that the total probability must be 1.

Example 5.4.8. A Distribution on a Triangle.

Let D be the triangle in R
2 given by D = {(x, y) : 0 < x, 0 < y, x+y < 1},

and let (X,Y ) have the density function

f(x, y) =

{
Cxy2 if (x, y) ∈ D
0 otherwise

. (5.81)

Find the value of C and compute the probability P(X < Y ).

x + y = 1

x=0 x=1-y x

y

y

1

1

Fig. 5.13. The range of x for a given y
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Then, by Figure 5.13,

1 =

∫∫

R2

f(x, y)dxdy =

∫∫

D

Cxy2dxdy =

∫ 1

0

∫ 1−y

0

Cxy2dxdy

= C

∫ 1

0

1

2
(1− y)2y2dy = C

∫ 1

0

1

2
(y2 − 2y3 + y4)dy

= C
1

2

(
1

3
− 1

2
+

1

5

)
=

C

60
. (5.82)

Thus C = 60.

x + y = 1

y = x

y = x

xx

y

y = 1 - x

1

1

0 1/2

Fig. 5.14. The integration limits for P(X < Y )

To compute the probability P(X < Y ), we have to integrate f over those
values (x, y) of (X,Y ) for which x < y holds, that is, for the half of the
triangle D above the y = x line. (See Figure 5.14.) Thus

P(X < Y ) = 60

∫ 1/2

0

∫ 1−x

x

xy2dydx = 60

∫ 1/2

0

x

[
y3

3

]1−x

x

dx

= 20

∫ 1/2

0

x
[
(1− x)3 − x3

]
dx = 20

∫ 1/2

0

(
x− 3x2 + 3x3 − 2x4

)
dx

= 20

[
1

2

(
1

2

)2

−
(
1

2

)3

+
3

4

(
1

2

)4

− 2

5

(
1

2

)5
]

=
11

16
. (5.83)

�
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The second part of the above example is an instance of the following
general principle: If (X,Y ) is continuous with joint p.d.f. f and A is any
set15 in R

2, then

P((X,Y ) ∈ A) =

∫∫

A

f(x, y)dxdy. (5.84)

In particular, if the set A is defined by a function g so that
A = {(x, y) : g(x, y) ≤ a} , for some constant a, then

P(g(X,Y ) ≤ a) =

∫∫

{g(x,y)≤a}
f(x, y)dxdy. (5.85)

Relations similar to Equations 5.84 and 5.85 hold for discrete random
variables as well; we just have to replace the integrals by sums.

Equation 5.85 shows how to obtain the d.f. of a new random variable
Z = g(X,Y ).This is illustrated in the following example.

Example 5.4.9. Distribution of the Sum of the Coordinates of a
Point.

Let the random point (X,Y ) be uniformly distributed on the unit square
D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, as in Example 5.4.4. Find the d.f. of
Z = X + Y .

x + y = z x + y = z

xz z x

z}

1

1

y

0

1

1 2

2 -

y

0

Fig. 5.15. The region {x+ y ≤ z} ∩D, depending on the value of z

15 More precisely, A is any set in R
2 such that {s : (X(s), Y (s)) ∈ A} is an event.
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By Equation 5.85 (see Figure 5.15),

FZ (z) = P(X + Y ≤ z) =

∫∫

{x+y≤z}
f(x, y)dxdy =

∫∫

{x+y≤z}∩D

dxdy

= Area of D under the line x+ y = z

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if z < 0
z2

2 if 0 ≤ z < 1

1− (2−z)2

2 if 1 ≤ z < 2
1 if 2 ≤ z

. (5.86)

and so the p.d.f. of Z is

fZ (z) = F ′
Z (z) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if z < 0
z if 0 ≤ z < 1

2− z if 1 ≤ z < 2
0 if 2 ≤ z.

(5.87)

�
The method of the foregoing example can be generalized as follows:

Theorem 5.4.2. Distribution of the Sum of Two Random Variables.
If X and Y are continuous with joint density f, then the d.f. and the density
of Z = X + Y are given by

FZ (z) =

∫ ∞

−∞

∫ z−x

−∞
f(x, y)dydx =

∫ ∞

−∞

∫ z−y

−∞
f(x, y)dxdy (5.88)

and

fZ (z) =

∫ ∞

−∞
f(x, z − x)dx =

∫ ∞

−∞
f(z − y, y)dy. (5.89)

If X and Y are discrete with joint p.f. f, then the p.f. of Z = X + Y is
given by

fZ (z) =

∞∑

x=−∞
f(x, z − x) =

∞∑

y=−∞
f(z − y, y). (5.90)

Proof. In the continuous case,

FZ (z) = P (X + Y ≤ Z) =

∫ ∫

x+y≤z

f(x, y)dxdy =

∫ ∞

−∞

∫ z−x

−∞
f(x, y)dydx

(5.91)
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and, by the fundamental theorem of calculus,

fZ (z) = F ′
Z (z) =

∫ ∞

−∞

(
∂

∂z

∫ z−x

−∞
f(x, y)dy

)
dx =

∫ ∞

−∞
f(x, z − x)dx.

(5.92)

In the discrete case,

fZ (z) =
∑

x+y=z

f(x, y) =
∞∑

x=−∞
f(x, z − x)dx. (5.93)

In each formula, the second form can be obtained by interchanging the
roles of x and y. �

Exercises

Exercise 5.4.1.

Roll two dice as in Example 5.4.1. Find the joint probability function of
U = X + Y and V = X − Y.

Exercise 5.4.2.

Roll two dice as in Example 5.4.1. Find the joint probability function of
U = max(X,Y ) and V = min(X,Y ).

Exercise 5.4.3.

Roll six dice. Find the probabilities of obtaining:

1. Each of the six possible numbers once,
2. One 1, two 2’s, and three 3’s.

Exercise 5.4.4.

Let the random point (X,Y ) be uniformly distributed on the triangle
D = {(x, y) : 0 ≤ x ≤ y ≤ 1}. Find the marginal densities of X and Y and
plot their graphs.

Exercise 5.4.5.

Let the random point (X,Y ) be uniformly distributed on the unit disk
D = {(x, y) : x2+ y2 < 1}. Find the d.f. and the p.d.f. of the point’s distance
Z =

√
X2 + Y 2 from the origin.
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Exercise 5.4.6.

Let (X,Y ) be continuous with density f(x, y) = Ce−x−2y for x ≥ 0, y ≥ 0
and 0 otherwise. Find:

1. The value of the constant C,
2. The marginal densities of X and Y,
3. The joint d.f. F (x, y),
4. P(X < Y ).

Exercise 5.4.7.

Let (X,Y ) be continuous with density f(x, y) = Cxy2 on the triangle
D = {(x, y) : 0 ≤ x ≤ y ≤ 1} and 0 otherwise. Find:

1. The value of the constant C,
2. The marginal densities of X and Y,
3. The joint d.f. F (x, y),
4. P(X > Y 2).

Exercise 5.4.8.

Let the random point (X,Y ) be uniformly distributed on the square D =
{(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. Find the d.f. and the p.d.f. of Z = X + Y.

Exercise 5.4.9.

Show that, for any random variables X and Y and any real numbers
x1 < x2 and y1 < y2,

P(x1 < X ≤ x2, y1 < Y ≤ y2) = F (x2, y2)−F (x1, y2)+F (x1, y1)−F (x2, y1).

Exercise 5.4.10.

Let the random point (X,Y ) be uniformly distributed on the unit square
D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Find the d.f. and the density of
Z = X − Y .

Exercise 5.4.11.

Find formulas analogous to those in Theorem 5.4.2 for:

1. Z = X − Y,
2. Z = 2X − Y,
3. Z = XY.

5.5 Independence of Random Variables

The notion of independence of events can easily be extended to random vari-
ables, by applying the product rule to their joint distributions.
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Definition 5.5.1. Independence of Two Random Variables.

Two random variables X and Y are said to be independent of each other
if, for all intervals A and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B). (5.94)

Equivalently, we can reformulate the defining condition in terms of F or f :

Theorem 5.5.1. Alternative Conditions for Independence of Two
Random Variables. Two random variables X and Y are independent of
each other if and only if their joint d.f. is the product of their marginal d.f.’s:

F (x, y) = FX(x)FY (y) for all x, y. (5.95)

Two discrete or absolutely continuous random variables X and Y are inde-
pendent of each other if and only if their joint p.f. or p.d.f. is the product of
their marginal p.f.’s or p.d.f.’s16:

f(x, y) = fX(x)fY (y) for all x, y. (5.96)

Proof. If in Definition 5.5.1 we choose A = (−∞, x] and B = (−∞, y], then
we get Equation 5.95. Conversely, if Equation 5.95 holds, then Equation 5.94
follows for any intervals from Theorem 5.1.2.

For discrete variables, Equation 5.96 follows from Definition 5.5.1 by sub-
stituting the one-point intervals A = [x, x] and B = [y, y], and for continuous
variables by differentiating Equation 5.95. Conversely, we can obtain Equa-
tion 5.95 from Equation 5.96 by summation or integration. �

Example 5.5.1. Two Discrete Examples.

In Example 5.4.2 we obtained the following table (Table 5.5) for the joint
p.f. f and the marginals of two discrete random variables X and Y :

y\x 3 4 Any x

1 1/4 1/2 3/4
2 0 1/4 1/4

Any y 1/4 3/4 1

Table 5.5. The joint p.f. and marginals of two discrete dependent random variables

16 More precisely, two absolutely continuous r.v.’s are independent if and only if
there exist versions of the densities for which Equation 5.96 holds. (See footnote
4 on page 115.)
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These variables are not independent, because f(x, y) 	= fX(x)fY (y) for
all x, y. For instance, f(3, 1) = 1

4 but fX(3)fY (1) = 1
4 · 3

4 = 3
16 . (Note

that we need to establish only one instance of f(x, y) 	= fX(x)fY (y) to dis-
prove independence, but to prove independence we need to show f(x, y) =
fX(x)fY (y) for all x, y.)

We can easily construct a table for an f with the same x, y values and
the same marginals that represents the distribution of independent X and Y .
All we have to do is to make each entry f(x, y) equal to the product of the
corresponding numbers on the margins (Table 5.6):

y\x 3 4 Any x

1 3/16 9/16 3/4
2 1/16 3/16 1/4

Any y 1/4 3/4 1

Table 5.6. The joint p.f. and marginals of two discrete independent random
variables

These examples show that there are usually many possible joint distri-
butions for given marginals, but only one of those represents independent
random variables. �

Example 5.5.2. Independent Uniform Random Variables.

Let the random point (X,Y ) be uniformly distributed on the rectangle
D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Then

f(x, y) =

{ 1
(b−a)(d−c) if (x, y) ∈ D

0 otherwise
(5.97)

and the marginal densities are obtained by integration as

fX(x) =

∫ ∞

−∞
f(x, y)dy =

{∫ d

c
dy

(b−a)(d−c) =
1

(b−a) if a ≤ x ≤ b

0 otherwise
(5.98)

and

fY (y) =

∫ ∞

−∞
f(x, y)dx =

{∫ b

a
dx

(b−a)(d−c) =
1

(d−c) if c ≤ y ≤ d

0 otherwise
. (5.99)

Hence X and Y are uniformly distributed on their respective intervals and
are independent, because f(x, y) = fX(x)fY (y) for all x, y, as the preceding
formulas show.
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Clearly, the converse of our result is also true: If X and Y are uni-
formly distributed on their respective intervals and are independent, then
fX(x)fY (y) yields the p.d.f. 5.97 of a point (X,Y ) uniformly distributed on
the corresponding rectangle. �
Example 5.5.3. Uniform (X,Y ) on the Unit Disk.

Let the random point (X,Y ) be uniformly distributed on the unit disk
D = {(x, y) : x2 + y2 < 1}. In Example 5.4 we obtained

f(x, y) =

{
1/π if (x, y) ∈ D
0 otherwise

, (5.100)

fX(x) =

{
2
π

√
1− x2 if x ∈ (−1, 1)

0 otherwise
(5.101)

and

fY (y) =

{
2
π

√
1− y2 if y ∈ (−1, 1)

0 otherwise
. (5.102)

Now, clearly, f(x, y) 	= fX(x)fY (y) for all x, y, and so X and Y are not
independent.

Note that this result is in agreement with the nontechnical meaning of
dependence: From the shape of the disk, it follows that some values of X
more or less determine the corresponding values of Y (and vice versa). For
instance, if X is close to ±1, then Y must be close to 0, and so X and Y are
not expected to be independent of each other. �
Example 5.5.4. Constructing a Triangle.

Suppose we pick two random points X and Y independently and uni-
formly on the interval [0, 1]. What is the probability that we can construct a
triangle from the resulting three segments as its sides?

A triangle can be constructed if and only if the sum of any two sides is
longer than the third side. In our case, this condition means that each side
must be shorter than 1

2 . (Prove this!) Thus X and Y must satisfy either

0 < X <
1

2
, 0 < Y −X <

1

2
,

1

2
< Y < 1, (5.103)

or

0 < Y <
1

2
, 0 < X − Y <

1

2
,

1

2
< X < 1. (5.104)

By Example 5.5.2 the given selection of the two points X and Y on a
line is equivalent to the selection of the single point (X,Y ) with a uniform
distribution on the unit square of the plane. Now, the two sets of inequali-
ties describe the two triangles at the center, shown in Figure 5.16, and the
required probability is their combined area: 1

4 .
�
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0

1

y 

1x

Fig. 5.16.

Example 5.5.5. Buffon’s Needle Problem.

In 1777 a French scientist Comte de Buffon published the following prob-
lem: Suppose a needle is thrown at random on a floor marked with equidistant
parallel lines. What is the probability that the needle will cross one of the
lines?

x

X

y

Q

d0

1/2

1/2

Fig. 5.17.

Let the distance between the lines be d and the length of the needle l.
(See Fig. 5.17.) Choose a coordinate system in which the lines are vertical
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and one of the lines is the y-axis. Let the center of the needle have the
random coordinates (X,Y ) . Clearly, the Y -coordinate is irrelevant to the
problem, and we may assume that the center lies on the x-axis. Because of
the periodicity, we may also assume that the center falls in the first strip,
that is, that 0 ≤ X ≤ d. Now, if the needle makes a random angle Θ with the
y-axis, then it will cross the y-axis if and only if 0 ≤ X ≤ (l/2) sinΘ, and it
will cross the y = d line if and only if d − (l/2) sinΘ ≤ X ≤ d. The random
throw of the needle implies that X and Θ are uniform r.v.’s on the [0, d] and
the [0, π] intervals, respectively, which is, by Example 5.5.2, equivalent to
the random point (Θ,X) being uniform on the [0, π]× [0, d] rectangle in the
(θ, x) plane. The needle will cross one of the lines if and only if the random
point (Θ,X) falls into either one of the D-shaped regions in Figure 5.18.
Since the area of the rectangle is πd and the area of each D-shaped region is∫ π

0
(l/2) sin θdθ = l, the required probability is

P(the needle will cross a line) =
2l

πd
. (5.105)

1 2 3

Fig. 5.18. The (θ, x) plane, with the [0, π]× [0, d] rectangle and the y = (l/2) sin θ
and y = d− (l/2) sin θ curves

In principle, this experiment can be used for the determination of π.
However, it is difficult to arrange completely random throws of a needle,
and it would be a very inefficient way to obtain π; we have much better
methods. On the other hand, computer simulations of needle throws have
been performed to obtain approximations to π, just to illustrate the result.�

Example 5.5.6. Bertrand’s Paradox.

In 1889, another Frenchman, Joseph Bertrand, considered the following
problem:
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Consider a circle of radius r and select one of its chords at random. What
is the probability that the selected chord will be longer than the side of an
equilateral triangle inscribed into the given circle.

Bertrand presented three solutions with “paradoxically” different results:

1. Since the length of a chord is uniquely determined by the position of its
center, we just choose a point for it at random, that is, with a uniform
distribution inside the circle. We can see from Figure 5.19 that the chord
will be longer than the side of an inscribed equilateral triangle if and only
if its center falls inside the circle of radius r/2 concentric with the given
circle. Thus

Fig. 5.19.

P(the chord is longer than the side of the triangle) =
π (r/2)

2

πr2
=

1

4
.

(5.106)

2. By symmetry, we may consider only horizontal chords, and then we may
assume that their center is uniformly distributed on the vertical diameter
of the given circle. The chord will be longer than the side of the triangle
if and only if its center falls on the thick vertical segment in Figure 5.20.
Thus

P(the chord is longer than the side of the triangle) =
1

2
. (5.107)
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3. We may also choose a random chord by fixing one of its endpoints and
choosing the other one at random on the circle, that is, uniformly dis-
tributed on the perimeter. Let the fixed point be on top, as shown in
Figure 5.21. Clearly, the chord will be longer than the side of the triangle

Fig. 5.20.

Fig. 5.21.
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if and only if its random end falls on the bottom one third of the circle.
Thus

P(the chord is longer than the side of the triangle) =
1

3
. (5.108)

The resolution of the paradox lies in realizing that the statement of the
problem is ambiguous. Choosing a chord at random is not well defined; each
of the three choices presented above is a reasonable but different way of
doing so. �

Next, we present some theorems about independence of random variables.

Theorem 5.5.2. A Constant Is Independent of Any Random Vari-
able. Let X = c, where c is any constant, and let Y be any r.v. Then X and
Y are independent.

Proof. Let X = c, and let Y be any r.v. Then Equation 5.95 becomes

P(c ≤ x, Y ≤ y) = P(c ≤ x)P(Y ≤ y), (5.109)

and this equation is true because for x ≥ c and any y, it reduces to P(Y ≤
y) = P(Y ≤ y), and for x < c it reduces to 0 = 0. �

Theorem 5.5.3. No Nonconstant Random Variable Is Independent
of Itself. Let X be any nonconstant random variable and let Y = X. Then
X and Y are dependent.

Proof. Let A and B be two disjoint intervals for which P(X ∈ A) > 0 and
P(X ∈ B) > 0 hold. Since X is not constant, such intervals clearly exist. If
Y = X, then P(X ∈ A, Y ∈ B) = 0, but P(X ∈ A)P(Y ∈ B) > 0, and so
Equation 5.94 does not hold for all intervals A and B. �

Theorem 5.5.4. Independence of Functions of Random Variables.
Let X and Y be independent random variables, and let g and h be any real-
valued measurable functions (see the footnote on page 105) on range(X) and
range(Y ), respectively. Then g (X) and h (Y ) are independent.

Proof. We give the proof for discrete X and Y only.
Let A and B be arbitrary intervals. Then

P(g (X) ∈ A, h (Y ) ∈ B) =
∑

{x:g(x)∈A}

∑

{y:h(y)∈B}
P(X = x, Y = y)

=
∑

{x:g(x)∈A}

∑

{y:h(y)∈B}
P(X = x)P(Y = y)

=
∑

{x:g(x)∈A}
P(X = x)

∑

{y:h(y)∈B}
P(Y = y)

= P(g (X) ∈ A)P(h (Y ) ∈ B). (5.110)

�
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We can extend the definition of independence to several random variables
as well, but we need to distinguish different types of independence, depending
on the number of variables involved:

Definition 5.5.2. Independence of Several Random Variables.

Let X1, X2, . . . , Xn, for n = 2, 3, . . ., be arbitrary random variables.
They are (totally) independent, if

P(X1 ∈A1, X2 ∈A2, . . . , Xn ∈An) = P(X1 ∈ A1)P(X2 ∈A2) · · ·P(Xn ∈An)

(5.111)

for all intervals A1, A2, . . . , An.
They are pairwise independent if

P(Xi ∈ Ai, Xj ∈ Aj) = P(Xi ∈ Ai)P(Xj ∈ Aj) (5.112)

for all i 	= j and all intervals Ai, Aj .
Note that in the case of total independence, it is not necessary to require

the product rule for all subsets of the n random variables (as we had to for
general events), because the product rule for any number less than n follows
from Equation 5.111 by setting Ai = R for all values of i that we want to
omit. On the other hand, pairwise independence is a weaker requirement than
total independence: Equation 5.112 does not imply Equation 5.111. Also, we
could have defined various types of independence between total and pairwise,
but such types generally do not occur in practice.

We have the following theorems for several random variables, analogous
to Theorem 5.5.1 and Theorem 5.5.4, which we state without proof.

Theorem 5.5.5. Alternative Conditions for Independence of Sev-
eral Random Variables. Any random variables X1, X2, . . . , Xn, for n =
2, 3, . . ., are independent of each other if and only if their joint d.f. is the
product of their marginal d.f.’s:

F (x1, x2, . . . , xn) = F1(x1)F2(x2) · · ·Fn(xn) for all x1, x2, . . . , xn. (5.113)

Also, any discrete or absolutely continuous random variables X1, X2,
. . . , Xn, for n = 2, 3, . . ., are independent of each other if and only if their
joint p.f. or p.d.f. is the product of their marginal p.f.’s or (appropriate ver-
sions of their) p.d.f.’s:

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) for all x1, x2, . . . , xn. (5.114)

Theorem 5.5.6. Independence of Functions of Random Variables.
Let X1, X2, . . . , Xn, for n = 2, 3, . . ., be independent random variables, and
let the gi be real-valued measurable functions on range(Xi) for i = 1, 2, . . . , n.
Then g1(X1), g2(X2), . . . , gn(Xn) are independent.
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Theorem 5.5.6 could be further generalized in an obvious way by taking
the gi to be functions of several, non-overlapping variables. For example, in
the case of three random variables, we have the following theorem:

Theorem 5.5.7. Independence of g (X,Y ) and Z. If Z is independent of
(X,Y ), then Z is independent of g (X,Y ), too, for any measurable function g.

Proof. We give the proof for jointly continuous X,Y , and Z only.
For arbitrary t and z,

P (g (X,Y ) ≤ t, Z ≤ z) =

∫ z

−∞

∫∫

g(x,y)≤t

f (x, y, ς) dxdydς

=

∫ z

−∞

∫∫

g(x,y)≤t

fX,Y (x, y) fZ (ς) dxdydς

=

∫∫

g(x,y)≤t

fX,Y (x, y) dxdy

∫ z

−∞
fZ (ς) dς

= P(g (X,Y ) ≤ t) P (Z ≤ z) . (5.115)

By Theorem 5.5.1, Equation 5.115 proves the independence of g (X,Y ) and Z.
�

In some applications, we need to find the distribution of the maximum or
of the minimum of several independent random variables. This can be done
as follows:

Theorem 5.5.8. Distribution of Maximum and Minimum of Sev-
eral Random Variables. Let X1, X2, . . . , Xn, for n = 2, 3, . . . , be indepen-
dent, identically distributed (abbreviated i.i.d.) random variables with com-
mon d.f. FX , and let Y = max{X1, X2, . . . , Xn} and Z = min{X1, X2, . . . ,
Xn}.17 Then the distribution functions of Y and Z are given by

FY (y) = [FX(y)]
n

for all y ∈ R (5.116)

and

FZ(z) = 1− [1− FX(z)]
n

for all z ∈ R. (5.117)

Proof. For any y ∈ R, Y = max{X1, X2, . . . , Xn} ≤ y holds if and only if,
for every i, Xi ≤ y. Thus, we have

FY (y) = P (X1 ≤ y,X2 ≤ y, . . . , Xn ≤ y)

= P (X1 ≤ y) P (X2 ≤ y) · · ·P (Xn ≤ y) = [FX(y)]
n
. (5.118)

17 Note that the max and the min have to be taken pointwise, that is,
for each sample point s, we have to consider the max and the min of
{X1 (s) , X2 (s) , . . . , Xn (s)}, and so Y and Z will in general be different from
each of the Xi.
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Similarly,

FZ(z) = P (Z ≤ z) = 1− P (Z > z)

= 1− P (X1 > z,X2 > z, . . . ,Xn > z)

= 1− P (X1 > z) P (X2 > z) · · ·P (Xn > z)

= 1− [1− FX(z)]
n
. (5.119)

�

Example 5.5.7. Maximum of Two Independent Uniformly
Distributed Points.

Let X1 and X2 be independent, uniform random variables on the interval
[0, 1] . Find the d.f. and the p.d.f. of Y = max{X1, X2}.

By Equation 5.19,

FX (x) =

⎧
⎨

⎩

0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1

, (5.120)

and so, by Theorem 5.5.8,

FY (y) =

⎧
⎨

⎩

0 if y < 0
y2 if 0 ≤ y < 1
1 if y ≥ 1

. (5.121)

Hence the p.d.f. of Y is given by

fY (y) =

{
2y if 0 ≤ y < 1
0 if y < 0 or y ≥ 1

, (5.122)

which shows that the probability of Y = max{X1, X2} falling in a subinterval
of length dy is no longer constant over [0, 1] , as for X1 or X2, but increases
linearly.

The two functions above can also be seen in Figure 5.22. The sample space
is the set of points s = (x1, x2) of the unit square, and, for any sample point
s, X1 (s) = x1 and X2 (s) = x2. The sample points are uniformly distributed
on the unit square, and so the areas of subsets give the corresponding prob-
abilities. Since for any sample point s above the diagonal x1 < x2 holds,
Y (s) = x2 there and, similarly, below the diagonal Y (s) = x1. Thus, the set
{s : Y (s) ≤ y} is the shaded square of area y2, and the thin strip of width
dy, to the right and above the square, has an area ≈ 2ydy. �

Another, very important function of two independent random variables is
their sum. We have the following theorem for its distribution:

Theorem 5.5.9. Sum of Two Independent Random Variables. Let
X and Y be independent random variables and Z = X + Y. If X and Y are
discrete, then the p.f. of Z is given by
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0 1

1

y

Y(s) = x2

Y(s) = x1

y

x2

x1

Fig. 5.22. The d.f and the p.d.f. of Y = max{X1, X2} for two i.i.d. uniform r.v.’s
on [0, 1]

fZ (z) =
∑

x+y=z

fX(x)fY (y) =
∑

x

fX(x)fY (z − x), (5.123)

where, for a given z, the summation is extended over all possible values of
X and Y for which x+ y = z, if such values exist. Otherwise fZ (z) is taken
to be 0. The expression on the right is called the convolution of fX and fY .

If X and Y are continuous with densities fX and fY , then the density of
Z = X + Y is given by

fZ (z) =

∫ ∞

−∞
fX(x)fY (z − x)dx, (5.124)

where the integral is again called the convolution of fX and fY .

Proof. These results follow from Theorem 5.4.2 by substituting f(x, y) =
fX(x)fY (y). However, in the continuous case, we also give another, more
direct and visual proof: If X and Y are independent and continuous with
densities fX and fY , then Z falls between z and z+dz if and only if the point
(X,Y ) falls in the oblique strip between the lines x+y = z and x+y = z+dz,
as shown in Figure 5.23. The area of the shaded parallelogram is dxdz, and
the probability of (X,Y ) falling into it is18

P (x ≤ X < x+ dx, z ≤ Z < z + dz) ∼ f(x, y)dxdz = fX(x)fY (z−x)dxdz.

(5.125)

18 Recall that the symbol ∼ means that the ratio of the expressions on either side
of it tends to 1 as dx and dz tend to 0.
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Hence the probability of the strip is obtained by integrating this expression
over all x as

P (z ≤ Z < z + dz) ∼
[∫ ∞

−∞
fX(x)fY (z − x)dx

]
dz, (5.126)

and, since P(z ≤ Z < z + dz) ∼ fZ (z) dz, Equation 5.126 implies Equa-
tion 5.124. �

0
+

+

x x

y

y
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z

z

z dz

+z dz

+z dz
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+x y

+ =

z=

x

Fig. 5.23. The probability of (X,Y ) falling in the oblique strip is dz times the
convolution

The convolution formulas for two special classes of random variables are
worth mentioning separately:

Corollary 5.5.1. If the possible values of X and Y are the natural numbers
i, j = 0, 1, 2, . . . , then the p.f. of Z = X + Y is given by

fZ (k) =

k∑

i=0

fX(i)fY (k − i) for k = 0, 1, 2, . . . , (5.127)

and if X and Y are continuous nonnegative random variables, then the p.d.f.
of Z = X + Y is given by

fZ (z) =

∫ z

0

fX(x)fY (z − x)dx. (5.128)

Example 5.5.8. Sum of Two Binomial Random Variables.

Let X and Y be independent, binomial r.v.’s with parameters n1, p and
n2, p, respectively. Then Z = X + Y is binomial with parameters n1 + n2, p
because, by Equation 5.127 and Equation 3.37,
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fZ (k) =
k∑

i=0

(
n1

i

)
piqn1−i

(
n2

k − i

)
pk−iqn2−k+i

=
k∑

i=0

(
n1

i

)(
n2

k − i

)
pkqn1+n2−k

=

(
n1 + n2

k

)
pkqn1+n2−k for k = 0, 1, 2, . . . , n1 + n2. (5.129)

This result should be obvious without any computation as well, since X
counts the number of successes in n1 independent trials and Y the number
of successes in n2 trials, independent of each other and of the first n1 trials,
and so Z = X + Y counts the number of successes in n1 + n2 independent
trials, all with the same probability p.

On the other hand, for sampling without replacement, the trials are not
independent, and the analogous sum of two independent hypergeometric ran-
dom variables does not turn out to be hypergeometric. �

Example 5.5.9. Sum of Two Uniform Random Variables.

Let X and Y be i.i.d. random variables, uniform on [0, 1] as in Exam-
ple 5.4.9. This time, however, we are going to use Equation 5.128 to obtain
the density of Z = X + Y.

The common density of X and Y is

f(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise

(5.130)

Hence fY (z− x) = 1 if 0 ≤ z− x ≤ 1 or, equivalently, if z− 1 ≤ x ≤ z and is
0 otherwise. Thus the density of Z is the convolution from Equation 5.128:

fZ (z) =

∫ z

0

fX(x)fY (z− x)dx =

∫

[0,1]∩[z−1,z]

1dx =

⎧
⎪⎪⎨

⎪⎪⎩

0 if z < 0
z if 0 ≤ z < 1

2− z if 1 ≤ z < 2
0 if 2 ≤ z.

(5.131)

This result is the same, of course, as the corresponding one in Example 5.4.9.
�

Theorem 5.5.10. Product and Ratio of Two Independent Random
Variables.Let X and Y be independent, continuous, positive random vari-
ables with given densities fX and fY , with fX(x) = 0 for x < 0 and fY (y) = 0
for y < 0:
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1. The density function of Z = XY is given by

fZ (z) =

{∫∞
0

fX( zy )fY (y)
1
ydy if z > 0

0 if z ≤ 0
(5.132)

and alternatively by

fZ (z) =

{∫∞
0

fX(x)fY (
z
x )

1
xdx if z > 0

0 if z ≤ 0.
(5.133)

2. The density function of Z = X/Y is given by

fZ (z) =

{∫∞
0

fX(zy)fY (y)ydy if z > 0
0 if z ≤ 0

(5.134)

and alternatively by

fZ (z) =

{∫∞
0

fX(x)fY (
x
z )

x
z2 dx if z > 0

0 if z ≤ 0.
(5.135)

Proof.

1. For z > 0

FZ (z) = P (XY ≤ z) =

∫∫

xy≤z

fX(x)fY (y)dxdy

=

∫ ∞

0

[∫ z/y

0

fX(x)dx

]

fY (y)dy =

∫ ∞

0

FX

(
z

y

)
fY (y)dy,

(5.136)

and so, by the chain rule,

fZ (z) = F ′
Z (z) =

∫ ∞

0

fX

(
z

y

)
fY (y)

1

y
dy. (5.137)

If z ≤ 0, then, by the assumed positivity of X and Y, P (XY ≤ z) = 0
and fZ (z) = 0. The alternative formula can be obtained by interchanging
x and y.

2. For z > 0

FZ (z) = P

(
X

Y
≤ z

)
=

∫∫

x/y≤z

fX(x)fY (y)dxdy

=

∫ ∞

0

[∫ zy

0

fX(x)dx

]
fY (y)dy =

∫ ∞

0

FX(zy)fY (y)dy,

(5.138)
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and so

fZ (z) = F ′
Z (z) =

∫ ∞

0

fX(zy)fY (y)ydy. (5.139)

Alternatively,

FZ (z) = P

(
X

Y
≤ z

)
=

∫∫

x/y≤z

fX(x)fY (y)dxdy

=

∫ ∞

0

fX(x)

[∫ ∞

x/z

fY (y)dy

]

dx =

∫ ∞

0

fX(x)
[
1− FY

(x
z

)]
dx,

(5.140)

and so

fZ (z) = F ′
Z (z) =

∫ ∞

0

fX(x)fY

(x
z

) x

z2
dx. (5.141)

If z ≤ 0, then clearly P (X/Y ≤ z) = 0 and fZ (z) = 0. �

Example 5.5.10. Ratio of Two Exponential Random Variables.

Let X and Y be two exponential random variables with unequal param-
eters λ1 and λ2, respectively. Find the density of their ratio Z = X/Y.

Now, fX(x) = λ1e
−λ1x and fY (y) = λ2e

−λ2y for x, y > 0. Thus, from
Equation 5.134 and using integration by parts, we obtain the density of Z =
X/Y, for z > 0, as

fZ (z) =

∫ ∞

0

λ2e
−λ2yλ1e

−λ1zyydy = λ1λ2

∫ ∞

0

e−(λ2+λ1z)yydy

= λ1λ2

[
e−(λ2+λ1z)y

− (λ2 + λ1z)
y

∣
∣
∣
∣

∞

0

−
∫ ∞

0

e−(λ2+λ1z)y

− (λ2 + λ1z)
dy

]

= λ1λ2

[

0− e−(λ2+λ1z)y

(λ2 + λ1z)
2

∣
∣
∣
∣
∣

∞

0

]

=
λ1λ2

(λ2 + λ1z)
2 . (5.142)

Exercises

Exercise 5.5.1.

Two cards are dealt from a regular deck of 52 cards without replacement.
Let X denote the number of spades and Y the number of hearts obtained.
Are X and Y independent?
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Exercise 5.5.2.

We roll two dice once. Let X denote the number of 1’s and Y the number
of 6’s obtained. Are X and Y independent?

Exercise 5.5.3.

Let the random point (X,Y ) be uniformly distributed on D = {(x, y) :
0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2} ∪ {(x, y) : 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1} as in 5.4.5.
Are X and Y independent?

Exercise 5.5.4.

Let X and Y be continuous random variables with density

f(x, y) =

{
xe−x(y+1) if x > 0, y > 0
0 otherwise.

(5.143)

Are X and Y independent?

Exercise 5.5.5.

Recall that the indicator function or indicator random variable IA of an
event A in any sample space S is defined by

IA (s) =

{
1 if s ∈ A
0 if s ∈ A.

(5.144)

1. Prove that IA∪B = IA + IB − IAB .
2. Prove that A and B are independent events if and only if IA and IB are

independent random variables.

Exercise 5.5.6.

Let the random point (X,Y ) be uniformly distributed on the unit disk
as in 5.4. Show that the polar coordinates R ∈ [0, 1] and Θ ∈ [0, 2π] of the
point are independent. (Hint : Determine the joint d.f. FR,Θ (r, θ) and the
marginals FR (r) = FR,Θ (r, 2π) and FΘ (θ) = FR,Θ (1, θ) from a picture, and
use Equation 5.95.)

Exercise 5.5.7.

Alice and Bob visit the school library, each at a random time uniformly
distributed between 2PM and 6PM, independently of each other, and stay
there for an hour. What is the probability that they meet?
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Exercise 5.5.8.

A point X is chosen at random on the interval [0, 1] and independently
another point Y on the interval [1, 2]. What is the probability that we can
construct a triangle from the resulting three segments [0, X], [X,Y ], [Y, 2] as
sides?

Exercise 5.5.9.

We choose a point at random on the perimeter of a circle and then inde-
pendently another point at random in the interior of the circle. What is the
probability that the two points will be nearer to each other than the radius
of the circle?

Exercise 5.5.10.

Let X be a discrete uniform r.v. on the set {000, 011, 101, 110} of four
binary integers, and let Xi denote the ith digit of X, for i = 1, 2, 3. Show
that X1, X2, X3 are independent pairwise but not totally independent.

Can you generalize this example to more than three random variables?

Exercise 5.5.11.

Let X and Y be i.i.d. uniform on (0, 1) :

1. Find the joint density of Z = XY.
2. Find the joint density of Z = X/Y .

Exercise 5.5.12.

What is the probability that in ten independent tosses of a fair coin, we
get two heads in the first four tosses and five heads altogether?

Exercise 5.5.13.

Consider light bulbs with independent, exponentially distributed lifetimes
with parameter λ = 1

100 days :

1. Find the probability that such a bulb survives to 200 days.
2. Find the probability that such a bulb dies before 40 days.
3. Find the probability that the bulb with the longest lifetime in a batch of

10 survives to 200 days.
4. Find the probability that the bulb with the shortest lifetime in a batch

of 10 dies before 40 days.

Exercise 5.5.14.

Let X1, X2, . . . , Xn, for n = 2, 3, . . . , be i.i.d. random variables with com-
mon d.f. FX . Find a formula for the joint d.f. FY,Z of Y = max{X1, X2, . . . ,
Xn} and Z = min{X1, X2, . . . , Xn} in terms of FX .
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Exercise 5.5.15.

Show that the p.d.f. of the sum S = T1 +T2 of two i.i.d exponential r.v.’s
with parameter λ is given by

fS(s) =

{
0 if s < 0

λ2se−λs if s ≥ 0
(5.145)

Exercise 5.5.16.

Find the p.d.f. of the sum S = T1 + T2 of two independent exponential
r.v.’s with parameters λ and μ 	= λ, respectively.

Exercise 5.5.17.

Show that the p.d.f. of the difference Z = T1 −T2 of two i.i.d exponential
r.v.’s with parameter λ is fZ (z) = λ

2 e
−λ|z|.

Exercise 5.5.18.

Let Xi for i = 1, 2, . . . be i.i.d. random variables, uniform on [0, 1], and
let fn denote the p.d.f. of Sn =

∑n
i=1 Xi for n ≥ 1 :

1. Show that fn+1 (z) =
∫ z

z−1
fn (x) dx.

2. Evaluate f3 (z) and sketch its graph.

Exercise 5.5.19.

LetX and Y be i.i.d. random variables, uniform on [0, 1] . Find the density
of Z = X − Y.

5.6 Conditional Distributions

In many applications, we need to consider the distribution of a random vari-
able under certain conditions. For conditions with nonzero probabilities, we
can just apply the definition of conditional probabilities to events associated
with random variables. Thus, we make the following definition:

Definition 5.6.1. Conditional Distributions for Conditions with
Nonzero Probabilities.

Let A be any event with P(A) 	= 0 and X any random variable. Then we
define the conditional distribution function of X under the condition A by

FX|A (x) = P (X ≤ x|A) for all x ∈ R. (5.146)

If X is a discrete random variable, then we define the conditional proba-
bility function of X under the condition A by
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fX|A (x) = P (X = x|A) for all x ∈ R. (5.147)

If X is a continuous random variable and there exists a nonnegative func-
tion fX|A that is integrable over R and for which

x

∫
−∞

fX|A(t)dt = FX|A(x), for all x, (5.148)

then fX|A is called the conditional density function of X under the condi-
tion A.

If Y is a discrete random variable and A = {Y = y} , then we write

FX|Y (x, y) = P (X ≤ x|Y = y) for all x ∈ R and all possible values y of Y

(5.149)

and call FX|Y the conditional distribution function of X given Y.
If both X and Y are discrete, then the conditional probability function of

X given Y is defined by

fX|Y (x, y) = P (X = x|Y = y) for all possible values x and y of X and Y.

(5.150)

If X is continuous, Y is discrete, A = {Y = y} , and fX|A in Equa-
tion 5.148 exists, then fX|A is called the conditional density function of
X given Y = y and is denoted by fX|Y (x, y) for all x ∈ R and all pos-
sible values y of Y.

If X is a continuous random variable with a conditional density function
fX|A, then, by the fundamental theorem of calculus, Equation 5.148 gives
that

fX|A(x) = F ′
X|A(x), (5.151)

wherever F ′
X|A is continuous. At such points, we also have

fX|A(x)dx ∼ P (x ≤ X < x+ dx |A) = P ({x ≤ X < x+ dx} ∩A)

P (A)
. (5.152)

By the definitions of conditional probabilities and joint distributions,
Equation 5.150 for discrete X and Y can also be written as

fX|Y (x, y) =
f (x, y)

fY (y)
for all possible values x and y of X and Y, (5.153)

where f (x, y) is the joint p.f. of X and Y and fY (y) the marginal p.f. of Y.
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Example 5.6.1. Sum and Absolute Difference of Two Dice.

In Example 5.4.1 we considered the random variables U = X + Y and
V = |X − Y |, where X and Y were the numbers obtained with rolling two
dice. Now, we want to find the values of the conditional probability functions
fU |V and fV |U . For easier reference, we first reproduce the table of the joint
probability function f (u, v) and the marginals here (Table 5.7):

u\v 0 1 2 3 4 5 fU (u)

2 1/36 0 0 0 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 1/36 0 2/36 0 0 0 3/36
5 0 2/36 0 2/36 0 0 4/36
6 1/36 0 2/36 0 2/36 0 5/36
7 0 2/36 0 2/36 0 2/36 6/36
8 1/36 0 2/36 0 2/36 0 5/36
9 0 2/36 0 2/36 0 0 4/36
10 1/36 0 2/36 0 0 0 3/36
11 0 2/36 0 0 0 0 2/36
12 1/36 0 0 0 0 0 1/36

fV (v) 6/36 10/36 8/36 6/36 4/36 2/36 1

Table 5.7. The joint and marginal probability functions of U = X + Y and
V = |X − Y |, for the numbers X and Y showing on two dice

According to Equation 5.153, the table of the conditional probability func-
tion fU |V (u, v) can be obtained from the table above by dividing each f (u, v)
value by the marginal probability below it, and similarly, the table of the
conditional probability function fV |U (u, v) can be obtained by dividing each
f (u, v) value by the marginal probability to the right of it:

u\v 0 1 2 3 4 5

2 1/6 0 0 0 0 0
3 0 1/5 0 0 0 0
4 1/6 0 1/4 0 0 0
5 0 1/5 0 1/3 0 0
6 1/6 0 1/4 0 1/2 0
7 0 1/5 0 1/3 0 1
8 1/6 0 1/4 0 1/2 0
9 0 1/5 0 1/3 0 0
10 1/6 0 1/4 0 0 0
11 0 1/5 0 0 0 0
12 1/6 0 0 0 0 0

Table 5.8. The conditional probability function of U = X+Y given V = |X−Y |,
for the numbers X and Y showing on two dice
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u\v 0 1 2 3 4 5

2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 1/3 0 2/3 0 0 0
5 0 1/2 0 1/2 0 0
6 1/5 0 2/5 0 2/5 0
7 0 1/3 0 1/3 0 1/3
8 1/5 0 2/5 0 2/5 0
9 0 1/2 0 1/2 0 0
10 1/3 0 2/3 0 0 0
11 0 1 0 0 0 0
12 1 0 0 0 0 0

Table 5.9. The conditional probability function of V = |X−Y | given U = X+Y ,
for the numbers X and Y showing on two dice

The conditional probabilities in these tables make good sense. For in-
stance, if V = |X−Y | = 1, then U = X+Y can be only 3 = 1+2 = 2+1, 5 =
2+3 = 3+2, 7 = 3+4 = 4+3, 9 = 4+5 = 5+4, or 11 = 5+6 = 6+5. Since
each of these five possible U values can occur under the condition V = 1 in
exactly two ways, their conditional probabilities must be 1/5 each, as shown
in the second column of Table 5.8.

Similarly, if U = X + Y = 3, then we must have (X,Y ) = (1, 2) or
(X,Y ) = (2, 1), and in either case V = |X − Y | = 1. Thus, fV |U (3, 1) = 1 as
shown for (u, v) = (3, 1) in Table 5.9. �

For a continuous random variable Y , P (A|Y = y) and the conditional
density fX|Y (x, y) are undefined because P(Y = y) = 0. Nevertheless we can
define P(A|Y = y) as a limit with Y falling in an infinitesimal interval at y,
rather than being equal to y. For fX|Y (x, y) we can use Equation 5.153 as a
model, with f and fY reinterpreted as densities.

Definition 5.6.2. Conditional Probabilities and Densities for Given
Values of a Continuous Random Variable.

For a continuous random variable Y and any event A, we define

P (A|Y = y) = lim
h→0+

P (A|y ≤ Y < y + h) , (5.154)

if the limit exists. In particular, if A = {X ≤ x} , for any random variable
X and any real x, then the conditional p.d.f. of X, given Y = y, is defined
as

FX|Y (x, y) = lim
h→0+

P (X ≤ x|y ≤ Y < y + h) , (5.155)

if the limit exists, and, if X is discrete, then the conditional p.f. of X, given
Y = y, is defined as

fX|Y (x, y) = lim
h→0+

P (X = x|y ≤ Y < y + h) , (5.156)

if the limit exists.
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Furthermore, for continuous random variables X and Y with joint density
f (x, y) and Y having marginal density fY (y) , we define the conditional
density fX|Y by

fX|Y (x, y) =

{
f(x,y)
fY (y) if fY (y) 	= 0

0 otherwise
(5.157)

for all real x and y.

Example 5.6.2. Conditional Density for (X,Y ) Uniform on Unit
Disk.

Let (X,Y ) be uniform on the unit disk D = {(x, y) : x2 + y2 < 1} as in
Example 5.4.7. Hence

fX|Y (x, y) =

{
f(x,y)
fY (y) = 1

2
√

1−y2
if (x, y) ∈ D

0 otherwise
. (5.158)

For a fixed y ∈ (−1, 1), this expression is constant over the x-interval(
−
√
1− y2,

√
1− y2

)
, and therefore, not unexpectedly, it is the density of

the uniform distribution over that interval. �
Note that fX|Y can also be interpreted as a limit. Indeed,

lim
h→0+

P (x ≤ X < x+ dx | y ≤ Y < y + h)

= lim
h→0+

P (x ≤ X < x+ dx, y ≤ Y < y + h)

P (y ≤ Y < y + h)

∼ lim
h→0+

f (x, y)hdx

fY (y)h
=

f (x, y) dx

fY (y)
= fX|Y (x, y) dx, (5.159)

wherever f (x, y) and fY (y) exist and are continuous and fY (y) 	= 0. On the
other hand, P(A|Y = y) can be interpreted also without a limit as

P (A|Y = y) =
P (A) fY |A(y)

fY (y)
, (5.160)

wherever fY |A(y) and fY (y) exist and are continuous and fY (y) 	= 0, because
then

lim
h→0+

P (A|y ≤ Y < y + h)

= lim
h→0+

P (A ∩ {y ≤ Y < y + h})
P (y ≤ Y < y + h)

= lim
h→0+

P (A) P (y ≤ Y < y + h |A)
P (y ≤ Y < y + h)

= lim
h→0+

P (A) fY |A(y)h
fY (y)h

=
P(A) fY |A(y)

fY (y)
. (5.161)
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Equation 5.160 is valid also when fY |A(y) and fY (y) exist and are continu-
ous and fY (y) 	= 0, but P(A) = 0. For, in this case, A∩{y ≤ Y < y + h} ⊂ A,
and so P(A ∩ {y ≤ Y < y + h}) = 0, which implies P(A|y ≤ Y < y + h) = 0
and P(A|Y = y) = 0 as well. Thus, Equation 5.160 reduces to 0 = 0.

Equation 5.160 can be written in multiplicative form as

P (A|Y = y) fY (y) = P (A) fY |A(y). (5.162)

This equation is valid also when fY (y) = 0, as well, because in that case
fY |A(y) = 0 as well. This fact follows from Equation 5.152 with Y in place
of X:

fY |A(y)dy ∼ P ({y ≤ Y < y + dy} ∩A)

P (A)

≤ P (y ≤ Y < y + dy)

P (A)
∼ fY (y) dy

P (A)
= 0. (5.163)

Similarly, Equation 5.157 too can be written in multiplicative form as

fX|Y (x, y) fY (y) = f (x, y) . (5.164)

This equation is valid when fY (y) = 0, as well, because fY (y) = 0 implies
f (x, y) = 0. Interchanging x and y, we also have

fY |X (x, y) fX (x) = f (x, y) . (5.165)

Returning to fX|Y , we can see that, for any fixed y such that fY (y) 	= 0,
it is a density as a function of x. Consequently, it can be used to define
conditional probabilities for X, given Y = y, as

P (a < X < b|Y = y) =

∫ b

a

fX|Y (x, y) dx =
1

fY (y)

∫ b

a

f (x, y) dx (5.166)

and, in particular, the conditional distribution function of X, given Y = y, as

FX|Y (x, y) =

∫ x

−∞
fX|Y (t, y) dt =

1

fY (y)

∫ x

−∞
f (t, y) dt. (5.167)

Using Definition 5.6.2, we can generalize the Theorem of Total Probability
(Theorem 4.5.2) as follows:

Theorem 5.6.1. Theorem of Total Probability, Continuous Ver-
sions. For a continuous random variable Y and any event A, if fY |A and
fY exist for all y, then

P (A) =

∫ ∞

−∞
P (A|Y = y) fY (y) dy (5.168)

and if X and Y are both continuous and fX|Y and fY exist for all x, y, then

fX (x) =

∫ ∞

−∞
fX|Y (x, y) fY (y) dy. (5.169)
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Proof. Integrating both sides of Equation 5.162 from −∞ to ∞, we obtain
Equation 5.168, because

∫∞
−∞ fY |A(y)dy = 1 from Equation 5.148.

Similarly, integrating both sides of Equation 5.164 with respect to y from
−∞ to ∞, we obtain Equation 5.169. �

We have new versions of Bayes’ theorem as well:

Theorem 5.6.2. Bayes’ Theorem, Continuous Versions. For a con-
tinuous random variable Y and any event A with nonzero probability, if
P(A|Y = y) and fY exist for all y, then

fY |A(y) =
P (A|Y = y) fY (y)

∫∞
−∞ P (A|Y = y) fY (y) dy

. (5.170)

Here fY is called the prior density of Y, and fY |A its posterior density, re-
ferring to the fact that these are the densities of Y before and after the ob-
servation of A.

Furthermore, if X and Y are both continuous, fX|Y and fY exist for all
x, y, and fX (x) 	= 0, then

fY |X (y, x) =
fX|Y (x, y) fY (y)

∫∞
−∞ fX|Y (x, y) fY (y) dy

. (5.171)

Again, fY is called the prior density of Y, and fY |X its posterior density.

Proof. From Equation 5.162 we get, when P(A) 	= 0,

fY |A(y) =
P (A|Y = y) fY (y)

P (A)
. (5.172)

Substituting the expression for P(A) here from Equation 5.168, we obtain
Equation 5.170.

Similarly, from Equations 5.164 and 5.165, we obtain, when fX (x) 	= 0,

fY |X (y, x) =
fX|Y (x, y) fY (y)

fX (x)
, (5.173)

and substituting the expression for fX (x) here from Equation 5.169, we ob-
tain Equation 5.171. �

Example 5.6.3. Bayes Estimate of a Bernoulli Parameter.

Suppose that X is a Bernoulli random variable with an unknown param-
eter P , which is uniformly distributed on the interval [0, 1] . In other words,19

fX|P (x, p) = px (1− p)
1−x

for x = 0, 1 (5.174)

19 We assume 00 = 1 where necessary.
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and

fP (p) =

{
1 for p ∈ [0, 1]
0 otherwise

. (5.175)

We make an observation of X and want to find the posterior density
fP |X (p, x) of P. (This problem is a very simple example of the so-called
Bayesian method of statistical estimation. It will be generalized to several
observations instead of just one in Example 7.4.4.)

By Equation 5.171,

fP |X (p, x) =

{
px(1−p)1−x

∫ 1
0
px(1−p)1−xdp

for p ∈ [0, 1] and x = 0, 1

0 otherwise
. (5.176)

For x = 1 we have
∫ 1

0
px (1− p)

1−x
dp =

∫ 1

0
pdp = 1

2 , and for x = 0, similarly,
∫ 1

0
px (1− p)

1−x
dp =

∫ 1

0
(1− p) dp = 1

2 . Hence,

fP |X (p, x) =

⎧
⎨

⎩

2p for p ∈ [0, 1] and x = 1
2 (1− p) for p ∈ [0, 1] and x = 0
0 otherwise

. (5.177)

Thus, the observation changes the uniform prior density into a triangular
posterior density that gives more weight to p-values near the observed value
of X. �

Before closing this section, we want to present one more theorem, which
follows from the definitions at once:

Theorem 5.6.3. Conditions for Independence of Random Variables.

If A is any event with P(A) 	= 0 and X any random variable, then A
and X are independent of each other if and only if

FX|A (x) = FX (x) for all x ∈ R. (5.178)

If X and Y are any random variables, then they are independent of each
other if and only if

FX|Y (x, y) = FX (x) (5.179)

for all x ∈ R and, for discrete Y, at all possible values y of Y and, for
continuous Y, at all y values where fX|Y (x, y) exists.

If A is any event with P(A) 	= 0 and X any discrete random variable,
then A and X are independent of each other if and only if

fX|A (x) = fX (x) for all x ∈ R. (5.180)



5.6 Conditional Distributions 171

If X and Y are any random variables, both discrete or both absolutely
continuous, then they are independent of each other if and only if

fX|Y (x, y) = fX (x) (5.181)

for all x ∈ R and all y values where fY (y) 	= 0.
In closing this section, let us mention that all the conditional functions

considered above can easily be generalized to more than two random vari-
ables, as will be seen in some exercises and later chapters.

Exercises

Exercise 5.6.1.

Roll four dice. Let X denote the number of 1’s and Y the number of 6’s
obtained. Find the values of the p.f. fX|Y (x, y) and display them in a 5× 5
table.

Exercise 5.6.2.

Roll two dice. Let X and Y denote the numbers obtained and let Z =
X + Y :

1. Find the values of the p.f. fX|Z (x, z) and display them in a 6× 11 table.
2. Find the values of the conditional joint p.f. f(X,Y )|Z (x, y, z) for z = 2,

and show that X and Y are independent under this condition.
3. Find the values of the conditional joint p.f. f(X,Y )|Z (x, y, z) for z = 3,

and show that X and Y are not independent under this condition.

Exercise 5.6.3.

As in Example 5.5.4, pick two random points X and Y independently
and uniformly on the interval [0, 1], and let A denote the event that we
can construct a triangle from the resulting three segments as its sides. Find
the probability P(A|X = x) as a function of x and the conditional density
function fX|A (x).

Exercise 5.6.4.

As in Example 5.6.3, let X be a Bernoulli random variable with an un-
known parameter P , which is uniformly distributed on the interval (0, 1) .
Suppose we make two independent observations X1 and X2 of X, so that

f(X1,X2)|P (x1, x2, p) = px1+x2 (1− p)
2−x1−x2 for x1, x2 = 0, 1. (5.182)

Find and graph fP |(X1,X2) (p, x1, x2) for all four possible values of (x1, x2) .

Exercise 5.6.5.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 < x, 0 < y, x + y
< 1}. Find the conditional densities fX|Y (x, y) and fY |X (x, y) .
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Exercise 5.6.6.

Let D = {(x, y) : 0 < x, 0 < y, x+ y < 1} and (X,Y ) have density

f(x, y) =

{
60xy2 if (x, y) ∈ D
0 otherwise

. (5.183)

(See Example 5.4.8.) Find the conditional densities fX|Y (x, y) and fY |X (x, y).

Exercise 5.6.7.

Let (X,Y ) be uniform on the open unit square D = {(x, y) : 0 < x <
1, 0 < y < 1} and Z = X + Y (see Example 5.4.9):

1. Find the conditional distribution functions FX|Z (x, z) and FY |Z (y, z)
and the conditional densities fX|Z (x, z) and fY |Z (y, z).

2. Let A be the event {Z < 1}. Find FX|A (x) and fX|A (x).



6. Expectation, Variance, and Moments

6.1 Expected Value

Just as probabilities are idealized relative frequencies, so are expected values
analogous idealizations of averages of random variables. Before presenting the
formal definition, let us consider an example.

Example 6.1.1. Average of Dice Rolls.

Suppose we roll a die n = 18 times, and observe the following outcomes:
2, 4, 2, 1, 5, 5, 4, 3, 4, 2, 6, 6, 3, 4, 1, 2, 5, 6. The average of these numbers can be
computed as

Average =
2 · 1 + 4 · 2 + 2 · 3 + 4 · 4 + 3 · 5 + 3 · 6

18
=

=
2

18
· 1 + 4

18
· 2 + 2

18
· 3 + 4

18
· 4 + 3

18
· 5 + 3

18
· 6

=

6∑

i=1

fi · i = 65

18
= 3.611 . . . , (6.1)

where fi stands for the relative frequency of the outcome i.
Now ideally, since for a fair die the six outcomes are equally likely, we

should have obtained each number three times, but that is not what usually
happens. For large n, however, the relative frequencies are approximately
equal to the corresponding probabilities pi = 1/6, and the average becomes
close to

6∑

i=1

pi · i =
6∑

i=1

1

6
· i = 1

6

6∑

i=1

i =
21

6
= 3.5. (6.2)

�
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It is the first sum in Equation 6.2 that we use as the paradigm for our
general idealized average:

Definition 6.1.1. Expected Value. For any discrete random variable X,
writing pi =P(X = xi), we define the expected value, mean, or expectation of
X as

E(X) =
∑

pixi, (6.3)

provided, in the case of an infinite sum, that the sum is absolutely convergent1.
The summation runs over all i for which xi is a possible value of X.

For any continuous random variable X with density f(x), we define the
expected value, mean, or expectation of X as

E(X) =

∫ ∞

−∞
xf(x)dx, (6.4)

provided that the improper integral is absolutely convergent.

Remarks:

1. We did not give the definition for general random variables; that is a topic
taken up in graduate courses. We shall assume, without further mention,
that the random variables we discuss are either discrete or absolutely
continuous.

2. Because of the occurrence of infinite sums and integrals, E(X) does not
exist for some random variables, as will be illustrated shortly. These cases
are rare, however, in real-life applications.

3. The expected value of a random variable X is not necessarily a possible
value of X, despite its name (see, for instance, Example 6.1.1), but in
many cases it can be used to predict, before the experiment is performed,
that a value of X close to E(X) can be expected.

4. The expected value of a random variable X depends only on the distri-
bution of X and not on any other properties of X. Thus, if two different
random variables have the same distribution, then they have the same
expectation as well. For instance, if X is the number of H’s in n tosses
of a fair coin and Y is the number of T ’s, then E(X) = E(Y ).

5. In the discrete case, E(X) can also be written as

E(X) =
∑

x:f(x)>0

xf(x), (6.5)

where f is the p.f. of X.
6. E(X) is often abbreviated as μ or μX .

1 Requiring absolute convergence is necessary, because if the sum were merely con-
ditionally convergent, then the value of E(X) would depend on the order of the
terms. Similarly, in the continuous case, if the integral were merely conditionally
convergent, then E(X) would depend on the manner in which the limits of the
integral tend to ±∞.
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Example 6.1.2. Bernoulli Random Variable.

Recall that X is a Bernoulli random variable with parameter p (see Def-
inition 5.1.4), if it has two possible values: 1 and 0 and P(X = 1) = p and
P(X = 0) = q = 1− p.

Hence, E(X) = 1p+ 0q = p. �

Example 6.1.3. Expected Value of Uniform Random Variables.

Let X be uniform over an interval [a, b], that is, have p.d.f.

f(x) =

{ 1

b− a
if a < x < b

0 if x ≤ a or x ≥ b
. (6.6)

Then its expected value is given by

E(X) =

∫ ∞

−∞
xf(x)dx =

∫ b

a

x

b− a
dx =

1

b− a

x2

2

∣
∣
∣
∣

b

a

=
a+ b

2
. (6.7)

�

Example 6.1.4. Expected Value of Discrete Uniform Random
Variables.

Let X be uniform over the set {x1, x2, . . . , xn}. Then its expected value
is given by

E(X) =
1

n

n∑

x=1

xi. (6.8)

�

Example 6.1.5. Expected Value of Exponential Random Variables.

Let T be an exponential r.v. with parameter λ. (See Definition 5.2.3.)
Then its p.d.f. is f(t) = λe−λt for t ≥ 0, and so

E(T ) =

∫ ∞

−∞
tf(t)dt =

∫ ∞

0

tλe−λtdt. (6.9)

Integrating by parts with u = t and dv = λe−λtdt, we get

E(T ) = −te−λt
∣
∣∞
0

+

∫ ∞

0

e−λtdt = 0 −e−λt

λ

∣
∣
∣
∣

∞

0

=
1

λ
. (6.10)

�
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In Examples 6.1.3 and 6.1.1, E(X) was at the center of the distribution.
This property of E(X) is true in general, as explained in the following obser-
vation and in the subsequent theorem.

The expected value is a measure of the center of a probability distribution,
because the defining formulas are exactly the same as the corresponding
ones for the center of mass in mechanics for masses on the x-axis (or, more
generally, for the x-coordinates of masses in space), with pi for the mass of a
point at xi and f(x) for the mass density for a smeared-out mass distribution.
Thus, if we were to cut out the graph of the p.f. or p.d.f. of a r.v. X from
cardboard, then it would be balanced if supported under the point x = E(X).
In a similar vein, the following theorem confirms that E(X) yields the obvious
center for a symmetric distribution.

Theorem 6.1.1. The Center of Symmetry Equals E(X). If the distri-
bution of a random variable is symmetric about a point α, that is, the p.f.
or the p.d.f. satisfies f (α− x) = f (α+ x) for all x, and E(X) exists, then
E(X) = α.

Proof. We give the proof for continuous X only; for discrete X the proof is
similar and is left as an exercise.

We can write

E(X) =

∫ ∞

−∞
xf(x)dx =

∫ ∞

−∞
(x− α+ α) f(x)dx

=

∫ ∞

−∞
(x− α) f(x)dx+

∫ ∞

−∞
αf(x)dx, (6.11)

where the first integral on the right will be shown to be 0, and so

E(X) =

∫ ∞

−∞
αf(x)dx = α

∫ ∞

−∞
f(x)dx = α. (6.12)

The integral of (x− α) f(x) may be evaluated as follows:

∫ ∞

−∞
(x− α) f(x)dx =

∫ α

−∞
(x− α) f(x)dx+

∫ ∞

α

(x− α) f(x)dx, (6.13)

where in the first integral on the right, we substitute u = α − x and in the
second integral u = x− α. Hence

∫ ∞

−∞
(x− α) f(x)dx =

∫ 0

∞
uf(α− u)du+

∫ ∞

0

uf(α+ u)du

=

∫ ∞

0

u [f(α+ u)− f(α− u)] du = 0, (6.14)

where the last step follows from the symmetry assumption. �
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If a random variable is bounded from below, say by 0, and we know its
expected value, then only a small fraction of its values can fall far out on
the right, that is, the expected value yields a bound for the right tail of the
distribution:

Theorem 6.1.2. Markov’s Inequality. If X is a nonnegative random
variable with expected value μ and a is any positive number, then

P(X ≥ a) ≤ μ

a
. (6.15)

Proof. We prove the statement only for continuous X with density f . Then

μ =

∫ ∞

0

xf(x)dx =

∫ a

0

xf(x)dx+

∫ ∞

a

xf(x)dx

≥
∫ ∞

a

xf(x)dx ≥ a

∫ ∞

a

f(x)dx = aP(X ≥ a), (6.16)

from which Equation 6.15 follows at once. �

The main use of Theorem 6.1.2 is in proving another inequality in the
next section, for not necessarily positive random variables, which, in turn,
will be used for a proof of the so-called law of large numbers.

In addition to providing a measure of the center of a probability distribu-
tion, the expected value has many other uses, as will be discussed later. For
now, we just describe its occurrence in gambling games.

Example 6.1.6. Total Gain in Dice Rolls.

Consider the same game as in Example 6.1.1 with the same outcomes,
and assume that whenever the die shows the number i, we win i dollars. In
that case our total gain will be $65, which can be written as 18 × average.
Similarly, in the ideal situation, the total gain would be 18× 3.5 = $63. �

Thus, in general games, our ideal gain is nE(X), where n is the number
of times we play. (Mathematically, this result follows from Theorem 6.1.5
below.) Hence, E(X) is a measure of the fairness of a game, and a game is
called fair if E(X) = 0.

The dice game described above is very unfair, and we may ask the question
how much should we be required to bet each time to make the game fair.
Clearly, the answer is $3.50, that is, if we lose this bet each time and win i
dollars with probability 1

6 for i = 1, 2, . . . , 6, then

E(X − 3.50) =
6∑

i=1

1

6
(i− 3.50) = 0, (6.17)

and the game is turned into a fair one.
In general, if we have an unfair game with E(X) > 0, then paying an

entrance fee of E(X) dollars each time will turn the game into a fair one.
(This follows from Corollary 6.1.1 below.)
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Example 6.1.7. Roulette.

In Nevada roulette, a wheel with 38 numbered pockets is spun around,
and a ball is rolled around its rim in the opposite direction until it falls
at random into one of the pockets. On a table the numbers of the pockets
are laid out, and the players can bet on various combinations to come up,
with predetermined payouts. Eighteen of the numbers are black and 18 are
red, while two are green. One of the possible betting combinations is that of
betting on red with a $1 payout for every $1 bet (i.e., if red comes up, you
keep your bet and get another dollar, and if black or green comes up, you
lose your bet). Let us compute the expected gain from such a bet.

If we denote the amount won or lost in a single play of $1 by X, then
P(X = 1) = 18

38 and P(X = −1) = 20
38 . Thus,

E(X) =
18

38
· 1 + 20

38
· (−1) ≈ −.0526 = −5.26 cents. (6.18)

This result means that in the long run, the players will lose about 5.26 cents
on every dollar bet.

The house advantage is set up to be about 5% for the other possible
betting combinations as well. �
Example 6.1.8. The Saint Petersburg Paradox.

Some gamblers in Saint Petersburg, Russia, in the eighteenth century de-
vised a betting scheme for even money bets, as for betting on red in roulette.
First you bet 1 unit, and if you win, you quit. If you lose, you bet 2 units on
the next game. If you win this game, then you are ahead by 1 unit, because
you have lost 1 and won 2, and you quit. If you lose again, then you bet 4
on the third game. If you win this time, then you are again ahead by 1, since
you have lost 1+2, but have won 4. If you lose, you bet 8, and so on. Thus,
the claim was that, following this scheme, you are assured of winning 1 unit.

The expected gain is also 1 unit.
If X denotes the net gain and n the number of plays till you win and stop,

then, according to the above discussion, X = 1 for any n. If p < 1 denotes
the probability of winning in any trial and q = 1 − p is the probability of
losing, then P(first win occurs on the nth play) = qn−1p. Hence, by the sum
formula for a geometric series,

E(X) =
∞∑

n=1

qn−1p · 1 =
p

1− q
= 1. (6.19)

On the other hand, roulette is an unfavorable game, so how can it be
possible to beat it? The answer is simple: it cannot be beaten. In this game,
you need an infinite amount of money to be assured of winning, since it is
quite possible that you may need to bet 2n units, with n arbitrarily large.

If the bet size is capped, however, either by the house or by the player’s
capital, then the scheme has no advantage over any other scheme. Indeed, if
the maximum bet size is 2N , then
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E(X) =

N∑

n=1

qn−1p · 1−
∞∑

n=N+1

qn−1p · (2N − 1)

=
p
(
1− qN

)

1− q
− pqN (2N − 1)

1− q
= 1− 2NqN . (6.20)

This result is exactly what we would expect, since 1 is the expected value for
an overall win and 2N is the last bet in the case of a string of losses, which
has probability qN , and so 2NqN is the expected loss. Notice that in the case

of a fair game, q = 1
2 and E(X) = 1 − 2N

(
1
2

)N
= 0, that is, a fair game

remains fair under this doubling scheme as well.
Another variant of the Saint Petersburg scheme provides an example of

a random variable with infinite expectation. For the sake of simplicity, we
assume that we are betting on H in independent tosses of a fair coin. Again,
we play until the firstH comes up, but this time we bet even more: (n+1)2n−1

units on the nth toss if the first n− 1 tosses resulted in T, for n = 1, 2, . . .. If
the first H occurs on the nth toss, which has probability 1

2n , then the gain
is (see Exercise 6.1.5)

(n+ 1)2n−1 −
n−1∑

i=1

(i+ 1)2i−1 = 2n (6.21)

and so

E(X) =
∞∑

n=1

1

2n
· 2n =

∞∑

n=1

1 = ∞. (6.22)

�
Next, we present a surprising, but very useful, theorem, which enables us

to compute the expectation of a function Y = g(X) of a r.v. X without going
through the laborious process of first finding the distribution of Y .

Theorem 6.1.3. Expectation of a Function of a Random Variable.
Let X be any random variable, and define a new random variable as

Y = g(X), where g is any2 function on the range of X.
If X is discrete then, writing pi = P(X = xi), we have

E(Y ) =
∑

pig (xi) , (6.23)

provided the sum is absolutely convergent. (The summation runs over all i
for which xi is a possible value of X.)

2 Actually, g must be a so-called measurable function. This restriction is discussed
in more advanced texts; all functions encountered in elementary calculus courses
are of this type.
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If X is continuous with p.d.f. fX , then

E(Y ) =

∫ ∞

−∞
g (x) fX(x)dx, (6.24)

provided the integral is absolutely convergent.

Before giving the proof, let us compare the evaluation of E(Y ) by the
theorem with its evaluation from the definition, on a simple example.

Example 6.1.9. Expectation of g (X) = |X| for a Discrete X.

Let the p.f. of X be given by

fX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/8 if x = −1
3/8 if x = 0
3/8 if x = 1
1/8 if x = 2

(6.25)

and let Y = |X|. Then

fY (y) =

⎧
⎨

⎩

3/8 if y = 0
1/2 if y = 1
1/8 if y = 2

. (6.26)

Hence, by Definition 6.1.1,

E(Y ) =
3

8
· 0 + 1

2
· 1 + 1

8
· 2 =

3

4
. (6.27)

On the other hand, by Theorem 6.1.3,

E(Y ) =
1

8
· |−1|+ 3

8
· |0|+ 3

8
· |1|+ 1

8
· |2| = 3

4
. (6.28)

Thus, we see that the difference between the two evaluations is that the
two terms in Equation 6.28 that contain |−1| and |1| are combined into
a single term in Equation 6.27. This is the sort of thing that happens in
the general discrete case as well. In the evaluation of fY , we combine the
probabilities of various x-values (see the proof below), which we can treat
separately when using the theorem. In more complicated cases, it can be
difficult to find the x-values that need to be combined, but treating them
separately is very straightforward. �

Proof (of Theorem 6.1.3). In the discrete case, we evaluate
∑

pig (xi) in two
stages: first, we sum over all xi for which g (xi) is a fixed value yk of Y , and
then sum over all k for which yk is a possible value of Y . Thus, assuming
absolute convergence,

∑
pig (xi) =

∑

k

∑

i:g(xi)=yk

pig (xi) =
∑

k

⎛

⎝
∑

i:g(xi)=yk

pi

⎞

⎠ yk

=
∑

k

P (Y = yk) yk =
∑

k

fY (yk) yk = E(Y ). (6.29)
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For continuous X, the general proof is beyond the scope of this book and
is therefore omitted3. However, if g is one-to-one and differentiable, then the
proof is easy, and goes like this:

By Definition 6.1.1,

E(Y ) =

∫ ∞

−∞
yfY (y)dy, (6.30)

where fY (y) is given by the methods of Section 5.3 as

fY (y) =

⎧
⎪⎨

⎪⎩

fX
(
g−1 (y)

) ∣∣
∣ d
dy g

−1 (y)
∣
∣
∣ = fX(x)

|g′(x)| if y = g (x)

for some x ∈ range(X)
0 otherwise.

(6.31)

Thus, changing variables in Equation 6.30 from y = g (x) to x = g−1 (y) , we
get

E(Y ) =

∫ ∞

−∞
g (x)

fX(x)

|g′ (x) |
∣
∣
∣
∣
dy

dx

∣
∣
∣
∣ dx =

∫ ∞

−∞
g (x) fX(x)dx, (6.32)

as stated in Equation 6.24. �

Example 6.1.10. Average Area of Circles.

Assume that we draw a circle with a random radius R, uniformly dis-
tributed between 0 and some constant a. What is the expected value of the
area Y = πR2 of such a circle?

Now,

f(r) =

{
1/a if 0 < r < a
0 otherwise

(6.33)

and g(r) = πr2. Thus, substituting into Equation 6.24 gives

E(Y ) =

∫ a

0

πr2
1

a
dr =

πr3

3a

∣
∣
∣
∣

a

0

=
πa2

3
. (6.34)

It is quite surprising that, though the mean radius is half of the maximal
radius, the mean area is one third of the maximal area. �

Theorem 6.1.3 has a frequently used application to linear functions:

Corollary 6.1.1. Expectation of a Linear Function. For any random
variable X such that E(X) exists and for any constants a and b,

E(aX + b) = aE(X) + b. (6.35)

3 The proof would require taking limits of approximations of the given continuous
r.v. by discrete r.v.’s with a finite number of values.
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Proof. We give the proof for continuous X only; for discrete X the proof is
similar and is left as an exercise.

In Equation 6.24 let g (x) = ax+ b. Then

E(aX+b) =

∫ ∞

−∞
(ax+ b) f(x)dx = a

∫ ∞

−∞
xf(x)dx+b

∫ ∞

−∞
f(x)dx = aE(X)+b. (6.36)

�

Example 6.1.11. Average Temperature.

Assume that at noon on April 15 at a certain place, the temperature C is a
random variable (i.e., it varies randomly from year to year) with an unknown
distribution but with known mean E(C) = 15◦ Celsius. If F = 1.8C + 32 is
the corresponding mean temperature in Fahrenheit degrees, then, by Corol-
lary 6.1.1,

E(F ) = 1.8E(C) + 32 = 59◦ Fahrenheit. (6.37)

Thus, the expected temperature transforms in the same way as the indi-
vidual values do. �

Example 6.1.12. Expected Value of a Geometric Random Variable.

Let X be geometric with parameter p. (See Definition 5.1.7.) We can
obtain E(X) by computing E(X − 1) in two ways:

By Theorem 6.1.3,

E(X − 1) =

∞∑

k=2

(k − 1)pqk−1 =

∞∑

j=1

jpqj = q

∞∑

j=1

jpqj−1 = qE(X) (6.38)

and, by Corollary 6.1.1,

E(X − 1) = E(X)− 1. (6.39)

Thus,

qE(X) = E(X)− 1, (6.40)

(1− q)E(X) = 1, (6.41)

and so

E(X) =
1

p
. (6.42)

�
A theorem analogous to Theorem 6.1.3 holds also for functions of several

variables:
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Theorem 6.1.4. Expectation of a Function of Several Random Vari-
ables. Let X1, X2, . . . , Xn be any random variables, and define a new random
variable as Y = g(X1, X2, . . . , Xn), where g is any function on R

n. If f de-
notes the joint p.f. or p.d.f. of X1, X2, . . . , Xn, then in the discrete case,

E(Y ) =
∑

· · ·
∑

g(x1, x2, . . . , xn)f(x1, x2, . . . , xn), (6.43)

where the summations run over all possible values x1, x2, . . . , xn of X1, X2, . . .
Xn, and in the continuous case,

E(Y ) =

∫
· · ·

∫

Rn

g(x1, x2, . . . , xn)f(x1, x2, . . . , xn)dx1dx2 · · · dxn, (6.44)

provided the sum and the integral are absolutely convergent.

We omit the proof. (In the discrete case, it would be similar to the proof
of Theorem 6.1.3, and in the continuous case, it would present the same
difficulties.)

Example 6.1.13. Expectation of the Distance of a Random Point
from the Center of a Circle.

Let the random point (X,Y ) be uniformly distributed on D = {(x, y) :
x2 + y2 < 1}. (See Example 5.4.7.) Let R =

√
X2 + Y 2 and find E(R).

Then

E(R) =
1

π

∫∫

D

√
x2 + y2dxdy. (6.45)

Changing over to polar coordinates, we get

E(R) =
1

π

∫ 2π

0

∫ 1

0

r2drdθ =
1

π
2π

r3

3

∣
∣
∣
∣

1

0

=
2

3
. (6.46)

�
Theorem 6.1.4 has the following very important consequence:

Theorem 6.1.5. Expectation of a Sum of Two Random Variables.
For any two random variables X and Y whose expectations exist,

E(X + Y ) = E(X) + E(Y ). (6.47)

Proof. We give the proof for continuous (X,Y ) only; for discrete (X,Y ) the
proof is similar and is left as an exercise.

By Theorem 6.1.4, with X1 = X,X2 = Y , and g(X,Y ) = X+Y , we have

E(X + Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x+ y) f(x, y)dxdy

=

∫ ∞

−∞
x

(∫ ∞

−∞
f(x, y)dy

)
dx+

∫ ∞

−∞
y

(∫ ∞

−∞
f(x, y)dx

)
dy

=

∫ ∞

−∞
xfX (x) dx+

∫ ∞

−∞
yfY (y) dy = E(X) + E(Y ). (6.48)

�
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Repeated application of Theorem 6.1.5 and Equation 6.35 leads to:

Corollary 6.1.2. Expectation of a Linear Function of Several Ran-
dom Variables. For any positive integer n and any random variables
X1, X2, . . . , Xn with finite expectations and constants a1, a2, . . . , an,

E

(
n∑

i=1

aiXi

)

=

n∑

i=1

aiE(Xi). (6.49)

Example 6.1.14. Expectation of Binomial Random Variables.

Recall that a random variable X is called binomial with parameters n
and p, (see Definition 5.1.5) if it has p.f.

f(x;n, p) =

(
n

x

)
pxqn−x for x = 0, 1, . . . , n. (6.50)

Now, X counts the number of successes in n trials (or the number of good
items selected in sampling with replacement). It can be written as a sum of
n identical (and independent, but that is irrelevant here) Bernoulli random
variables Xi with parameter p. Indeed, let Xi = 1 if the ith trial results in
success and 0 otherwise. Then X =

∑n
i=1 Xi, because the number of 1’s in

the sum is exactly the number of successes, and the rest of the terms equal
0. Hence

E(X) = E

(
n∑

i=1

Xi

)

=
n∑

i=1

E(Xi) =
n∑

i=1

p = np. (6.51)

This result can, of course, be obtained directly from the definitions as well
(see Exercise 6.1.15), but the present method is much simpler and explains
the reason behind the formula. �

Example 6.1.15. Hypergeometric Random Variable.

A hypergeometric random variableX counts the number of successes, that
is, the number of good items picked, if we select a sample of size n without
replacement from a mixture of N good and bad items. (See Example 4.2.4.)
If p stands for the fraction of good items in the lot and q = 1− p the fraction
of bad items, then the p.f. of X is

f(x;n,N, p) =

(
Np
x

)(
Nq
n−x

)

(
N
n

) for max(0, n−Nq) ≤ x ≤ min(n,Np). (6.52)

A direct evaluation of E(X) would be quite difficult from here, but we
can do the same thing that we did in the binomial case. Again, if Xi is a
Bernoulli random variable for each i, such that Xi = 1 if the ith trial (i.e.,
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the ith choice) results in success and Xi = 0 otherwise, then X =
∑n

i=1 Xi.
Now P(Xi = 1) = p for every i, because if we do not know the outcomes of
the previous choices, then the probability of success on the ith trial is the
same as for the first trial. Thus Equation 6.51 also applies now and gives the
same result E(X) = np. �

Theorem 6.1.6. Expectation of the Product of Two Independent
Random Variables. For any two independent random variables X and Y
whose expectations exist,

E(XY ) = E(X)E(Y ). (6.53)

Proof. We give the proof for continuous (X,Y ) only; for discrete (X,Y ) we
would just have to replace the integrals by sums.

By the assumed independence, f(x, y) = fX(x)fY (y). By Theorem 6.1.4,
with X1 = X,X2 = Y , and g(X,Y ) = XY , we have

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=

∫ ∞

−∞
xfX(x)dx

∫ ∞

−∞
yfY (y)dy = E(X)E(Y ). (6.54)

�

Note that in the preceding proof, the assumption of independence was
crucial. For dependent random variables, Equation 6.53 usually does not hold.

A similar proof leads to the analogous theorem for more than two random
variables:

Theorem 6.1.7. Expectation of the Product of Several Independent
Random Variables. For any positive integer n and any independent ran-
dom variables X1, X2, . . . , Xn whose expectations exist,

E

(
n∏

i=1

Xi

)

=

n∏

i=1

E(Xi). (6.55)

Exercises

Exercise 6.1.1.

From a regular deck of 52 playing cards, we pick one at random. Let the
r.v. X equal the number on the card if it is a numbered one (Ace counts as 1)
and 10 if it is a face card. Find E(X).
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Exercise 6.1.2.

Four indistinguishable balls are distributed randomly into three distin-
guishable boxes. (See Example 3.5.3.) Let X denote the number of balls that
end up in the first box. Find E(X).

Exercise 6.1.3.

Find E(T ) for a r.v. T with density

f(t) =

{
0 if t < 0

λ2te−λt if t ≥ 0
. (6.56)

(This is the density of the sum of two independent exponential r.v.’s with
parameter λ.)

Exercise 6.1.4.

In the game of roulette (Example 6.1.7), a winning bet on any single
number pays 35:1. Find E(X), where X denotes the gain from a bet of $1
on a single number.

Exercise 6.1.5.

Prove Equation 6.21. Hint: Let g(x) =
∑n−1

i=1 xi = xn−x
x−1 . First, compute

g′(x) from both expressions for g(x) and set x = 2.

Exercise 6.1.6.

A random variable X with p.d.f. f(x) = 1
π

1
1+x2 for any real x is called a

Cauchy r.v. Show that:

1. This f is indeed a p.d.f.,
2. E(X) does not exist, because the integral of xf(x) is not absolutely

convergent.

Exercise 6.1.7.

Prove Theorem 6.1.1 for discrete X.

Exercise 6.1.8.

Toss a fair coin repeatedly, until HH or TT comes up. Let X be the num-
ber of tosses required. Find E(X). (See Exercise 5.1.7 and Example 6.1.12.)

Exercise 6.1.9.

Let X be an exponential r.v. with parameter λ. (See Definition 5.2.3.)
Find E(X2).

Exercise 6.1.10.

Let X be uniform over the interval (0, 1). Find E(
∣
∣X − 1

2

∣
∣).
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Exercise 6.1.11.

Let X be uniform over the interval (0, 1). Show that E(1/X) does not
exist.

Exercise 6.1.12.

Prove Equation 6.35 for discrete X.

Exercise 6.1.13.

Prove Equation 6.35, for continuous X and a 	= 0, directly from Exam-
ple 5.3.1 without using Theorem 6.1.3.

Exercise 6.1.14.

Prove Theorem 6.1.5 for discrete X.

Exercise 6.1.15.

Prove E(X) = np for a binomial r.v. directly from Equation 6.50 and
Definition 6.1.1.

Exercise 6.1.16.

Let the random point (X,Y ) be uniformly distributed on D = {(x, y) :
x2 + y2 < 1}, and let Z = X2 + Y 2. Find E(Z).

Exercise 6.1.17.

Let the random point (X,Y ) be uniformly distributed on D = {(x, y) :
x2 + y2 < 1}. Does Equation 6.53 hold in this case?

Exercise 6.1.18.

Let X be a discrete uniform r.v. on the set {−1, 0, 1}, and let Y = X2.
Show that X and Y are not independent but E(XY ) = E(X)E(Y ) never-
theless.

Exercise 6.1.19.

Let the random point (X,Y ) be uniformly distributed on the unit square
D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, as in Example 5.4.4, and let Z =
X2 + Y 2. Find E(Z).

Exercise 6.1.20.

Let the random point (X,Y ) be uniformly distributed on the unit square
D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, as in Example 5.4.4, and let Z = X+Y .
Find E(Z).



188 6. Expectation, Variance, and Moments

Exercise 6.1.21.

Give an alternative proof for the expectation of a geometric r.v. X
(Example 6.1.12), based on the observation that E(X) =

∑∞
k=0 kpq

k−1 =
p d
dq

∑∞
k=0 q

k for 0 < q < 1.

Exercise 6.1.22.

Let X be a hypergeometric random variable (the number of good items
in a sample, see Example 6.1.15), and let Y = n−X be the number of bad
items in the same sample. Find E(X − Y ).

6.2 Variance and Standard Deviation

As we have seen, the expected value gives some information about a dis-
tribution by providing a measure of its center. Another characteristic of a
distribution is the standard deviation, which gives a measure of its average
width.

The first idea most people have for an average width of the distribution of
a random variable X is the mean of the deviations X−μ from the mean μ =
E(X), that is, the quantity E (X − μ). Unfortunately, however, E (X − μ) =
E(X) − μ = 0 for every r.v. that has an expectation, and so this would be
a useless definition. We must do something to avoid the cancelations of the
positive and negative deviations.

So next, one would try E (|X − μ|). Though this definition does provide
a good measure of the average width, it is generally difficult to compute
and does not have the extremely useful properties and the amazingly fruitful
applications that our next definition has.

Definition 6.2.1. Variance and Standard Deviation. Let X be any ran-
dom variable with mean μ = E(X). We define its variance and standard
deviation as

V ar(X) = E
(
(X − μ)

2
)

(6.57)

and

SD(X) =
√

V ar(X), (6.58)

provided E
(
(X − μ)

2
)
exists as a finite quantity.

Note that (X − μ)
2 ≥ 0, and so here the cancelations implicit in E (X − μ)

are avoided. Moreover, the squaring of X − μ introduces a change of units,
and the square root in SD(X) undoes this. For instance, if X is a length,
then V ar(X) is an area, but SD(X) is a length again.

SD(X) is often abbreviated as σ or σX .
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Example 6.2.1. Roll of a Die.

Let X denote the number obtained in a roll of a die, that is, P(X = i) = 1
6

for i = 1, 2, . . . 6. Then μ = 3.5, and

V ar(X) =
6∑

i=1

1

6
· (i− 3.5)

2
(6.59)

=
1

6

[
(−2.5)

2
+ (−1.5)

2
+ (−0.5)

2
+ (0.5)

2
+ (1.5)

2
+ (2.5)

2
]

≈ 2.9167

and

SD(X) ≈ 1.7078. (6.60)

In Figure 6.1 we show the graph of the p.f. with μ and μ± σ marked on
the x-axis.

0

0.2

y 

1 2 3 4 5 6x

Fig. 6.1. Graph of the probability function of a discrete uniform random variable
over {1, 2, . . . 6} with μ and μ± σ indicated

As can be seen, the distance between μ−σ and μ+σ is indeed a reasonable
measure of the average width of the graph. �

Example 6.2.2. Variance and Standard Deviation of a Discrete
Uniform Random Variable.

Let X be discrete uniform over the set {x1, x2, . . . , xn}. Then, writing x
for its expected value, we can obtain its variance as

V ar(X) =
1

n

n∑

x=1

(xi − x)
2
, (6.61)
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and its standard deviation as

SD(X) =

[
1

n

n∑

x=1

(xi − x)
2

]1/2

. (6.62)

�

Example 6.2.3. Variance and Standard Deviation of a Uniform
Random Variable.

Let X be uniform over the interval [a, b], that is, have p.d.f.

f(x) =

{ 1

b− a
if a < x < b

0 if x ≤ a or x ≥ b
. (6.63)

Then μ = a+b
2 and

V ar(X) =
1

b− a

∫ b

a

(x− μ)
2
dx =

(b− a)
2

12
(6.64)

and

SD(X) =
b− a

2
√
3
. (6.65)

In Figure 6.2 we show the graph of the uniform p.d.f. over the [0, 1] inter-
val, with μ and μ± σ marked on the x-axis. �

0

1

y 

1x

Fig. 6.2. Graph of the p.d.f. of a uniform random variable over [0, 1] with μ and
μ± σ indicated
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Next, we present several useful theorems.

Theorem 6.2.1. Zero Variance. For any random variable X such that
V ar(X) exists, V ar(X) = 0 if and only if P(X = c) = 1 for some constant c.

Proof. We give the proof for discrete X only.
If P(X = c) = 1 for some constant c, then f (x) = 0 for all x 	= c, and so

μ = E(X) =
∑

x:f(x)>0

xf (x) = c · 1 = c. (6.66)

Similarly,

V ar(X) = E
(
(X − μ)

2
)
=

∑

x:f(x)>0

(x− c)
2
f (x) = 0. (6.67)

Conversely, assume that V ar(X) = 0. Then every term on the left of

∑

x:f(x)>0

(x− μ)
2
f (x) = 0 (6.68)

is nonnegative and must therefore be 0. So if f (x) > 0, then we must have

x − μ = 0, that is, x = μ. For x 	= μ, (x− μ)
2 	= 0, and so f (x) = 0 must

hold. Since
∑

x:f(x)>0 f (x) = 1 and the only possible nonzero f (x) is f (μ) ,

we get f (μ) = 1 or, in other words, P(X = μ) = 1. �

Theorem 6.2.2. Variance and Standard Deviation of a Linear Func-
tion of a Random Variable. If X is a random variable such that V ar(X)
exists, then, for any constants a and b,

V ar(aX + b) = a2V ar(X) (6.69)

and

SD(aX + b) = |a|SD(X). (6.70)

Proof. By Equation 6.35, E(aX + b) = aμ+ b, and so

V ar(aX + b) = E
[
(aX + b− aμ− b)2

]
= E

[
a2(X − μ)2

]

= a2E
[
(X − μ)2

]
= a2V ar(X). (6.71)

Equation 6.70 follows from here by taking square roots. �

Example 6.2.4. Standardization.

In some applications we transform random variables to a standard scale
in which all random variables are centered at 0 and have standard deviations
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equal to 1. For any given r.v. X, for which μ and σ exist, we define its
standardization as the new r.v.

Z =
X − μ

σ
. (6.72)

Then indeed, by Equation 6.35,

E (Z) = E

(
X

σ
− μ

σ

)
=

1

σ
E (X)− μ

σ
= 0 (6.73)

and, by Equation 6.70,

SD (Z) =

∣
∣
∣
∣
1

σ

∣
∣
∣
∣SD (X) = 1. (6.74)

�
Theorem 6.2.3. An Alternative Formula for Computing the Vari-
ance. If X is a random variable such that V ar(X) exists, then

V ar(X) = E
(
X2

)− μ2. (6.75)

Proof.

V ar(X) = E
(
(X − μ)

2
)
= E

(
X2 − 2μX + μ2

)

= E
(
X2

)− 2μE (X) + μ2 = E
(
X2

)− μ2. (6.76)

�
Example 6.2.5. Variance and Standard Deviation of an Exponen-
tial Random Variable.

Let T be an exponential r.v. with parameter λ. We use Equation 6.75 to
compute the variance. Then

E(T 2) =

∫ ∞

−∞
t2f(t)dt =

∫ ∞

0

t2λe−λtdt. (6.77)

Integrating by parts twice as in Example 6.1.5, we obtain

E(T 2) =
2

λ2
. (6.78)

Hence,

V ar(T ) =
2

λ2
− 1

λ2
=

1

λ2
(6.79)

and so

SD(T ) =
1

λ
. (6.80)

�
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Theorem 6.2.4. Variance of the Sum of Two Independent Random
Variables. For any two independent random variables X and Y whose vari-
ances exist,

V ar(X + Y ) = V ar(X) + V ar(Y ). (6.81)

Proof. Writing E (X) = μX and E (Y ) = μY , we have E (X + Y ) = μX+μY ,
and so

V ar(X + Y ) = E
(
(X + Y − (μX + μY ))

2
)

= E
(
((X − μX) + (Y − μY ))

2
)

= E
(
(X − μX)

2
+ 2 (X − μX) (Y − μY ) + (Y − μY )

2
)

= E
(
(X − μX)

2
)
+ 2E ((X − μX) (Y − μY )) + E

(
(Y − μY )

2
)

= V ar(X) + 0 + V ar(Y ) = V ar(X) + V ar(Y ). (6.82)

The reason that the middle term is 0 is the independence of X and Y , which
implies

E ((X − μX) (Y − μY )) = E (XY − μXY − μY X + μXμY )

= E (X)E (Y )− μXE (Y )− μY E (X) + μXμY = 0.
(6.83)

�

Theorem 6.2.4 can easily be generalized to more than two random
variables:

Theorem 6.2.5. Variance of Sums of Pairwise Independent Ran-
dom Variables. For any positive integer n and any pairwise independent
random variables X1, X2, . . . , Xn whose variances exist,

V ar

(
n∑

i=1

Xi

)

=
n∑

i=1

V ar(Xi). (6.84)

We omit the proof. It would be similar to that of Theorem 6.2.4, and
because each mixed term involves the product of only two factors, we do not
need to assume total independence; pairwise independence is enough.

It is this additivity of the variance that makes it, together with the SD,
such a useful quantity, a property that other measures of the spread of a
distribution, like E (|X − μ|) , lack.

The preceding results have a corollary that is very important in statistical
sampling:
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Corollary 6.2.1. Square-Root Law. For any positive integer n, consider
n pairwise independent, identically distributed random variables X1, X2, . . . ,
Xn with mean μ and standard deviation σ. Let Sn denote their sum and Xn

their average, that is, let

Sn =

n∑

i=1

Xi (6.85)

and

Xn =
1

n

n∑

i=1

Xi. (6.86)

Then

E (Sn) = nμ and SD(Sn) =
√
nσ, (6.87)

and

E
(
Xn

)
= μ and SD(Xn) =

σ√
n
. (6.88)

Example 6.2.6. Variance and SD of a Bernoulli Random Variable.

If X is a Bernoulli random variable with parameter p, then E(X) = p,
and

V ar(X) = E
(
(X − p)

2
)
= p (1− p)

2
+(1− p) (0− p)

2
= p−p2 = pq, (6.89)

and

SD(X) =
√
pq. (6.90)

�

Example 6.2.7. Variance and SD of a Binomial Random Variable.

Again, as in Example 6.1.14, we write the binomial r.v.X with parameters
n and p as a sum of n identical and pairwise independent (this time, the
independence is crucial) Bernoulli random variables Xi with parameter p.
Then X = Sn =

∑n
i=1 Xi, and so, by the square-root law,

V ar(X) = nV ar(Xi) = npq, (6.91)

SD(X) =
√
npq. (6.92)

and

SD(Xn) =

√
pq

n
. (6.93)

�
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There is another important general relation that we should mention here.
It gives bounds for the probability of the tails of a distribution expressed
in terms of multiples of the standard deviation. That such a relation exists
should not be surprising, because both quantities—standard deviation and
tail probability—are measures of the width of a distribution.

Theorem 6.2.6. Chebyshev’s Inequality. For any random variable X
with mean μ and variance σ2 and for any positive number k,

P(|X − μ| ≥ kσ) ≤ 1

k2
. (6.94)

Proof. Clearly,

P(|X − μ| ≥ kσ) = P((X − μ)2 ≥ k2σ2) (6.95)

and, applying Markov’s inequality (Theorem 6.1.2) to the nonnegative ran-
dom variable (X − μ)2 with a = k2σ2, we get

P(|X − μ| ≥ kσ) ≤ E((X − μ)2)

a
=

σ2

k2σ2
=

1

k2
. (6.96)

�

Theorem 6.2.6 should be used to estimate tail probabilities only if we do
not know anything about a distribution. If we know the d.f., then we should
use that to get a precise value for P(|X − μ| ≥ kσ), which is usually much
smaller than 1

k2 . (See the example below.)

Example 6.2.8. Tail Probabilities of an Exponential Random
Variable.

Let T be an exponential r.v. with parameter λ = 1. Then μ = σ = 1 and
F (t) = 1− e−t for t ≥ 0. Also,

P(|T − 1| ≥ k) = P(T − 1 ≥ k) = 1−F (1 + k) = e−1−k for k ≥ 1. (6.97)

Thus

P(|T − 1| ≥ k) ≈
⎧
⎨

⎩

0.14 if k = 1
0.05 if k = 2
0.02 if k = 3

, (6.98)

while Chebyshev’s inequality gives

P(|T − 1| ≥ k) ≤
⎧
⎨

⎩

1 if k = 1
0.25 if k = 2
0.11 if k = 3

. (6.99)

�
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The most important use of Chebyshev’s inequality is in the proof of a
limit theorem, known as the law of large numbers4:

Theorem 6.2.7. Law of Large Numbers. For any positive integer n, let
X1, X2, . . . , Xn be i.i.d. random variables with mean μ and standard deviation
σ. Then, for any ε > 0, their mean Xn satisfies the relation

lim
n→∞P

(∣∣Xn − μ
∣
∣ < ε

)
= 1. (6.100)

Proof. By Corollary 6.2.1, for any i.i.d. X1, X2, . . . , Xn with mean μ and
standard deviation σ, their average Xn has E

(
Xn

)
= μ and SD(Xn) =

σ√
n
.

Thus, applying Chebyshev’s inequality to Xn with ε = k (σ/
√
n) , we obtain

P
(∣∣Xn − μ

∣
∣ ≥ ε

)
= P

(∣∣Xn − μ
∣
∣ ≥ k (σ/

√
n)
) ≤ 1/k2 = σ2/

(
nε2

)
. Since

σ2/
(
nε2

) → 0 as n → ∞, the left side is squeezed to 0 as n → ∞. �

Remarks.

1. The Relation 6.100 is true even if σ does not exist for the Xi.
2. In the special case of the Xi being Bernoulli random variables with pa-

rameter p, the mean Xn is the relative frequency of successes in n trials
and μ = p. So, in that case, the law of large numbers says that, as n → ∞,
the relative frequency of successes will be arbitrarily close to the proba-
bility of success with probability one. (Note that this is only a probability
statement about p. We cannot use this theorem as a definition of prob-
ability, that is, we cannot say that the relative frequency becomes the
probability p; we can make statements only about the probability of this
event, even in the stronger version in the footnote.)

3. The SDs of Sn and Xn are sometimes called their standard errors (SEs).

Exercises

Exercise 6.2.1.

Find two random variables X and Y whose variances do not exist but the
variance of their sum does.

Exercise 6.2.2.

1. Let X and Y be two independent random variables whose variances exist.
Show that V ar(X − Y ) = V ar(X + Y ) in this case.

2. Is the above relation necessarily true if X and Y are not independent?

4 In fact, there is a stronger version of this law, P
(
limn→∞ Xn = μ

)
= 1, under ap-

propriate conditions, but we do not prove this strong law of large numbers here.
Actually, the precise name of Theorem 6.2.7 is the weak law of large numbers.
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Exercise 6.2.3.

Let X and Y be two independent random variables whose variances exist.
For any constants a, b, c, express V ar(aX + bY + c) in terms of V ar(X) and
V ar(Y ).

Exercise 6.2.4.

Show that the converse of Theorem 6.2.4 is false: For X and Y as in
Exercise 6.1.18, the relation V ar(X+Y ) = V ar(X)+V ar(Y ) holds, although
X and Y are not independent.

Exercise 6.2.5.

Prove that if for a r.v. X, both E(X) = μ and SD(X) = σ exist and c is
any constant, then:

1. E
(
(X − c)

2
)
= σ2 + (μ− c)

2

2. minc E
(
(X − c)

2
)
= V ar(X), that is, the mean of squared deviations is

minimum if the deviations are taken from the mean.

Exercise 6.2.6.

Let X and Y be two independent random variables, both with density
f(x) = 3x2 for x ∈ [0, 1] and 0 otherwise. Find the expected value and the
variance of

1. X,
2. X − Y,
3. XY,
4. X2,
5. (X + Y )

2
.

Exercise 6.2.7.

Let X and Y be two independent exponential random variables, both
with parameter λ. Find the expected value and the variance of

1. X + 2Y,
2. X − 2Y,
3. XY,
4. X2,
5. (X + Y )

2
.

Exercise 6.2.8.

Let X be a binomial random variable with E(X) = 5. Find the least
upper bound of SD(X) as a function of n.

Exercise 6.2.9.

Toss a fair coin n times, and let X denote the number of H’s and Y the
number of T ’s obtained. Does E(XY ) = E(X)E(Y ) hold in this case?
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6.3 Moments and Generating Functions

The notions of expected value and variance of a r.v. X can be generalized to
higher powers of X:

Definition 6.3.1. Moments. For any positive integer k, we call E
(
Xk

)

the kth moment of X and E
(
(X − μ)

k
)

the kth central moment of X, if

they exist. (The name “moment” is borrowed from physics.)

Thus, E (X) is the first moment and V ar (X) is the second central mo-
ment of X. Other than these two, only the third and fourth central moments
have some probabilistic significance: they can be used to measure the skew-
ness and the flatness of a distribution.

The use of moments is analogous to the use of higher derivatives in calcu-
lus. There, the higher derivatives have no independent geometrical meaning,
but are needed in Taylor expansions. Similarly, the higher moments are sig-
nificant only in the Taylor expansions of certain functions obtained from
probability distributions: the moment generating function, the probability
generating function, and the characteristic function.

The moment generating function is closely related to the Laplace trans-
form, which may be familiar from differential equation courses, and has sim-
ilar properties. Its main use is the simplification it brings to finding the dis-
tributions of sums of i.i.d. random variables, which would, in most cases, be
hopeless with the convolution formula when the number of terms gets large.

Definition 6.3.2. Moment Generating Function. The moment gener-
ating function (m.g.f.) ψ or ψX of any random variable X is defined by

ψ (t) = E
(
etX

)
. (6.101)

Clearly, the m.g.f. may not exist for certain random variables or for certain
values of t. For most distributions that we are interested in, ψ (t) will exist
for all real t or on some interval.

Also, note that the m.g.f., being an expectation, depends only on the
distribution of X and not on any other property of X. That is, if two r.v.’s
have the same distribution, then they have the same m.g.f. as well. For this
reason, it is correct to speak of the m.g.f. of a distribution rather than that
of the corresponding r.v.

Example 6.3.1. Binomial Distribution.

If X is binomial with parameters n and p, then

ψ (t) = E
(
etX

)
=

n∑

x=0

(
n

x

)
pxqn−xetx

=

n∑

x=0

(
n

x

)
(
pet

)x
qn−x =

(
pet + q

)n
. (6.102)
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In particular, if n = 1, then X is Bernoulli and its m.g.f. is

ψ (t) = pet + q. (6.103)

�
Example 6.3.2. Geometric Distribution.

If X is geometric with parameter p, then

ψ (t) = E
(
etX

)
=

∞∑

x=1

pqx−1etx

=

∞∑

x=1

p
(
qet

)x
q−1 =

pet

1− qet
. (6.104)

�
Example 6.3.3. Uniform Distribution.

If X is uniform on [a, b] , then

ψ (t) =

∫ b

a

etx

b− a
dx =

etx

(b− a) t

∣
∣
∣
∣

b

a

=
ebt − eat

(b− a) t
. (6.105)

�
Example 6.3.4. Exponential Distribution.

If X is exponential with parameter λ > 0, then

ψ (t) =

∫ ∞

0

etxλe−λxdx = λ

∫ ∞

0

e(t−λ)xdx

=
λ

t− λ
e(t−λ)x

∣
∣
∣
∣

∞

0

=
λ

λ− t
if t < λ. (6.106)

Clearly, ψ (t) does not exist for t ≥ λ. �
Let us see now how the m.g.f. and the moments are connected.

Theorem 6.3.1. ψ Generates Moments. If the m.g.f. ψ of a random
variable X exists for all t in a neighborhood of 0, then all the moments of X
exist, and

ψ (t) =

∞∑

k=0

E
(
Xk

) tk

k!
, (6.107)

that is, the moments are the coefficients of the Maclaurin series of ψ. Also,
the function ψ is then infinitely differentiable at 0, and

ψ(k) (0) = E
(
Xk

)
for k = 0, 1, 2, . . . . (6.108)
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Proof. We omit the technical details and just outline the proof. Since the
Maclaurin series of etX is

etX =
∞∑

k=0

(tX)
k

k!
, (6.109)

which is convergent for all real t, we have

ψ (t) = E
(
etX

)
= E

( ∞∑

k=0

(tX)
k

k!

)

=

∞∑

k=0

E

(
(tX)

k

k!

)

=

∞∑

k=0

E
(
Xk

) tk

k!
. (6.110)

Equation 6.108 follows from Equation 6.107 by differentiating both sides
k times and setting t = 0. �

Example 6.3.5. Mean and Variance of Exponential X.

If X is exponential with parameter λ > 0, then expanding the m.g.f. from
Example 6.3.4 into a geometric series, we obtain

ψ (t) =
λ

λ− t
=

1

1− t/λ
=

∞∑

k=0

tk

λk
if t < λ. (6.111)

Comparing the coefficients of t and t2 in the sum here with those of Equa-
tion 6.107 results in

E (X) =
1

λ
(6.112)

and

E
(
X2

)

2
=

1

λ2
. (6.113)

Hence

V ar (X) = E
(
X2

)− [E (X)]
2
=

2

λ2
− 1

λ2
=

1

λ2
, (6.114)

just as in Chapter 5.
We could, of course, also have obtained these results by using Equa-

tion 6.108 rather than Equation 6.107. �
The most important properties of the m.g.f. are stated in the next three

theorems.
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Theorem 6.3.2. The Multiplicative Property of Moment Generat-
ing Functions. For any positive integer n, let X1, X2, . . . , Xn be inde-
pendent random variables with m.g.f. ψ1, ψ2, . . . , ψn, respectively, and let
Y =

∑n
i=1 Xi. Then ψY (t) exists for all t for which each ψi (t) exists, and

ψY (t) =

n∏

i=1

ψi (t) . (6.115)

Proof.

ψY (t) = E
(
etY

)
= E

(
et

∑
Xi

)
= E

(
n∏

i=1

etXi

)

=
n∏

i=1

E
(
etXi

)
=

n∏

i=1

ψi (t) . (6.116)

�

The next two theorems will be stated without proof. Their proofs can be
found in more advanced texts.

Theorem 6.3.3. Uniqueness of the Moment Generating Function.
If the moment generating functions of two random variables are equal on a
neighborhood of 0, then their distributions are also equal.

Theorem 6.3.4. Limits of Sequences of Moment Generating Func-
tions. Let X1, X2, . . . be a sequence of random variables with m.g.f.’s ψ1, ψ2, . . .
and d.f.’s F1, F2, . . . .If limi→∞ ψi (t) = ψ (t) for all t in a neighborhood of 0,
then limi→∞ Fi (x) = F (x) exists for all x, and ψ (t) is the m.g.f. of a r.v.
whose d.f. is F .

Example 6.3.6. Sum of Binomial Random Variables.

We rederive the result of Example 5.5.8, using m.g.f.’s.
Let X and Y be independent, binomial r.v.’s with parameters n1, p and

n2, p, respectively. Then Z = X + Y is binomial with parameters n1 + n2, p.
By Example 6.3.1

ψX (t) =
(
pet + q

)n1
and ψY (t) =

(
pet + q

)n2
. (6.117)

Hence, by Theorem 6.3.2, the m.g.f. of Z = X + Y is given by

ψZ (t) =
(
pet + q

)n1+n2
. (6.118)

This function is the m.g.f. of a binomial r.v. with parameters n1 + n2, p,
and so, by the uniqueness theorem, Z = X + Y is binomial with parameters
n1 + n2, p. �
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Equation 6.107 is a particular case of the generating function of a se-
quence. In general, for any sequence a0, a1, . . . , we call G (s) =

∑∞
k=0 aks

k its
generating function. (As known from calculus, the infinite sum here is conver-
gent on a finite or infinite interval centered at 0 or just at the point 0 itself.)
Thus the m.g.f. is the generating function of the sequence

〈
E
(
Xk

)
/k!

〉
and

not of the sequence of moments, despite its name.
For a discrete random variable, the probability function provides another

sequence, in addition to the moments. The corresponding generating function
for nonnegative, integer-valued random variables plays an important role in
many applications.

Definition 6.3.3. Probability Generating Function. The probability gen-
erating function (p.g.f.) G or GX of any nonnegative integer-valued random
variable X is defined by

G (s) = E
(
sX

)
=

∞∑

x=0

f (x) sx, (6.119)

where f is the p.f. of X.

If we put s = 1 in Equation 6.119, then the sum on the right becomes the
sum of the probabilities, and so we obtain

G (1) = 1. (6.120)

Hence, the power series in Equation 6.119 is convergent for all |s| ≤ 1.
If we know the generating function G, then we can obtain the probability

function f from Equation 6.119, either by expanding G (s) into a power series
and extracting the coefficients or by using the formula

f (k) =
G(k) (0)

k!
for k = 0, 1, . . . . (6.121)

The p.g.f. is closely related to the m.g.f. If we put s = et in Equation 6.119,
then we obtain

ψ (t) = G
(
et
)
. (6.122)

Thus, the p.g.f. has similar properties to those of the m.g.f., and, espe-
cially, it has the corresponding multiplicative and uniqueness properties. The
p.g.f. is, however, defined only for nonnegative integer-valued random vari-
ables, whereas the m.g.f. exists for all random variables whose moments exist.
The p.g.f. is used to derive certain specific distributions, mainly in problems
involving difference equations, like the gambler’s ruin (Example 4.5.5), which
we shall revisit below, and the m.g.f. is used to derive general theorems like
the CLT in Section 7.3.
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Example 6.3.7. The Gambler’s Ruin.

In Example 4.5.5 we asserted that the difference equation

P(Am) = P(Am+1) · 1
2
+ P(Am−1) · 1

2
(6.123)

is known to have the general solution P(Am) = a + bm, where a and b
are arbitrary constants. While it is easy to see by direct substitution that
P(Am) = a + bm is a solution, it is not obvious that there are no other
solutions. We now use the p.g.f. to prove this fact.

Multiplying both sides of Equation 6.123 by sm and summing over m
from 1 to ∞, we get

∞∑

m=1

P(Am)sm =
1

2s

∞∑

m=1

P(Am+1)s
m+1 +

s

2

∞∑

m=1

P(Am−1)s
m−1. (6.124)

With the notations pm = P(Am) and G (s) =
∑∞

m=0P(Am)sm, the above
equation can be written as

G (s)− p0 =
1

2s
[G (s)− p1s− p0] +

s

2
G (s) , (6.125)

and, solving for G (s) , we obtain

G (s) =
(p1 − 2p0) s+ p0

(1− s)
2 . (6.126)

As known from calculus, the expression on the right can be decomposed
into partial fractions as

G (s) =
a

1− s
+

bs

(1− s)
2 , (6.127)

with appropriate constants a and b. These partial fractions are well-known
sums of a geometric series and one derived from a geometric series5, and so

G (s) =

∞∑

m=0

asm +

∞∑

m=0

bmsm =

∞∑

m=0

(a+ bm) sm. (6.128)

Comparing this result with the definition of G (s) , we can see that pm =
a + bm must hold for all m. In particular, p0 = a and p1 = a + b, and so
a = p0 and b = p1 − p0. �

The moments can also be obtained directly from the p.g.f.. For instance,

G′ (s) =
∞∑

x=0

f (x)xsx−1, (6.129)

5 The second sum can be derived by differentiation from the geometric sum:∑∞
m=0 msm = s

∑∞
m=0 msm−1 = s d

ds

∑∞
m=0 s

m = s d
ds

1
1−s

= s
(1−s)2

.
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and so6

G′ (1) =
∞∑

x=0

f (x)x = E (X) . (6.130)

Similarly,

G′′ (s) =
∞∑

x=0

f (x)x (x− 1) sx−2, (6.131)

and

G′′ (1) =
∞∑

x=0

f (x)x (x− 1) = E
(
X2

)− E (X) . (6.132)

Hence

E
(
X2

)
= G′′ (1) +G′ (1) , (6.133)

and

V ar (X) = G′′ (1) +G′ (1)−G′ (1)2 . (6.134)

As mentioned at the beginning of this section, there is yet another widely
used function related to the generating functions described above:

Definition 6.3.4. Characteristic Function. The characteristic function
φ or φX of any random variable X is defined by

φ (t) = E
(
eitX

)
. (6.135)

This function has properties similar to those of the m.g.f. and has the
advantage that, unlike the m.g.f., it exists for every random variable X, since
eitX is a bounded function. On the other hand, its use requires complex
analysis, and therefore we shall not discuss it further.

Exercises

Exercise 6.3.1.

Show that, for independent random variables, the third central moments

are additive. That is, writing m3 (X) = E
(
(X − μX)

3
)
, we have, for inde-

pendent X and Y,m3 (X + Y ) = m3 (X) +m3 (Y ).

6 Since the power series of G (s) may not be convergent for s > 1, we consider
G′ (1) and G′′ (1) to be left derivatives.
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Exercise 6.3.2.

Show that, for independent random variables, the fourth central moments

are not additive. That is, writing m4 (X) = E
(
(X − μX)

4
)
, for independent

X and Y,m4 (X + Y ) 	= m4 (X) +m4 (Y ) in general.

Exercise 6.3.3.

Express the m.g.f. ψY of Y = aX + b in terms of ψX .

Exercise 6.3.4.

Use the m.g.f. from Example 6.3.2 to show that for a geometric r.v.,
V ar (X) = q

p2 .

Exercise 6.3.5.

For any random variable X, the function ψX−μ is called the central mo-
ment generating function of X. Find ψX−μ for an X having the binomial n, p
distribution, and use ψX−μ to find V ar (X).

Exercise 6.3.6.

Find the m.g.f. and the p.g.f. of a discrete uniform r.v. with possible values
1, 2, . . . , n. Simplify your answers.

Exercise 6.3.7.

Let X and Y be i.i.d. random variables with m.g.f. ψ. Express the m.g.f.
ψZ of Z = Y −X in terms of ψ.

Exercise 6.3.8.

Let X be a continuous r.v. with density f (x) = 1
2e

−|x| for −∞ < x < ∞:

1. Show that ψ (t) = 1
1−t2 .

2. Use this ψ to find a formula for the moments of X.

Exercise 6.3.9.

Find the p.g.f. of a binomial n, p random variable.

Exercise 6.3.10.

Find the p.g.f. of a geometric random variable with parameter p.

Exercise 6.3.11.

We roll three dice. Use the p.g.f. to find the probability pk that the sum
of the points showing is k for k = 3, 4, and 5. (Hint: cf. Exercise 6.3.6.)
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6.4 Covariance and Correlation

The expected value and the variance provided useful summary information
about single random variables. The new notions of covariance and correlation,
to be introduced in this section, provide information about the relationship
between two or more random variables.

Definition 6.4.1. Covariance. Given random variables X and Y with
expected values μX and μY , their covariance is defined as

Cov (X,Y ) = E ((X − μX) (Y − μY )) , (6.136)

whenever the expected value on the right exists.

Example 6.4.1. Covariance of (X,Y ) Uniform on a Triangle.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 ≤ x ≤ y ≤ 1}.
Then f(x, y) = 2 on D, and

μX =

∫ 1

0

∫ y

0

2xdxdy =

∫ 1

0

y2dy =
1

3
, (6.137)

μY =

∫ 1

0

∫ y

0

2ydxdy =

∫ 1

0

2y2dy =
2

3
, (6.138)

and

Cov (X,Y ) =

∫ 1

0

∫ y

0

2

(
x− 1

3

)(
y − 2

3

)
dxdy

=

∫ 1

0

(
y2 − 2

3
y

)(
y − 2

3

)
dy =

1

36
. (6.139)

�
We can see from the definition that the covariance is positive if (X − μX)

and (Y − μY ) tend to have the same sign, as in the example above, and it
is negative if they tend to have opposite signs. If the sign combinations are
equally balanced, then Cov (X,Y ) = 0. The latter happens, in particular,
whenever X and Y are independent, but it can happen in other cases, too.

Theorem 6.4.1. An Alternative Formula for the Covariance. If X
and Y are random variables such that E (X) , E (Y ) , and E (XY ) exist, then

Cov (X,Y ) = E (XY )− E (X)E (Y ) . (6.140)

Proof. From Definition 6.4.1,

Cov (X,Y ) = E (XY − μXY − μY X + μXμY )

= E (XY )− μXE (Y )− μY E (X) + μXμY

= E (XY )− E (X)E (Y ) . (6.141)

�
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Theorem 6.4.2. Independence Implies Zero Covariance. For inde-
pendent random variables X and Y whose expectations exist, Cov (X,Y ) = 0.

Proof. By Theorem 6.1.6 the two terms on the right of Equation 6.140 are
equal in this case. �

As mentioned above, the converse is not true; the covariance may be zero
for dependent random variables as well, as shown by the next example.

Example 6.4.2. Covariance of (X,Y ) Uniform on a Disk.

Let (X,Y ) be uniform on the unit disk D = {(x, y) : x2 + y2 < 1}. Then,
clearly, μX = μY = 0 and

Cov (X,Y ) =

∫ 1

−1

∫ √
1−x2

−√
1−x2

1

π
xydydx

=

∫ 1

−1

2x

π

√
1− x2dx = 0. (6.142)

�
In order to shed more light on what the covariance measures, it is useful

to standardize the variables, so that their magnitude should not influence the
value obtained. Thus we make a new definition:

Definition 6.4.2. Correlation Coefficient. We define the correlation co-
efficient of any random variables X and Y with nonzero variances and exist-
ing covariance as

ρ (X,Y ) = E

(
X − μX

σX
· Y − μY

σY

)
. (6.143)

We have the following obvious theorem:

Theorem 6.4.3. Alternative Formulas for the Correlation Coeffi-
cient. If ρ (X,Y ) exists, then

ρ (X,Y ) = Cov

(
X − μX

σX
,
Y − μY

σY

)
=

Cov (X,Y )

σXσY

=
E (XY )− E (X)E (Y )

σXσY
. (6.144)

Example 6.4.3. Correlation Coefficient of Discrete Uniform (X,Y ).

Consider the distribution that assigns probability 1/n to each of n data
points (xi, yi). Then

ρ (X,Y ) =
E (XY )− E (X)E (Y )

σXσY
=

1
n

∑
xiyi − x y

σXσY
, (6.145)
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where

x =
1

n

∑
xi, y =

1

n

∑
yi, (6.146)

and

σX =

[
1

n

∑
(xi − x)

2

]1/2
, σY =

[
1

n

∑
(yi − y)

2

]1/2
. (6.147)

�
We are going to show that ρ (X,Y ) falls between −1 and +1, with ρ tak-

ing on the values ±1, if and only if there is a linear relation Y = aX + b
between X and Y with probability 1. (ρ is +1 if a is positive and −1
if a is negative.) Thus, |ρ| measures how close the points (X,Y ) fall to a
straight line in the plane. If ρ is 0, then X and Y are said to be uncorre-
lated, which means that there is no bunching of the points around a line. We
say that ρ (X,Y ) measures the strength of the linear association between X
and Y .

To prove the foregoing statements, we first present a general theorem
about expectations.

Theorem 6.4.4. Schwarz Inequality. For any random variables X
and Y such that the expectations below exist,

[E (XY )]
2 ≤ E

(
X2

)
E
(
Y 2

)
. (6.148)

Furthermore, the two sides are equal if and only if P(aX + bY = 0) = 1 for
some constants a and b, not both 0.

Proof. First assume that E
(
Y 2

)
> 0. Then, for any real number λ,

0 ≤ E
(
(X − λY )

2
)
= λ2E

(
Y 2

)− 2λE (XY ) + E
(
X2

)
, (6.149)

and the right hand side is a quadratic function of λ whose graph is a parabola
facing upward. The minimum occurs at

λ =
E (XY )

E (Y 2)
(6.150)

and at that point the Inequality 6.149 becomes

0 ≤
[
E (XY )

E (Y 2)

]2
E
(
Y 2

)− 2
E (XY )

E (Y 2)
E (XY ) + E

(
X2

)

= E
(
X2

)− [E (XY )]
2

E (Y 2)
, (6.151)

which is equivalent to the Inequality 6.148.
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In case E
(
Y 2

)
= 0, by Theorem 6.2.1, P(Y = 0) = 1, and then we also

have P(XY = 0) = 1 and E (XY ) = 0. Thus Inequality 6.148 is valid with
both sides equal to 0.

To prove the second statement of the theorem, first assume that
P(aX + bY = 0) = 1 for some constants a and b, not both 0. If a = 0,
then this condition reduces to P(Y = 0) = 1, which we have just discussed.

If a 	= 0, then, by Theorem 6.2.1, E
(
(aX + bY )

2
)
= 0, and so

a2E
(
X2

)
+ 2abE (XY ) + b2E

(
Y 2

)
= 0, (6.152)

or, equivalently,

(
b

a

)2

E
(
Y 2

)
+ 2

b

a
E (XY ) + E

(
X2

)
= 0. (6.153)

Now, this is a quadratic equation for b
a and we know that it has a single

solution. (If it had two solutions, then both X and Y would have to be 0
with probability 1: a trivial case.) Thus its discriminant must be zero, that
is, we must have

(2E (XY ))
2 − 4E

(
X2

)
E
(
Y 2

)
= 0, (6.154)

which reduces to

[E (XY )]
2
= E

(
X2

)
E
(
Y 2

)
. (6.155)

If we assume Equation 6.155, then the last argument can be traced backwards,
and we can conclude that P(aX + bY = 0) = 1 must hold for some constants
a and b, not both 0. �

If we apply Theorem 6.4.4 to X−μX

σX
and Y−μY

σY
in place of X and Y, we

obtain the following relation for the correlation coefficient:

Corollary 6.4.1. For any random variables X and Y such that ρ (X,Y )
exists,

−1 ≤ ρ (X,Y ) ≤ 1. (6.156)

Furthermore, ρ (X,Y ) = ±1 if and only if P(Y = aX + b) = 1 for some
constants a 	= 0 and b, with sign(ρ (X,Y )) = sign(a).

Thus, the correlation coefficient puts a numerical value on the strength
of the linear association between X and Y, that is, the closer ρ is to ±1, the
closer the random points (X,Y ) bunch around a straight line and vice versa.
Note that the line cannot be vertical or horizontal, because then ρ would not
exist. The correlation coefficient conveys no useful information if the points
bunch around any curve other than a straight line. For example, if (X,Y ) is
uniform on a circle, then ρ is zero, even though the points are on a curve.
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Fig. 6.3. Scatter plot for the exam scores with the least squares line superimposed

Example 6.4.4. Correlation Between Two Exams.

Suppose five students take two exams. Let X and Y denote the grades of a
randomly selected student, as given in the X and Y columns of the following
table. The rest of the table is included for the computation of ρ.

Student X Y X2 Y 2 XY

A 40 50 1600 2500 2000
B 60 55 3600 3025 3300
C 80 75 6400 5625 6000
D 90 80 8100 6400 7200
E 80 90 6400 8100 7200

Ave. 70 70 5220 5130 5140

Hence μX = μY = 70, σX =
√
5220− 702 ≈ 17.889, σY =

√
5130− 702 ≈

15.166, and ρ ≈ 5140−702

17.889·15.166 ≈ 0.88.
The grades of each student are shown above as points in a so-called scat-

ter plot (see Figure 6.3), together with the line of the best fit in the least
squares sense or, briefly, the least squares line or regression line of Y on X,
given by y = 70 + 3

4 (x− 70). (The general formula will be given below in
Theorem 6.4.5, and regression will be discussed in Section 8.8.) It should
not be surprising that the points bunch around a straight line, because we
would expect good students to do well on both exams, bad students to do
poorly, and mediocre students to be in the middle, both times. On the other
hand, the points need not fall exactly on a line, since there is usually some
randomness in the scores; people do not always perform at the same level.
Furthermore, the slope of the line does not have to be 1, because the two
exams may differ in difficulty.
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The value 0.88 for ρ shows that the points are fairly close to a line. If ρ
were 1, then they would all fall on a line, and if ρ were 0, then the points
would seem to bunch the same way around any line through their center of
gravity, with no preferred direction.

�
Example 6.4.5. Correlation of (X,Y ) Uniform on a Triangle.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 ≤ x ≤ y ≤ 1} as in
Example 6.4.1. Then

E
(
X2

)
=

∫ 1

0

∫ y

0

2x2dxdy =

∫ 1

0

2

3
y3dy =

1

6
, (6.157)

E
(
Y 2

)
=

∫ 1

0

∫ y

0

2y2dxdy =

∫ 1

0

2y3dy =
1

2
, (6.158)

and

σ2
X =

1

6
−
(
1

3

)2

=
1

18
, and σ2

Y =
1

2
−
(
2

3

)2

=
1

18
. (6.159)

Thus,

ρ (X,Y ) =
Cov (X,Y )

σXσY
=

1/36

1/18
=

1

2
(6.160)

This result shows that the points of the triangle D are rather loosely
grouped around a line, as can also be seen in Figure 6.4. However, this line
is not unique: the line joining the origin and the centroid would do just as
well as the one shown. �

0

0.2

0.4

0.6

0.8

y 

0.2 0.4 0.6 0.8 1x 

Fig. 6.4. The triangle D with the least squares line and the point of averages
drawn in
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In addition to being a measure of the linear association between two
random variables, the correlation coefficient is also a determining factor in
the slope of the least squares line (which we give here just for the special case
of a finite number of equiprobable points):

Theorem 6.4.5. Least Squares Line. Let (X,Y ) be a random point with
m possible values (xi, yi) , each having probability 1

m . The line y = ax + b,
such that the sum of the squared vertical distances

Q (a, b) =

m∑

i=1

(axi + b− yi)
2

(6.161)

from the points to it is minimum, is given by the equation

y = μY + ρ
σY

σX
(x− μX) , (6.162)

or, equivalently, in standardized form by

y − μY

σY
= ρ

x− μX

σX
. (6.163)

The proof is left as Exercise 6.4.6.

Exercises

Exercise 6.4.1.

Prove that

V ar (X + Y ) = V ar (X) + 2Cov (X,Y ) + V ar (Y ) (6.164)

whenever each term exists.

Exercise 6.4.2.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 < x, 0 < y, x + y
< 1}. Compute Cov (X,Y ) and ρ (X,Y ).

Exercise 6.4.3.

Let X and Y have the same distribution and let U = X + Y and
V = X − Y :

1. Show that Cov (U, V ) = 0, assuming that each variance and covariance
exists.

2. Show that if X and Y denote the outcomes of throwing two dice, then
U and V are not independent, although Cov (U, V ) = 0 by part 1.
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Exercise 6.4.4.

Let (X,Y ) be uniform on the half disk D = {(x, y) : 0 < y, x2 + y2 < 1}.
Compute Cov (X,Y ) and ρ (X,Y ).

Exercise 6.4.5.

Let X and Y be discrete random variables with joint probabilities
P(X = xi, Y = yj) = pij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Using also pi
for P(X = xi) and qj for P(Y = yj) , write a formula for

1. Cov (X,Y )
2. ρ (X,Y ).

Exercise 6.4.6.

Prove Theorem 6.4.5. (Hint: Set the partial derivatives of Q (a, b) in Equa-
tion 6.161 equal to zero to obtain the so-called normal equations of the least
squares problem, and solve for a and b.)

Exercise 6.4.7.

Let X and Y be random variables such that ρ (X,Y ) exists, and let
U = aX + b and V = cY + d, with a 	= 0, b, c 	= 0, d constants. Show that
ρ (U, V ) = sign(ac) ρ (X,Y ).

Exercise 6.4.8.

Let X and Y be random variables such that V ar (X) , V ar (Y ), and
Cov (X,Y ) exist, and let U = aX + bY and V = cX + dY , with a, b, c, d
constants. Find an expression for Cov (U, V ) in terms of a, b, c, d, V ar (X) ,
V ar (Y ), and Cov (X,Y ).

Exercise 6.4.9.

Let X and Y be random variables such that V ar (X) = 4, V ar (Y ) = 1,
and ρ (X,Y ) = 1

2 . Find V ar (X − 3Y ).

Exercise 6.4.10.

Prove that if Xi and Yj are random variables such that Cov (Xi, Yj) exists
for all i, j, and ai, bj are arbitrary constants, then

Cov

⎛

⎝
m∑

i=1

aiXi,

n∑

j=1

bjYj

⎞

⎠ =

m∑

i=1

n∑

j=1

aibjCov (Xi, Yj) . (6.165)

Exercise 6.4.11.

Suppose in Example 6.4.4, the first exam score of student E is changed
from 80 to 90:

1. Recompute ρ (X,Y ) with this change.
2. Find the equation of the new least squares line.
3. Draw the scatter plot, together with the new line.
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6.5 Conditional Expectation

In many applications, we need to consider expected values under given con-
ditions. We define such expected values much as we defined unconditional
ones; we just replace the unconditional distributions in the earlier definitions
with conditional distributions:

Definition 6.5.1. Conditional Expectation. Let A be any event with
P(A) 	= 0 and X any discrete random variable. Then we define the con-
ditional expectation of X under the condition A by

EA (X) =
∑

x:fX|A(x)>0

xfX|A(x). (6.166)

Let A be any event with P(A) 	= 0 and X any continuous random variable
such that fX|A exists. Then we define the conditional expectation of X under
the condition A by

EA (X) =

∫ ∞

−∞
xfX|A(x)dx. (6.167)

If X is discrete and Y any random variable such that fX|Y exists, then
the conditional expectation of X given Y = y is defined by

Ey (X) =
∑

x:fX|Y (x,y)>0

xfX|Y (x, y) . (6.168)

If X is continuous and Y any random variable such that fX|Y exists, then
the conditional expectation of X given Y = y is defined by

Ey (X) =

∫ ∞

−∞
xfX|Y (x, y) dx. (6.169)

All the theorems for unconditional expectations remain valid for condi-
tional expectations as well, because the definitions are essentially the same,
just that unconditional f ’s are replaced by conditional ones. The latter are
still probability functions or densities, and so this change does not affect
the proofs. In particular, conditional expectations of functions g (X) can be
computed for discrete X as

Ey (g (X)) =
∑

x:fX|Y (x,y)>0

g (x) fX|Y (x, y) , (6.170)

and for continuous X as

Ey (g (X)) =

∫ ∞

−∞
g (x) fX|Y (x, y) dx. (6.171)
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Also,

Ey (aX + b) = aEy (X) + b (6.172)

and

Ey (X1 +X2) = Ey (X1) + Ey (X2) . (6.173)

Note that, whether X is discrete or continuous, Ey (X) is a function of
y, say Ey (X) = g (y). If we replace y here by the random variable Y, we
get a new random variable g (Y ) = EY (X). The next theorem says that the
expected value of this new random variable is E (X). In other words, we can
obtain the expected value of X in two steps: first, averaging X under some
given conditions and then averaging over the conditions with the appropri-
ate weights. This procedure is analogous to the one in the theorem of total
probability, in which we computed the probability (rather than the average)
of an event A under certain conditions and then averaged over the conditions
with the appropriate weights.

Theorem 6.5.1. Theorem of Total Expectation. If all expectations below
exist, then

E (EY (X)) = E (X) . (6.174)

Proof. We give the proof for the continuous case only.
By Definition 6.5.1,

Ey (X) =

∫ ∞

−∞
xfX|Y (x, y) dx =

∫ ∞

−∞
x
f (x, y)

fY (y)
dx. (6.175)

Also, by Theorem 6.1.3,

E (EY (X)) =

∫ ∞

−∞
Ey (X) fY (y) dy. (6.176)

Thus,

E (EY (X)) =

∫ ∞

−∞

(∫ ∞

−∞
x
f (x, y)

fY (y)
dx

)
fY (y) dy

=

∫ ∞

−∞
x

(∫ ∞

−∞
f (x, y) dy

)
dx

=

∫ ∞

−∞
xfX (x) dx = E (X) . (6.177)

�
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Example 6.5.1. Sum and Absolute Difference of Two Dice.

In Table 5.8 we displayed fU |V (u|v) for the random variables U = X+Y
and V = |X − Y |, where X and Y were the numbers obtained with rolling
two dice. Hence, for v = 0 we get

Ev (U) = 2 · 1
6
+ 4 · 1

6
+ 6 · 1

6
+ 8 · 1

6
+ 10 · 1

6
+ 12 · 1

6
= 7. (6.178)

Similarly, Ev (U) = 7 for all other values of v as well, and so, using the
marginal probabilities fV (v), we obtain

E (U) = E (EV (U)) = 7· 6
36

+7· 10
36

+7· 8
36

+7· 6
36

+7· 4
36

+7· 2
36

= 7. (6.179)

This is indeed the same value that we would obtain directly from the marginal
probabilities fU (u) or from E (U) = E (X) + E (Y ) = 2 · 3.5.

Going the other way, from Table 5.9, we have, for instance, for u = 4

Eu (V ) = 0 · 1
3
+ 2 · 2

3
=

4

3
. (6.180)

The whole function Eu (V ) is given by the table:

u 2 3 4 5 6 7 8 9 10 11 12
Eu (V ) 0 1 4/3 2 12/5 3 12/5 2 4/3 1 0

Thus

E (V ) = E (EU (V )) = 0 · 1

36
+ 1 · 2

36
+

4

3
· 3

36
+ 2 · 4

36
+

12

5
· 5

36

+3 · 6

36
+

12

5
· 5

36
+ 2 · 4

36
+

4

3
· 3

36
+ 1 · 2

36
+ 0 · 1

36
=

70

36
. (6.181)

As required by the theorem, the direct computation of E (V ) from fV (v)
gives the same result:

E (V ) = 0 · 6

36
+ 1 · 10

36
+ 2 · 8

36
+ 3 · 6

36
+ 4 · 4

36
+ 5 · 2

36
=

70

36
. (6.182)

�
Example 6.5.2. Conditional Expectation Ey (X) for (X,Y ) Uniform
on Unit Disk.

Let (X,Y ) be uniform on the unit disk D = {(x, y) : x2 + y2 < 1} as in
Example 5.6.2. Then

Ey (X) =

∫ ∞

−∞
xfX|Y (x, y) dx

=

∫ √
1−y2

−
√

1−y2

x

2
√
1− y2

dx = 0, for y ∈ (−1, 1) , (6.183)

just as we would expect by symmetry. �
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Let us modify the last example so as to avoid the trivial outcome:

Example 6.5.3. Conditional Expectation Ey (X) for (X,Y ) Uniform
on Half Disk.

Let (X,Y ) be uniform on the right half disk D = {(x, y) : x2 + y2 < 1,
0 < x}. Then

Ey (X) =

∫ ∞

−∞
xfX|Y (x, y) dx

=

∫ √
1−y2

0

x
√

1− y2
dx =

√
1− y2

2
, for y ∈ (−1, 1) , (6.184)

and

E (X) = E (EY (X)) =

∫ ∞

−∞
Ey (X) fY (y) dy

=

∫ 1

−1

√
1− y2

2
· 2
π

√
1− y2dy

=

∫ 1

−1

1− y2

π
dy =

4

3π
. (6.185)

�
Before we state the next theorem, we present a lemma:

Lemma 6.5.1. For any random variables X and Y and any functions g (X)
and h (Y ) such that EY (g (X)) exists,

EY (g (X)h (Y )) = h (Y )EY (g (X)) . (6.186)

Proof. We give the proof for the continuous case only.
By definition,

Ey (g (X)h (Y )) =

∫ ∞

−∞
g (x)h (y) fX|Y (x, y) dx

= h (y)

∫ ∞

−∞
g (x) fX|Y (x, y) dx = h (y)Ey (g (X)) .

(6.187)

If we replace y by Y here, we get the statement of the lemma. �

The next theorem answers the following question: Suppose that, for given
random variables X and Y, we want to find a function p (Y ) that is as close
as possible to X. If we observe Y = y, then p (y) may be considered to be a
prediction of the corresponding value x of X. Thus we ask: What is the best
prediction p (Y ) of X, given Y ? “Best” is defined in the least squares sense,
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that is, in terms of minimizing the expected value of the squared difference of
X and p (Y ). The answer is a generalization of the result of Theorem 6.2.5,
that the mean of squared deviations is minimum if the deviations are taken
from the mean, that is, that E(X) is the best prediction in the least squares
sense for X (e.g., if we toss a coin a hundred times, the best prediction for
the number of heads is 50. On the other hand, if we toss only once, then
E(X) = 1

2 is not much of a prediction, but, still, that’s the best we can do).

Theorem 6.5.2. The Best Prediction of X, Given Y . For given ran-
dom variables X and Y and all functions p (Y ), the mean squared difference

E
(
[X − p (Y )]

2
)
, if it exists, is minimized by the function p (Y ) = EY (X).

Proof.

E
(
[X − p (Y )]

2
)
= E

(
[X − EY (X) + EY (X)− p (Y )]

2
)

= E
(
[X − EY (X)]

2
)
+ E

(
[EY (X)− p (Y )]

2
)

+ 2E [(X − EY (X)) (EY (X)− p (Y ))] . (6.188)

By Theorem 6.5.1, the last term can be reformulated as

2E [(X − EY (X)) (EY (X)− p (Y ))]

= 2E (EY [(X − EY (X)) (EY (X)− p (Y ))]) . (6.189)

On the right here, we can apply the lemma, with X − EY (X) = g (X) and
EY (X)− p (Y ) = h (Y ). Thus,

EY [(X − EY (X)) (EY (X)− p (Y ))]

= (EY (X)− p (Y ))EY [(X − EY (X))]

= (EY (X)− p (Y )) [EY (X)− EY (EY (X))] = 0, (6.190)

because EY (EY (X)) = EY (X). (The proof of this identity is left as Exer-
cise 6.5.8.)

Hence,

E
(
[X − p (Y )]

2
)
= E

(
[X − EY (X)]

2
)
+E

(
[EY (X)− p (Y )]

2
)
, (6.191)

and, since both terms are nonnegative, the sum on the right is minimum if
p (Y ) = EY (X) . �

The notion of conditional expectation can be used to define conditional
variance:

Definition 6.5.2. Conditional Variance. For given random variables
X and Y, the conditional variance V ary (X) is defined as

V ary (X) = Ey

(
[X − Ey (X)]

2
)
. (6.192)
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Clearly, V ary (X) is a function of y, and so V arY (X) is a function of
the random variable Y and, as such, another random variable. However, the
theorem of total expectation does not extend to conditional variances. (We
leave the explanation as Exercise 6.5.13.)

Exercises

Exercise 6.5.1.

Prove Theorem 6.5.1 for discrete X and Y .

Exercise 6.5.2.

Roll two dice as in Example 6.5.1. Let U = max(X,Y ) and V =
min(X,Y ). Find Ev (U) and Eu (V ) for each possible value of v and u, and
verify the relations E (EV (U)) = E (U) and E (EU (V )) = E (V ).

Exercise 6.5.3.

Define a random variable X as follows: Toss a coin and if we get H, then
let X be uniform on the interval [0, 2] , and if we get T, then throw a die and
let X be the number obtained. Find E (X) .

Exercise 6.5.4.

Suppose a plant has X offspring in a year with P(X = x) = 1
4 for X =

1, 2, 3, 4 and, independently, each offspring has from one to four offspring in
the next year with the same discrete uniform distribution. Let Y denote the
total number of offspring in the second generation. Find the values of EX (Y )
and compute E (EX (Y )).

Exercise 6.5.5.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 < x, 0 < y, x + y
< 1}. Compute Ex (Y ) , Ey (X) , E (X), and E (Y ).

Exercise 6.5.6.

Let (X,Y ) be uniform on the triangle D = {(x, y) : 0 < x < y < 1}.
Compute Ex (Y ) , Ey (X) , E (X), and E (Y ).

Exercise 6.5.7.

Let (X,Y ) be uniform on the open unit square D = {(x, y) : 0 < x
< 1, 0 < y < 1} and Z = X + Y as in Exercise 5.6.7. Find Ez (X) and
Ex (Z).
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Exercise 6.5.8.

Prove that EY (EY (X)) = EY (X) if EY (X) exists.

Exercise 6.5.9.

Let X and Y be continuous random variables with joint density f (x, y),
and let g (x, y) be any integrable function. Prove that E (EY (g (X,Y ))) =
E (g (X,Y )) if E (EY (g (X,Y ))) exists.

Exercise 6.5.10.

Show that for arbitrary X and Y with nonzero variances, if Ey (X) = c
for all y, where c is a constant, then X and Y are uncorrelated.

Exercise 6.5.11.

Show that for continuous X and Y , if Ey (X) = c for all y, where c is
a constant, then E (X) = c and V ar (X) = E (V arY (X)) if all quantities
exist.

Exercise 6.5.12.

Let X and Y be as in Exercise 6.5.4. Find the values of V arX (Y ), and
compute E (V arX (Y )) and V ar (Y ).

Exercise 6.5.13.

Explain why V ar (X) 	= E (V arY (X)) in general.

Exercise 6.5.14.

Show that for continuous X and Y, V ar (X) = E (V arY (X)) + V ar
(EY (X)) if all quantities exist.

6.6 Median and Quantiles

The expected value of a random variable was introduced to provide a nu-
merical value for the center of its distribution. For some random variables,
however, it is preferable to use another quantity for this purpose, either be-
cause E (X) does not exist or because the distribution of X is very skewed
and E (X) does not represent the center very well. The latter case occurs,
for instance, when X stands for the income of a randomly selected per-
son from a set of ten people, with nine earning 20 thousand dollars and
one of them earning 20 million dollars. Saying that the average income is
E (X) = 1

10 (9 · 20, 000 + 20, 000, 000) ≈ 2, 000, 000 dollars is worthless and



6.6 Median and Quantiles 221

misleading. In such cases we use the median to represent the center. Also,
for some random variables, E (X) does not exist, but a median always does.

We want to define the median so that half of the probability is below it
and half above it. This aim, however, cannot always be achieved, and even if
it can, the median may not be unique, as will be seen below. Thus, we relax
the requirements somewhat and make the following definition:

Definition 6.6.1. Median. For any random variable X, a median of X, or
of its distribution, is a number m such that P(X < m) ≤ 1

2 and P(X > m)
≤ 1

2 .

Note that P(X < m) or P(X > m) can be less than 1
2 only if P(X = m)

	= 0, or, in other words, we have the following theorem:

Theorem 6.6.1. A Condition for P(X < m) = 1
2 . For m a median of a

random variable X, P(X = m) = 0 implies P(X < m) = 1
2 and P(X > m)

= 1
2 .

Proof. Since m is a median,

P (X < m) ≤ 1

2
(6.193)

and

P (X > m) ≤ 1

2
. (6.194)

Also, because P(X = m) = 0, we have

P (X < m) + P (X > m) = 1. (6.195)

Now, if we had P(X < m) < 1
2 , then adding corresponding sides of this

inequality and Inequality 6.194, we would get P(X < m) + P (X > m) < 1,
in contradiction to Equation 6.195. Thus, we must have P(X < m) = 1

2 and
then also P(X > m) = 1

2 . �

Observe that for continuous random variables, the condition P(X = m)
= 0 is always true and so is therefore the conclusion of Theorem 6.6.1, too.

Before considering specific examples, we are going to show that for the
large class of symmetric distributions, the center of symmetry is a median as
well as E (X) (see Theorem 6.1.1).

Theorem 6.6.2. The Center of Symmetry is a Median. If the distri-
bution of a random variable is symmetric about a point α, that is, the p.f. or
the p.d.f. satisfies f (α− x) = f (α+ x) for all x, then α is a median of X.
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Proof. We give the proof for continuous X only; for discrete X the proof is
similar and is left as an exercise.

If the density of X satisfies f (α− x) = f (α+ x) for all x, then, by
obvious changes of variables,

P (X < α) =

∫ α

−∞
f (t) dt = −

∫ 0

∞
f (α− x) dx

=

∫ ∞

0

f (α− x) dx =

∫ ∞

0

f (α+ x) dx

=

∫ ∞

α

f (u) du = P(X > α) . (6.196)

Since, for continuous X, also

P (X < α) + P (X > α) = 1, (6.197)

we obtain

P (X < α) = P (X > α) =
1

2
, (6.198)

which shows that α is a median of X. �

Example 6.6.1. Median of Uniform Distributions.

If X is uniform on the interval [a, b] , then, by Theorem 6.6.2, the center
m = a+b

2 is a median. Furthermore, this median is unique, because, if c < m
is another point, then P(X > c) > 1

2 , and if c > m, then P(X < c) > 1
2 , and

so c is not a median in either case according to Definition 6.6.1. �
The next example shows that even if the distribution is symmetric, the

median need not be unique.

Example 6.6.2. Median of a Distribution Uniform on Two Inter-
vals.

Let X be uniform on the union [0, 1] ∪ [2, 3] of two intervals, that is, let

f(x) =

⎧
⎨

⎩

1
2 if 0 ≤ x ≤ 1
1
2 if 2 ≤ x ≤ 3
0 otherwise

.

Then f (x) is symmetric about α = 3
2 , and so, by Theorem 6.6.2, 3

2 is a
median, but, clearly, any m in [1, 2] is also a median. �

In the next example, P(X < m) 	= 1
2 .
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Example 6.6.3. Median of a Binomial.

Let X be binomial with parameters n = 4 and p = 1
2 . Then, by symmetry,

m = 2 is a median. But, since P(X = 2) =
(
4
2

) (
1
2

)4
= 3

8 , we have P(X < 2) =

P (X > 2) = 1
2

(
1− 3

8

)
= 5

16 , and so, 2 is the only median. �
Example 6.6.4. Median of the Exponential Distribution.

Let T be exponential with parameter λ. Then P(T < t) = F (t) is contin-
uous and strictly increasing on (0,∞) , and so we can solve F (m) = 1

2 , that
is, by Definition 5.2.3, solve

1− e−λm =
1

2
. (6.199)

Hence,

m =
ln 2

λ
(6.200)

is the unique median.
In physics, such a T is used to represent the lifetime of a radioactive

particle. In that case, m is called (somewhat misleadingly) the half-life of
the particle, for it is the length of time in which the particle decays with
probability 1

2 or, equivalently, the length of time in which half of a very large
number of such particles decay. �

An interesting property of medians is that they minimize the “mean abso-
lute deviations” just as the expected value minimizes mean squared deviations
(Exercise 6.2.5 and Theorem 6.5.2):

Theorem 6.6.3. Medians Minimize Mean Absolute Deviations. For
any random variable X such that the expected values below exist,

min
c

E (|X − c|) = E (|X −m|) (6.201)

for any median m of X.

Proof. We give the proof only for continuous X with density f (x).
Let m be any median of X and c any number such that c > m. (For c < m

the proof would require just minor modifications.) Then

E (|X − c|)− E (|X −m|)

=

∫ ∞

−∞
(|x− c| − |x−m|) f (x) dx

=

∫ m

−∞
((c− x)− (m− x)) f (x) dx+

∫ c

m

((c− x)− (x−m)) f (x) dx

+

∫ ∞

c

((x− c)− (x−m)) f (x) dx

=

∫ m

−∞
(c−m) f (x) dx+

∫ c

m

(c+m− 2x) f (x) dx

+

∫ ∞

c

(m− c) f (x) dx (6.202)
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Now, between m and c, we have 2x ≤ 2c and −2x ≥ −2c. Adding c +m to
both sides, we get c+m− 2x ≥ c+m− 2c = m− c. Thus,

E (|X − c|)− E (|X −m|)

≥
∫ m

−∞
(c−m) f (x) dx+

∫ c

m

(m− c) f (x) dx+

∫ ∞

c

(m− c) f (x) dx

=

∫ m

−∞
(c−m) f (x) dx+

∫ ∞

m

(m− c) f (x) dx

= (c−m) [P (X < m)− P (X > m)] = (c−m)

(
1

2
− 1

2

)
= 0. (6.203)

Hence

E (|X − c|) ≥ E (|X −m|) , (6.204)

for any c, which shows that the minimum of E (|X − c|) occurs for
c = m. �

A useful generalization of the notion of a median is obtained by prescrib-
ing an arbitrary number p ∈ (0, 1) and asking for a number xp such that
F (xp) = P (X ≤ xp) = p, instead of 1

2 . Unfortunately, for some distributions
and certain values of p, this equation cannot be solved, or the solution is not
unique, and for those the definition below is somewhat more complicated.

Definition 6.6.2. Quantiles. Let X be a continuous random variable with
F (x) continuous and strictly increasing from 0 to 1 on some finite or infinite
interval I. Then, for any p ∈ (0, 1) , the solution xp of F (xp) = p or, in
other words, xp = F−1 (p) is called the p quantile or the 100p percentile and
the function F−1 the quantile function of X or of the distribution of X. For
general X the p quantile is defined as xp = min {x : F (x) ≥ p}, and we define
the quantile function F−1 by F−1 (p) = xp, for all p ∈ (0, 1).

Quantiles or percentiles are often used to describe statistical data such
as exam scores, home prices, incomes, etc. For example, a student’s score
of, say, 650 on the math SAT is much better understood if it is also stated
that this number is at the 78th percentile, meaning that 78% of the students
who took the test scored 650 or less or, in other words, a randomly selected
student’s score is 650 or less with probability 0.78. Also, some distributions in
statistics, as will be seen later, are usually described in terms of their quantile
function F−1 rather than in terms of F or f .

Clearly, the 50th percentile is also a median. Furthermore, the 25th per-
centile is also called the first quartile, the 50th percentile the second quartile,
and the 75th percentile the third quartile.
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Example 6.6.5. Quantiles of the Uniform Distribution.

If X is uniform on the interval [a, b] , then

F (x) =

⎧
⎪⎨

⎪⎩

0 if x < a
x− a

b− a
if a ≤ x < b

1 if x ≥ b

(6.205)

is continuous and strictly increasing from 0 to 1 on (a, b) , and so we can solve
F (xp) = p for any p ∈ (0, 1) , that is, solve

xp − a

b− a
= p. (6.206)

Hence,

xp = a+ p (b− a) (6.207)

is the p quantile for any p ∈ (0, 1) . �

Example 6.6.6. Quantiles of the Exponential Distribution.

Let T be exponential with parameter λ. Then P(T < t) = F (t) is con-
tinuous and strictly increasing from 0 to 1 on (0,∞) , and so we can solve
F (xp) = p for any p ∈ (0, 1) , that is, solve

1− e−λxp = p. (6.208)

Hence,

xp = − ln (1− p)

λ
(6.209)

is the p quantile for any p ∈ (0, 1). �

Example 6.6.7. Quantiles of a Binomial.

Let X be binomial with parameters n = 3 and p = 1
2 . Then

F (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < 0
1/8 if 0 ≤ x < 1
1/2 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if x ≥ 3

. (6.210)

In this case we have to use the formula xp = min {x : F (x) ≥ p} to find
the quantiles. For example, if p = 1

4 , then the 1
4 quantile x0.25 is the lowest

x-value such that F (x) ≥ 1
4 . As seen from Equation 6.210, x0.25 = 1, because

F (1) = 1
2 , and for x < 1 we have F (x) = 0 or 1

8 . So x = 1 is the lowest value
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where F (x) jumps above 1
4 . Similarly, xp = 1 for any p ∈ (

1
8 ,

1
2

]
, and working

out the xp values for all p ∈ (0, 1] , we obtain

F−1 (p) = xp =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 < p ≤ 1/8
1 if 1/8 < p ≤ 1/2
2 if 1/2 < p ≤ 7/8
3 if 7/8 < p ≤ 1

. (6.211)

�

Exercises

Exercise 6.6.1.

Find all medians of the discrete uniform X on the set of increasingly
numbered values x1, x2, . . . , xn:

1. For odd n,
2. For even n.

Exercise 6.6.2.

Prove Theorem 6.6.2 for discrete X.

Exercise 6.6.3.

Is the converse of Theorem 6.6.1 true? Prove your answer.

Exercise 6.6.4.

Prove that, for any X, a number m is a median if and only if P(X ≥ m) ≥
1
2 and P(X ≤ m) ≥ 1

2 .

Exercise 6.6.5.

Prove by differentiation that, for continuous X with continuous density
f (x) > 0 and such that the expected values below exist, with m the median
and c not a median, E (|X − c|) > E (|X −m|) , that is, minc E (|X − c|)
occurs only at the median.

Exercise 6.6.6.

Let X be uniform on the interval (0, 1). Find the median of 1
X .

Exercise 6.6.7.

Prove that for any X the 50th percentile is a median.
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Exercise 6.6.8.

Find the quartiles of the first and second grades X and Y of a randomly
selected student in Example 6.4.4.

Exercise 6.6.9.

Find and plot the quantile function for an X with density

f (x) =

{
x+1
2 if − 1 < x < 1
0 otherwise

. (6.212)

Exercise 6.6.10.

Find and plot the quantile function for an X uniform on the union [0, 1]∪
[2, 3] as in Example 6.6.2.

Exercise 6.6.11.

Find and plot the quantile function for the X of Example 5.2.4.

Exercise 6.6.12.

Find and plot the quantile function for a binomial X with n = 4 and
p = .3.



7. Some Special Distributions

7.1 Poisson Random Variables

Poisson random variables1 are used to model the number of occurrences of
certain events that come from a large number of independent sources, such as
the number of calls to an office telephone during business hours, the number
of atoms decaying in a sample of some radioactive substance, the number of
visits to a website, or the number of customers entering a store.

Definition 7.1.1. Poisson Distribution. A random variable X is Poisson
with parameter λ > 0, if it is discrete with p.f. given by

P (X = k) =
λke−λ

k!
for k = 0, 1, . . . . (7.1)

The distribution of such an X is called the Poisson distribution with param-
eter λ.

We can easily check that the probabilities in Equation 7.1 form a distri-
bution:

∞∑

k=0

λke−λ

k!
= e−λ

∞∑

k=0

λk

k!
= e−λeλ = 1. (7.2)

The histogram of a typical Poisson p.f. is shown in Figure 7.1.
Now where does the Formula 7.1 come from? It arises as the limit of the

binomial distribution as n → ∞, while λ = np is kept constant, as will be
shown below. This fact is the reason why the Poisson distribution is a good
model for the kind of phenomena mentioned above. For instance, the number
of people who may call an office, say between 1 and 2 PM, is generally a very

1 Named after Simeon D. Poisson (1781–1840), who in 1837 introduced them to
model the votes of jurors, although Abraham de Moivre had already considered
them about a hundred years earlier.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 7

229© Springer International Publishing Switzerland 2016
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Fig. 7.1. Poisson p.f. for λ = 4.

large number n, but each one calls with only a very small probability p. If
we assume that the calls are independent of each other, the probability that
there will be k calls is then given by the binomial distribution. However, we
generally do not know n and p, but we can establish the mean number np of
calls by observing the phone over several days. (We assume that there is no
change in the calling habits of the customers.) Now, when n is large (>100),
p is small (<.01), and λ = np is known, then the binomial probabilities will
be very close to their limit as n → ∞, the Poisson distribution. So, here is
the theorem:

Theorem 7.1.1. The Poisson Distribution as the Limit of the
Binomial. If n → ∞ and p → 0 such that np = λ is constant, then

(
n

k

)
pk (1− p)

n−k → λke−λ

k!
for k = 0, 1, . . . . (7.3)

Proof.
(
n

k

)
pk (1− p)

n−k
=

n (n− 1) · · · (n− k + 1)

k!
pk (1− p)

n−k

=
n (n− 1) · · · (n− k + 1)

k!nk
nkpk (1− p)

n−k

=
1

k!

n− 1

n
· · · n− k + 1

n
(np)

k
(
1− np

n

)n−k

=
1

k!

(
1− 1

n

)
· · ·

(
1− k − 1

n

)
λk

(
1− λ

n

)n(
1− λ

n

)−k

→ 1

k!
· 1 · · · 1 · λk · e−λ · 1 =

λke−λ

k!
. (7.4)

�
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Since np is the expected value of the binomial distribution, we expect
λ to be the expected value of the Poisson distribution. Similarly, since the
variance of the binomial distribution is npq = np (1− p) = np−np2 = λ−λp,
and p → 0 in the proof above, we expect λ to equal the Poisson distribution’s
variance, too. Indeed:

Theorem 7.1.2. Expectation and Variance of the Poisson Distribu-
tion. If X is Poisson with parameter λ, then

E(X) = V ar(X) = λ. (7.5)

Proof.

E(X) =
∞∑

k=0

k
λke−λ

k!
= λ

∞∑

k=1

λk−1e−λ

(k − 1)!
. (7.6)

If we change from the variable k to i = k − 1, then the expression on the
right becomes

E(X) = λ

∞∑

i=0

λie−λ

i!
= λ · 1 = λ. (7.7)

To obtain the variance, we first compute E(X(X − 1)):

E(X(X−1)) =

∞∑

k=0

k (k − 1)
λke−λ

k!
= λ2

∞∑

k=2

λk−2e−λ

(k − 2)!
= λ2

∞∑

i=0

λie−λ

i!
= λ2.

(7.8)

Hence

E(X(X − 1)) = E(X2)− E(X) = E(X2)− λ = λ2, (7.9)

and so

E(X2) = λ2 + λ. (7.10)

Thus

V ar(X) = E(X2)− (E(X))
2
= λ2 + λ− λ2 = λ. (7.11)

�

Theorem 7.1.3. Moment Generating Function of the Poisson
Distribution. If X is Poisson with parameter λ, then

ψ (t) = exp
{
λ
(
et − 1

)}
. (7.12)
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Proof.

E(etX) =

∞∑

k=0

ekt
λke−λ

k!
= e−λ

∞∑

k=1

(λet)
k

k!
= exp

{
λ
(
et − 1

)}
. (7.13)

�

Example 7.1.1. Misprints on a Page.

Suppose a page of a book contains n = 1000 characters, each of which
is misprinted, independently of the others, with probability p = 10−4. Find
the probabilities of having a) no misprint, b) exactly one, and c) at least
one misprint on the page, both by the binomial formula, exactly, and by the
Poisson formula, approximately.

Let X denote the number of misprints. Then

a) by the binomial formula,

P (X = 0) =

(
1000

0

)
(
10−4

)0 (
1− 10−4

)1000−0 ≈ 0.904 833, (7.14)

and by the Poisson approximation with λ = 1000 · 10−4 = 0.1,

P (X = 0) =
0.10e−0.1

0!
≈ 0.904 837. (7.15)

b) By the binomial formula,

P (X = 1) =

(
1000

1

)
(
10−4

)1 (
1− 10−4

)1000−1 ≈ .0904 923, (7.16)

and by the Poisson approximation,

P (X = 1) =
0.11e−0.1

1!
≈ 0.0904 837. (7.17)

c) By the binomial formula,

P (X ≥ 1) = 1− P (X = 0) ≈ 1− 0.904 833 = .095 167, (7.18)

and by the Poisson approximation,

P (X ≥ 1) = 1− P (X = 0) ≈ 1− 0.904 837 = .095 163. (7.19)

While the above approximations are interesting, they are not really nec-
essary. Actually, even the binomial model is only an approximation, because
misprints sometimes occur in clumps and may not be quite independent, their
probabilities may vary, and not all pages have exactly 1000 characters. Also,
it is difficult to measure the probability of a character being misprinted but
relatively easy to establish the mean number of misprints per page. If we do
not know n and p separately, but only the mean λ = np, then we cannot use
the binomial distribution, but the Poisson distribution is still applicable. �
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Example 7.1.2. Diners at a Restaurant.

Suppose that a restaurant has on the average 50 diners per night. What
is the probability that on a certain night 40 or fewer will show up?

Suppose that the diners come from a large pool of potential customers,
who show up independently with the same small probability for each. Then
their number X may be taken to be Poisson, and so

P (X ≤ 40) =
40∑

k=0

50ke−50

k!
≈ 0.086. (7.20)

On the other hand, if we assume that the customers come in independent
pairs rather than singly, and denote the number of pairs by Y , then the
corresponding probability is

P (Y ≤ 20) =
20∑

k=0

25ke−25

k!
≈ 0.185. (7.21)

These numbers show that, in order to estimate the probability of a slow
night, it is not enough to know how many people show up on average, but
we need to know the sizes of the groups that decide independently from one
another, whether to come or not. �

An important property of Poisson r.v.’s is contained in the following
theorem:

Theorem 7.1.4. The Sum of Independent Poisson Variables is Pois-
son. If X1 and X2 are independent Poisson r.v.’s with parameters λ1 and
λ2, respectively, then X1 +X2 is Poisson with parameter λ1 + λ2.

Proof. The joint distribution of X1 and X2 is given by

pik = P(X1 = i,X2 = k) =
λi
1λ

k
2e

−(λ1+λ2)

i!k!
for i, k = 0, 1, . . . , (7.22)

and so

P (X1 +X2 = n) =
n∑

i=0

P (X1 = i,X2 = n− i)

= e−(λ1+λ2)
n∑

i=0

λi
1λ

n−i
2

i! (n− i)!
=

e−(λ1+λ2)

n!

n∑

i=0

n!

i! (n− i)!
λi
1λ

n−i
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)

n
for n = 0, 1, . . . . (7.23)

�
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In most applications, we are interested not just in one Poisson r.v. but
in a whole family of Poisson r.v.’s. For instance, in the foregoing examples,
we may ask for the probabilities of the number of misprints on several pages
and for the probabilities of the number of diners in a week or a month.

In general, a family of random variables X(t) depending on a parameter
t is called a stochastic or random process. . The parameter t is time in most
applications, but not always, as in the generalization of Example 7.1.1, it
would stand for the number of pages. Here we are concerned with the partic-
ular stochastic process called the Poisson process:

Definition 7.1.2. Poisson Process. A family of random variables X(t)
depending on a parameter t is called a Poisson process with rate λ, for any
λ > 0, if X(t), the number of occurrences of some kind in any interval of
length t, has a Poisson distribution with parameter λt for any t > 0, that is,

P (X (t) = k) =
(λt)

k
e−λt

k!
for any t > 0 and k = 0, 1, . . . , (7.24)

and the numbers of occurrences in nonoverlapping time intervals are inde-
pendent of each other.

Example 7.1.3. Misprints on Several Pages.

Suppose the pages of a book contain misprinted characters, independently
of each other, with a rate of λ = 0.1 misprints per page. Assume that the
numbers X (t) of misprints on any t pages constitute a Poisson process. Find
the probabilities of having a) no misprint on the first three pages, b) at least
two misprints on the first two pages, and c) at least two misprints on the first
two pages, if we know that there is at least one misprint on the first page.

a) In this case t = 3 and λt = 0.3. Thus,

P (X (3) = 0) =
0.30e−0.3

0!
≈ 0.74. (7.25)

b) Now t = 2 and λt = 0.2, and so

P (X (2) ≥ 2) = 1− [P (X (2) = 0) + P (X (2) = 1)]

= 1−
[
0.20e−0.2

0!
+

0.21e−0.2

1!

]
≈ 0.0175. (7.26)

c) Let X1 denote the number of misprints on the first page and X2 the num-
ber of misprints on the second page. Then X1 and X2 are independent
Poisson with parameter 0.1 both, and X (2) = X1 +X2. Hence,

P (X (2) ≥ 2|X1 ≥ 1) =
P (X1 ≥ 1, X (2) ≥ 2)

P (X1 ≥ 1)

=
P (X1 ≥ 2) + P (X1 = 1, X2 ≥ 1)

P (X1 ≥ 1)
(7.27)

=

[
1− e−0.1 (1 + 0.1)

]
+ 0.1e−0.1

[
1− e−0.1

]

1− e−0.1
≈ 0.14.

�
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Poisson processes have three important properties given in the theorems
below. The first of these is an immediate consequence of Definition 7.1.2 and
Theorem 7.1.4 and says that the number of occurrences in an interval depends
only on the length of the interval and not on where the interval begins. This
property is called stationarity.

Theorem 7.1.5. Poisson Processes are Stationary. For any s, t > 0,

X (s+ t)−X (s) = X (t) . (7.28)

The next theorem expresses the independence assumption of Defini-
tion 7.1.2 with conditional probabilities. It says that the process is “memo-
ryless,” that is, the probability of k occurrences in an interval is the same
regardless of how many went before.

Theorem 7.1.6. Poisson Processes are Memoryless. For any s, t > 0
and i, k = 0, 1, . . . ,

P (X (s+ t) = i+ k|X (s) = i) = P (X (t) = k) . (7.29)

Proof. For any s, t > 0 and i, k = 0, 1, . . . ,

P (X (s+ t) = i+ k|X (s) = i) =
P (X (s+ t) = i+ k,X (s) = i)

P (X (s) = i)

=
P (X (s+ t)−X (s) = k,X (s) = i)

P (X (s) = i)

=
P (X (t) = k,X (s) = i)

P (X (s) = i)

=
P(X (t) = k)P (X (s) = i)

P (X (s) = i)

= P (X (t) = k) . (7.30)

�

The next theorem shows that in a Poisson process, the “waiting time”
for an occurrence and the “interarrival time,” (the time between any two
consecutive occurrences) both have the same exponential distribution with
parameter λ. (In this context, it is customary to regard the parameter t to
be time and the occurrences to be arrivals.)

Theorem 7.1.7. Waiting Time and Interarrival Time in Poisson
Processes.

1. Let s ≥ 0 be any instant and let T > 0 denote the length of time we
have to wait for the first arrival after s, that is, let this arrival occur
at the instant s + T . Then T is an exponential random variable with
parameterλ.
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2. Assume that an arrival occurs at an instant s ≥ 0 and let T ≥ 0 denote
the time between this arrival and the next one, that is, let the next arrival
occur at the instant s + T . Then T is an exponential random variable
with parameter λ.

Proof. 1. Clearly, for any t > 0, the waiting time T is ≤ t, if and only if
there is at least one arrival in the time interval (s, s+ t]. Thus,

P (T ≤ t) = P (X (s+ t)−X (s) > 0) = P (X (t) > 0) = 1− e−λt,

(7.31)

which, together with P(T ≤ t) = 0 for t ≤ 0, shows that T has the dis-
tribution function of an exponential random variable with parameter λ.

2. Instead of assuming that an arrival occurs at the instant s, we assume
that it occurs in the time interval [s−Δs, s] and let Δs → 0. Then,
similarly to the first part, for any t > 0,

P
(
T ≤ t

)
= lim

Δs→0
P (X (s+ t)−X (s) > 0|X (s)−X (s−Δs) = 1)

= P (X (s+ t)−X (s) > 0) = P (X (t) > 0) = 1− e−λt,
(7.32)

and P
(
T ≤ t

)
= 0 for t ≤ 0. Thus T , too, has the distribution function

of an exponential random variable with parameter λ. �

Theorem 7.1.7 has, by Example 6.1.5, the following corollary:

Corollary 7.1.1. If in a Poisson process the arrival rate, that is, the mean
number of arrivals per unit time, is λ, then the mean interarrival time is 1

λ .

The converse of Theorem 7.1.7 is also true, that is, if we have a stream of
random arrivals such that the waiting time for the first one and the successive
interarrival times are independent exponential random variables with param-
eter λ, then the number of arrivals X(t), during time intervals of length t,
form a Poisson process with rate λ. We omit the proof.

Exercises

In all the exercises below, assume a Poisson model.

Exercise 7.1.1.

Customers enter a store at a mean rate of 1 per minute. Find the proba-
bilities that:

1. More than one will enter in the first minute,
2. More than two will enter in the first two minutes,
3. More than one will enter in each of the first two minutes,
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4. Two will enter in the first minute and two in the second minute if four
have entered in the first two minutes.

Exercise 7.1.2.

A textile plant turns out cloth that has on average 1 defect per 20 square
yards. Assume that 2 square yards of this material is in a pair of pants and
3 square yards in a coat:

1. About what percentage of the pants will be defective?
2. About what percentage of the coats will be defective?
3. Explain the cause of the difference between the two preceding results.

Exercise 7.1.3.

In each gram of a certain radioactive substance, two atoms will decay on
average per minute. Find the probabilities that:

1. In one gram, more than two atoms will decay in one minute,
2. In two grams, more than four atoms will decay in one minute,
3. In one gram, more than four atoms will decay in one minute,
4. In one gram, the time between two consecutive decays is more than a

minute,
5. In two grams, the time between two consecutive decays is more than half

a minute.

Exercise 7.1.4.

In a certain city, there are 12 murders on average per year. Assume that
they are equally likely at any time and independent of each other. Approx-
imate the length of each month as 1/12 of a year. Find the probabilities
that:

1. There will be no murders in January and February,
2. There will be none in exactly two, not necessarily consecutive, months of

the year,
3. There will be none in at most two, not necessarily consecutive, months

of the year,
4. There will be none in February if there was none in January.

Exercise 7.1.5.

Show that in a Poisson process with rate λ, the probability of an even
number of arrivals in any interval of length t is

(
1 + e−2λt

)
/2 and of an odd

number of arrivals is
(
1− e−2λt

)
/2. (Hint: First find P(even)− P(odd).)
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Exercise 7.1.6.

Suppose that a Poisson stream X (t) of arrivals with rate λ is split into
two streams A and B, so that each arrival goes to stream A with proba-
bility p and to stream B with probability q = 1 − p independently of one
another. Prove that the new streams are also Poisson processes, with rates
pλ and qλ, respectively. (Hint: First find a formula for the joint probability
P(XA (t) = m,XB (t) = n) in terms of the original Poisson process X (t) and
the binomial p.f.)

Exercise 7.1.7.

Show that in a Poisson process, any two distinct interarrival times are
independent of each other.

Exercise 7.1.8.

Show that for a Poisson r.v. X with parameter λ,maxkP(X = k) occurs
exactly at λ − 1 and at λ if λ is an integer and only at [λ] otherwise. (Here
[λ] denotes the greatest integer ≤ λ.) Hint : First show that P(X = k) =
λ
kP(X = k − 1) for any k > 0.

7.2 Normal Random Variables

Definition 7.2.1. Normal Distribution. A random variable X is normal
or normally distributed with parameters μ and σ2, (abbreviated N(μ, σ2)), if
it is continuous with p.d.f.

f(x) =
1√
2πσ

e−(x−μ)2/2σ2

for −∞ < x < ∞. (7.33)

The distribution of such an X is called the normal distribution with parame-
ters μ and σ2 and the above p.d.f. the normal density function with parameters
μ and σ2.

The graph of such a function, for arbitrarily fixed μ and σ2, is shown
in Figure 7.2. It is symmetric about x = μ, and its inflection points are at
x = μ± σ.

This distribution was discovered by Abraham de Moivre around 1730
as the limiting distribution of the (suitably scaled) binomial distribution as
n → ∞. Nevertheless it used to be referred to as the Gaussian distribution,
because many people learned about it from the much later works of Gauss.
The name “normal” comes from the fact that it occurs in so many applica-
tions that, with some exaggeration, it may seem abnormal if we encounter any
other distribution. The reason for its frequent occurrence is the so-called Cen-
tral Limit Theorem (Section 7.3), which says, roughly speaking that, under
very general conditions, the sum and the average of n arbitrary independent
random variables are asymptotically normal for large n. Thus, any physical
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Fig. 7.2. The p.d.f. of a typical normal distribution.

quantity that arises as the sum of a large number of independent random
influences will have an approximately normal distribution. For instance, the
height and the weight of a more or less homogeneous population are approxi-
mately normally distributed. Other examples of normal random variables are
the x-coordinates of shots aimed at a target, the repeated measurements of
almost any kind of laboratory data, the blood pressure and the temperature
of people, the grades on the SAT, and so on.

We are going to list several properties of the normal distribution as theo-
rems, beginning with one that shows that Definition 7.2.1 does indeed define
a probability density.

Theorem 7.2.1. The Area Under the Normal p.d.f. is 1.
∫ ∞

−∞

1√
2πσ

e−(t−μ)2/2σ2

dt = 1. (7.34)

Proof. This p.d.f. is one of those functions whose indefinite integral cannot be
expressed in terms of common elementary functions, but the definite integral
above can be evaluated by a special trick: First, we substitute x = (t− μ) /σ.
Then the integral becomes

I =
1√
2π

∫ ∞

−∞
e−x2/2dx. (7.35)

Now, we write y for the variable of integration and multiply the two forms
of I, obtaining

I2 =
1√
2π

∫ ∞

−∞
e−x2/2dx

1√
2π

∫ ∞

−∞
e−y2/2dy =

1

2π

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy.

(7.36)

Changing to polar coordinates, we get

I2 =
1

2π

∫ 2π

0

∫ ∞

0

e−r2/2rdrdθ =
1

2π

∫ 2π

0

dθ

∫ ∞

0

e−r2/2rdr =

∫ ∞

0

e−r2/2rdr.

(7.37)
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Substituting u = r2/2, du = rdr yields

I2 =

∫ ∞

0

e−udu = −e−u|∞0 = 1, (7.38)

and so, since I is nonnegative (why?), I = 1. �

Theorem 7.2.2. The Expectation of a Normal r.v.. If X is N(μ, σ2),
then

E(X) = μ. (7.39)

Proof. The p.d.f. in Definition 7.2.1 is symmetric about x = μ, and so The-
orem 6.1.1 yields Equation 7.39. �

Theorem 7.2.3. The Variance of a Normal r.v. If X is N(μ, σ2), then

V ar(X) = σ2. (7.40)

Proof. By definition,

V ar(X) = E((X − μ)2) =

∫ ∞

−∞
(x− μ)

2 1√
2πσ

e−(x−μ)2/2σ2

dx. (7.41)

Substituting u = (x− μ) /σ and integrating by parts, we get

V ar(X) =
σ2

√
2π

∫ ∞

−∞
u2e−u2/2du =

σ2

√
2π

∫ ∞

−∞
u · ue−u2/2du (7.42)

=
σ2

√
2π

(
−
[
ue−u2/2

]∞

−∞
+

∫ ∞

−∞
e−u2/2du

)
=

σ2

√
2π

(
0 +

√
2π
)
= σ2.

�

Theorem 7.2.4. A Linear Function of a Normal Random Variable
is Normal. If X is N(μ, σ2), then, for any constants a 	= 0 and b, Y = aX+b

is normal with E(Y ) = aμ+ b and V ar(Y ) = (aσ)
2
.

Proof. Assume a > 0. (The proof of the opposite case is left as an exercise.)
Then the d.f. of Y can be computed as

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P(X ≤ y − b

a
)

=
1√
2πσ

∫ (y−b)/a

−∞
e−(x−μ)2/2σ2

dx (7.43)

and from here the chain rule and the fundamental theorem of calculus give
its p.d.f. as
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fY (y) = F ′
Y (y) =

1√
2πσ

d

dy

(
y − b

a

)
· e−(((y−b)/a)−μ)2/2σ2

=
1√
2πaσ

e−(y−(aμ+b))2/2(aσ)2 . (7.44)

�
A comparison with Definition 7.2.1 shows that this function is the p.d.f.

of a normal r.v. with aμ+ b in place of μ and (aσ)
2
in place of σ2.

Corollary 7.2.1. Standardization of a Normal Random Variable. If
X is N(μ, σ2), then Z = X−μ

σ is N(0, 1).

Proof. Apply 7.2.4 with a = 1
σ and b = −μ

σ . �
Definition 7.2.2. Standard Normal Distribution. The distribution N(0,
1) is called the standard normal distribution, and its p.d.f. and d.f. are de-
noted by ϕ and Φ, respectively, that is,

ϕ(z) =
1√
2π

e−z2/2 for −∞ < z < ∞, (7.45)

and

Φ(z) =
1√
2π

∫ z

−∞
e−t2/2dt for −∞ < z < ∞. (7.46)

Corollary 7.2.2. Arbitrary Normal d.f. in Terms of the Standard
Normal d.f. If X is N(μ, σ2), then FX(x) = Φ

(
x−μ
σ

)
.

Proof. FX(x) = P (X ≤ x) = P
(

X−μ
σ ≤ x−μ

σ

)
= P

(
Z ≤ x−μ

σ

)
= Φ

(
x−μ
σ

)
.

�
As mentioned before, the p.d.f. of a normal r.v. cannot be integrated in

terms of the common elementary functions, and therefore the probabilities of
X falling in various intervals are obtained from tables or by computer. Now,
it would be overwhelming to construct tables for all μ and σ values required
in applications, but Corollary 7.2.2 makes this unnecessary. It enables us to
compute the probabilities for any N(μ, σ2) r.v. X from the single table of the
standard normal distribution function, which is given (with minor variations)
in most probability or statistics books, including this one. The next examples
illustrate the procedure.

Example 7.2.1. Height Distribution of Men.

Assume that the height X, in inches, of a randomly selected man in a
certain population is normally distributed2 with μ = 69 and σ = 2.6. Find:

2 Any such assumption is always just an approximation that is usually valid only
within three or four standard deviations from the mean. But that is the range
where almost all of the probability of the normal distribution falls, and although
theoretically the tails of the normal distribution are infinite, ϕ(z) is so small
for |z| > 4, that as a practical matter we can ignore the fact that it gives
nonzero probabilities to impossible events such as people having negative heights
or heights over ten feet.
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1. P(X < 72),
2. P(X > 72),
3. P(X < 66),
4. P(|X − μ| < 3).

In each case, we transform the inequalities so that X will be standardized
and use the Φ-table to find the required probabilities. However, the table gives
Φ(z) only for z ≥ 0, and for z < 0 we need to make use of the symmetry
of the normal distribution, which implies that, for any z, P(Z < −z) =
P(Z > z),.that is, Φ(−z) = 1− Φ(z) (See Figure 7.3.) Thus,

1. P(X < 72) = P(X−μ
σ < 72−69

2.6 ) ≈ P(Z < 1.15) = Φ(1.15) ≈ .875.

2. P(X > 72) = P(X−μ
σ > 72−69

2.6 ) ≈ P(Z > 1.15) = 1− P(Z ≤ 1.15) =
1− Φ(1.15) ≈ 1− .875 = .125.

3. P(X < 66) = P(X−μ
σ < 66−69

2.6 ) ≈ P(Z < −1.15) = P(Z > 1.15) = .125.

4. P(|X−μ| < 3) = P(
∣
∣
∣X−μ

σ

∣
∣
∣ < 3

2.6 ) ≈ P(|Z| < 1.15) = 1−[P(Z < −1.15)+

P(Z > 1.15)] = 2Φ(1.15)− 1 ≈ .75. �

Example 7.2.2. Percentiles of Normal Test Scores.

Assume that the math scores on the SAT at a certain school were nor-
mally distributed with μ = 560 and σ = 50. Find the quartiles and the 90th
percentile of this distribution.

For the third quartile, we have to find the score x for which P(X < x)
= .75 or, equivalently, P(X−μ

σ < x−560
50 ) = .75. The quantity z = x−560

50 is
called the z-score or the value of x in standard units, and, by Corollary 7.2.2,
we thus first need to find the z-score for which Φ (z) = .75, or z = Φ−1 (.75).
In the body of the Φ-table look for .75, and for the corresponding z-value find
.675. Solving z = x−560

50 for x, we obtain x = 50z+560 = 50·.675+560 ≈ 594.
Hence 75% of the SAT scores were under 594.

For the first quartile, we have to find the score x for which P(X < x) = .25
or, equivalently, Φ (z) = .25. However, no p = Φ (z) value less than .5 is
listed in the table. The corresponding z would be negative, and we use the

Fig. 7.3. The area of any left tail of ϕ equals the area of the corresponding right
tail, that is, Φ(−z) = 1− Φ(z).
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symmetry of ϕ to find instead the |z| for the corresponding right tail that has
area .25. Thus Φ (z) = .25 is equivalent to 1 − Φ (|z|) = .25 or Φ (|z|) = .75,
and the table gives |z| = .675. Hence z = −.675 and x = 50z + 560 =
50 · (−.675) + 560 ≈ 526.

The 90th percentile can be computed from P(X < x) = .90 or, equiva-
lently, from Φ (z) = .90. The table shows z ≈ 1.282, and so x = 50z + 560 =
50 · 1.282 + 560 ≈ 624. �

Theorem 7.2.5. The Moment Generating Function of the Normal
Distribution. If X is N(μ, σ2), then

ψ(t) = eμt+σ2t2/2 for −∞ < t < ∞. (7.47)

Proof. First compute the moment generating function of a standard normal
r.v. Z:

By definition,

ψZ(t) = E(etZ) =
1√
2π

∫ ∞

−∞
etz−z2/2dz =

1√
2π

∫ ∞

−∞
e(t

2−(z−t)2)/2dz

= et
2/2 1√

2π

∫ ∞

−∞
e−(z−t)2/2dz = et

2/2 for −∞ < t < ∞. (7.48)

Now X = σZ + μ is N(μ, σ2), and

ψX(t) = E(et(σZ+μ)) = eμtE(eσtZ) = eμtψZ(σt)

= eμt+σ2t2/2 for −∞ < t < ∞. (7.49)

�

Theorem 7.2.6. Any Nonzero Linear Combination of Independent
Normal Random Variables is Normal. Let Xi be independent and
N(μi, σ

2
i ) random variables for i = 1, . . . , n, and let X =

∑
aiXi with the ai

arbitrary constants, not all zero. Then X is N(μ, σ2), with μ =
∑

aiμi, and

σ2 =
∑

(aiσi)
2
.

Proof. Let ψi denote the moment generating function of Xi. Then, by The-
orem 6.3.2 and Equation 7.47,

ψX(t) =
∏

ψi (ait) =
∏

eμiait+σ2
i (ait)

2/2 = e
∑
(μiait+σ2

i (ait)
2/2)

= e(
∑

aiμi)t+(
∑

(aiσi)
2)t2/2. (7.50)

Comparing this expression with Equation 7.47 and using the uniqueness of
the m.g.f., we obtain the result of the theorem. �

Definition 7.2.3. Random Sample and Sample Mean. n independent
and identically distributed (abbreviated: i.i.d.) random variables X1, . . . , Xn

are said to form a random sample of size n from their common distribution
and Xn = 1

n

∑
Xi is called the sample mean.



244 7. Some Special Distributions

Corollary 7.2.3. Distribution of the Sample Mean. Let Xi be i.i.d.
N(μ, σ2) random variables for i = 1, . . . , n. Then the sample mean is
N(μ, σ2/n).

Proof. Set ai =
1
n , μi = μ and σi = σ in Theorem 7.2.6 for all i. �

Example 7.2.3. Heights of Men and Women.

Assume that the height X, in inches, of a randomly selected woman in a
certain population is normally distributed with μX = 66 and σX = 2.6 and
the height Y , in inches, of a randomly selected man is normally distributed
with μY = 69 and σY = 2.6. Find the probability that a randomly selected
woman is taller than an independently randomly selected man.

The probability we want to find is P(Y − X < 0). By Theorem 7.2.6,
Y −X is N(3, 2 · 2.62) = N(3, 13.52). Thus

P (Y −X < 0) = P

(
Y −X − 3√

13.52
<

0− 3√
13.52

)
≈ Φ (−0.816) = 1− Φ(0.816)

≈ 1− 0.793 = 0.207. (7.51)

�

Exercises

Exercise 7.2.1.

For a standard normal r.v. Z, find:

1. P(Z < 2)
2. P(Z > 2)
3. P(Z = 2)
4. P(Z < −2)
5. P(−2 < Z < 2)
6. P(|Z| > 2)
7. P(−2 < Z < 1)
8. z such that P(z < Z) = .05
9. z such that P(−z < Z < z) = .9

10. z such that P(−z < Z < z) = .8

Exercise 7.2.2.

Let X be a normal r.v. with μ = 10 and σ = 2. Find:

1. P(X < 11)
2. P(X > 11)
3. P(X < 9)
4. P(9 < X < 11)
5. P(9 < X < 12)
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6. x such that P(x < X) = .05
7. x such that P(10− x < X < 10 + x) = .9
8. x such that P(10− x < X < 10 + x) = .8

Exercise 7.2.3.

1. Prove that the standard normal density ϕ has inflection points at z = ±1.
2. Prove that the general normal density given in Definition 7.2.1 has in-

flection points at x = μ± σ.

Exercise 7.2.4.

Assume that the height X, in inches, of a randomly selected woman
in a certain adult population is normally distributed with μX = 66 and
σX = 2.6 and the height Y , in inches, of a randomly selected man is nor-
mally distributed with μY = 69 and σY = 2.6 and half the adult population
is male and half female.

1. Find the probability density of the height H of a randomly selected adult
from this population and sketch its graph.

2. Find E(H) and SD(H).
3. Find P(66 < H < 69).

Exercise 7.2.5.

Prove Theorem 7.2.4 for a < 0

1. By modifying the proof given for a > 0,
2. By using the moment generating function.

Exercise 7.2.6.

Assume that the math scores on the SAT at a certain school were normally
distributed with unknown μ and σ and two students got their reports back
with the following results: 750 (95th percentile) and 500 (46th percentile).
Find μ and σ. (Hint: Obtain and solve two simultaneous equations for the
two unknowns μ and σ.)

Exercise 7.2.7.

The p.d.f. of a certain distribution is determined to be of the form
ce−(x+2)2/24. Find μ, σ and c.

Exercise 7.2.8.

The p.d.f. of a certain distribution is determined to be of the form
ce−x2−4x. Find μ, σ and c.
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Exercise 7.2.9.

Assume that the weight X, in ounces, of a randomly selected can of coffee
of a certain brand is normally distributed with μ = 16 and σ = .32. Find
the probability that the weights of two independently selected cans from this
brand differ by more than 1/2 oz.

Exercise 7.2.10.

Let Zn denote the sample mean for a random sample of size n from the
standard normal distribution. For n = 1, 4 and 16

1. Sketch the p.d.f. of each Zn in the same coordinate system,
2. Compute the quartiles of each Zn.

Exercise 7.2.11.

Prove that Φ−1(1− p) = −Φ−1(p) for 0 < p < 1.

Exercise 7.2.12.

Prove that if X is N(μ, σ2), then F−1
X (p) = μ+ σΦ−1(p) for 0 < p < 1.

7.3 The Central Limit Theorem

Earlier, we saw that the binomial distribution becomes Poisson, if n → ∞
while p → 0 such that np = λ remains constant. About a hundred years
before Poisson, de Moivre noticed a different approximation to the binomial
distribution. He observed and proved that if n is large with p fixed, then the
binomial probabilities are approximately on a normal curve. An illustration
of this fact can be seen in Figure 7.4 and is stated more precisely in the
subsequent theorem.3

Theorem 7.3.1. De Moivre-Laplace Limit Theorem. The binomial
probabilities pk =

(
n
k

)
pkqn−k can be approximated by the corresponding values

of the N(μ, σ2) distribution with matching parameters, that is, with μ = np
and σ2 = npq. More precisely,

pk ∼ 1√
2πσ

e−
(k−μ)2

2σ2 , (7.52)

where the symbol ∼ means that the ratio of the two sides tends to 1 as n → ∞.

3 De Moivre discovered the normal curve and proved this theorem only for p = 1
2
.

For p �= 1
2

he only sketched the result. It was Pierre-Simon de Laplace who
around 1812 gave the details for arbitrary p, and outlined a further generaliza-
tion, the Central Limit Theorem, which we will discuss shortly.
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Fig. 7.4. Histogram of the binomial p.f. for n = 60 and p = 1
2
, with the approxi-

mating normal p.d.f. superimposed.

Proof. We just give an outline, with various technical details omitted.
The proof rests on the linearization ln (1 + x) ∼ x as x → 0, known from

calculus.
We want to express pk for k values near the mean np. Thus, writing

m = [np] we have, for k > m (for k < m the argument would be similar; we
omit it),

pk
pm

=
n!

k! (n− k)!
· m! (n−m)!

n!
· pkqn−k

pmqn−m

=
m!

k!
· (n−m)!

(n− k)!
·
(
p

q

)k−m

=
k∏

i=m+1

(
n− i+ 1

i
· p
q

)
. (7.53)

Next, we take logarithms and replace i with j = i−m. Then4

ln

(
pk
pm

)
∼

k−m∑

j=1

ln

(
n− (m+ j)

m+ j
· p
q

)

∼
k−m∑

j=1

ln

(
n− (np+ j)

np+ j
· p
q

)

∼
k−m∑

j=1

ln

(
nq − j

np+ j
· p
q

)
=

k−m∑

j=1

ln

(
npq − pj

npq + qj

)

∼
k−m∑

j=1

ln

(
1− j

nq

1 + j
np

)

=

k−m∑

j=1

(
ln

(
1− j

nq

)
− ln

(
1 +

j

np

))

4 If n → ∞ with p and k fixed, then n− i+ 1 ∼ n− i for all i ≤ k and np ∼ [np],
as well.
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∼
k−m∑

j=1

(
− j

nq
− j

np

)
= −

(
1

nq
+

1

np

) k−m∑

j=1

j

∼ − 1

npq

(k −m)
2

2
∼ − (k − np)

2

2npq
. (7.54)

Hence

pk ∼ pme−(k−np)2/2npq. (7.55)

The sum of the probabilities pk over all k values equals 1. Now, on the
right, we can approximate the sum by an integral (again, if n → ∞), and
then from the definition of the normal distribution, we see that we must have

pm ∼ 1√
2πσ

(7.56)

with σ =
√
npq, and

pk ∼ 1√
2πnpq

e−(k−np)2/2npq. (7.57)

�

If Sn is a binomial r.v. with parameters n and p, then, for integers a and
b with a ≤ b,

P (a ≤ Sn ≤ b) =

b∑

k=a

pk. (7.58)

Now the sum on the right equals the sum of the areas of the rectangles of the
histogram of the pk values, and it can be approximated by the area under
the corresponding normal curve, that is, by the integral of the p.d.f. on the
right of Equation 7.57, from the beginning a− 1

2 of the first rectangle to the
end b+ 1

2 of the last rectangle:

P (a ≤ Sn ≤ b) ≈ 1√
2πσ

∫ b+ 1
2

a− 1
2

e−(x−μ)2/2σ2

dx, (7.59)

where μ = np and σ =
√
npq. Changing variables from x to z = x−μ

σ , we can
write the expression on the right in terms of the standard normal d.f. and we
obtain

Corollary 7.3.1. Normal Approximation with Continuity
Correction. For large values of n

P (a ≤ Sn ≤ b) ≈ Φ

(
b+ 1

2 − μ

σ

)
− Φ

(
a− 1

2 − μ

σ

)
. (7.60)
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Remarks.

1. The term 1
2 in the arguments on the right is called the correction for

continuity. It may be ignored for large values of σ; say, for σ ≥ 10, unless
b− a is small; say, b− a ≤ 10.

2. The closer p is to 1
2 , the better the approximation is. For p between .4

and .6, it can be used for n ≥ 25, but for p ≈ .1 or .9 it is good for n ≥ 50
only.

Example 7.3.1. Coin Tossing.

We toss a fair coin n = 100 times. Letting Sn denote the number of heads
obtained, find the normal approximation to P(45 ≤ Sn ≤ 55).

Here p = 1
2 , μ = np = 50 and σ =

√
npq = 5. By Equation 7.60,

P (a ≤ Sn ≤ b) ≈ Φ

(
55 + 1

2 − 50

5

)
− Φ

(
45− 1

2 − 50

5

)

= Φ (1.1)− Φ (−1.1) = 2 · Φ (1.1)− 1 ≈ .72867. (7.61)

This result is an excellent approximation to the exact value

55∑

k=45

(
100

k

)(
1

2

)100

= 0.72875 . . . . (7.62)

It is also interesting to compare the approximation (Equation 7.57) with
the binomial value. For instance, for k = 50 we have

p50 =

(
100

50

)(
1

2

)100

≈ 0.079589, (7.63)

and from Formula 7.57 we get

p50 ≈ 1√
2π · 25e

−0 ≈ 0.079788. (7.64)

We can also use Formula 7.60 with a = b = 50 to approximate p50. This
method yields

p50 ≈ Φ

(
50 + 1

2 − 50

5

)
− Φ

(
50− 1

2 − 50

5

)

= Φ (0.1)− Φ (−0.1) = 2 · Φ (0.1)− 1 ≈ 0.079656, (7.65)

a slightly better approximation then the preceding one. �
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Example 7.3.2. Difference of Two Polls.

Suppose that two polling organizations each take a random sample of 200
voters in a state about their preference for a certain candidate, with a yes
or no answer. Find an approximate upper bound for the probability that the
proportions of yes answers in the two polls differ by more than 4%.

Denoting the proportions of yes answers in the two polls by X and Y, we
are interested in the probability P

(∣∣X − Y
∣
∣ > 0.04

)
, which can be written

as P
(∣∣200X − 200Y

∣
∣ > 8

)
, where 200X and 200Y are i.i.d. binomial random

variables with parameters n = 200 and an unknown p. The mean of the
difference is 0 and the variance is 400p (1− p). Thus, we can standardize the
desired probability and apply Theorem 7.3.1:5

P
(∣∣X − Y

∣
∣ > 0.04

)
= P

(∣
∣200X − 200Y

∣
∣

20
√

p (1− p)
>

8

20
√

p (1− p)

)

≈ P

(

|Z| > 2

5
√
p (1− p)

)

. (7.66)

Now, it is easy to show that p (1− p) is maximum when p = 1
2 , and so

2

5
√

p(1−p)
is minimum then and 2

5
√

p(1−p)
= 4

5 . Hence

P
(∣∣X − Y

∣
∣ > 0.04

)
� P

(
|Z| > 4

5

)
= 2 (1− Φ (0.8)) ≈ 0.424. (7.67)

Thus, there is a rather substantial chance that the two polls will differ by
more than 4 percentage points. �

As mentioned in Footnote 3 on page 246, Laplace discovered a very impor-
tant generalization of Theorem 7.3.1, the first version of which was, however,
proved only in 1901 by A. Liapounov. This generalization is based on the
decomposition of a binomial random variable into a sum of i.i.d. Bernoulli
random variables as Sn =

∑n
i=1 Xi where Xi = 1 if the ith trial results in

success and 0 otherwise. Now, when we standardize Sn, then we divide by√
npq and so, as n → ∞, we have an increasing number of smaller and smaller

terms. What Laplace noticed was that the limiting distribution is still normal
in many cases even if the Xi are other than Bernoulli random variables. This
fact has been proved under various conditions on the Xi (they don’t even
have to be i.i.d.) and is known as the Central Limit Theorem (CLT). We
present a version from 1922, due to J. W. Lindeberg.

Theorem 7.3.2. The Central Limit Theorem. For any positive integer
n, let X1, X2, . . . , Xn be i.i.d. random variables with mean μ and standard
deviation σ and let S∗

n denote the standardization of their sum, that is, let

S∗
n =

1√
nσ

(
n∑

i=1

Xi − nμ

)

. (7.68)

5 By 7.3.1 200X and 200Y are both approximately normal and they are also
independent, hence their difference is also approximately normal.
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Then, for any real x,

lim
n→∞P (S∗

n < x) = Φ (x) . (7.69)

Proof. Again, we just give an outline of the proof and omit some difficult
technical details.

We are going to use moment generating functions to deal with the distri-
bution of the sum in the theorem because, as we know, the m.g.f. of a sum of
independent r.v.’s is simply the product of the m.g.f.’s of the terms. Now the
assumption of the existence of μ and σ does not guarantee the existence of the
m.g.f. of Xi and, in general, this problem is handled by truncating the Xi, but
we skip this step and assume the existence of the m.g.f. of Xi or, equivalently,
the existence of the m.g.f. ψ of the standardization X∗

i = (Xi − μ) /σ.
Then

S∗
n =

1√
nσ

n∑

i=1

(Xi − μ) =
1√
n

n∑

i=1

X∗
i , (7.70)

and so the m.g.f. ψn of S∗
n is given by

ψn (t) =

[
ψ

(
t√
n

)]n
. (7.71)

Now, ψ (0) = 1, ψ′ (0) = E (X∗
i ) = 0 and ψ′′ (0) = E

(
(X∗

i )
2
)
= 1. Hence

Taylor’s Formula gives

ψ (t) = 1 +
1

2
t2 +

ψ′′′ (c)
3!

t3, (7.72)

where c is some number between 0 and t. From here,

ψn (t) =

[

1 +
1

2

t2

n
+

ψ′′′ (c)
3!

(
t√
n

)3
]n

, (7.73)

and with some calculus it can be shown that

lim
n→∞ψn (t) = et

2/2. (7.74)

The expression on the right is the m.g.f. of the standard normal distribution,
and so the limiting distribution of S∗

n, as n → ∞, is the standard normal
distribution. �

In statistical applications, it is often the mean of a random sample (see
Definition 7.2.3) rather than the sum that we need, and fortunately, the
distribution of the sample mean also approaches a normal distribution:
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Corollary 7.3.2. Central Limit Theorem for the Sample Mean. Let
X1, X2, . . . , Xn be as in the theorem above, let Xn = 1

n

∑n
i=1 Xi denote their

average and let

X
∗
n =

Xn − μ

σ/
√
n

(7.75)

be the standardization of Xn. Then, for any real x,

lim
n→∞P

(
X

∗
n < x

)
= Φ (x) . (7.76)

X
∗
n =

√
n

σ

(
1

n

n∑

i=1

Xi − μ

)

=

√
n

σn

(
n∑

i=1

Xi − nμ

)

= S∗
n. (7.77)

Example 7.3.3. Total Weight of People in a Sample.

Assume that the weight of the adults in a population has mean μ = 150
pounds and s.d. σ = 30 pounds. Find (approximately) the probability that
the total weight of a random sample of 36 such people exceeds 5700 pounds.

The weight of any individual is not a normal r.v. but a mixture (that is, the
p.d.f. is a weighted average) of two, approximately normal, random variables:
one for the women and one for the men. This fact is, however, immaterial
because, by the CLT, the total weight W is approximately normal with mean
nμ = 36 · 150 = 5400 and SD =

√
nσ =

√
36 · 30 = 180. Thus,

P (W > 5700) = P

(
W − 5400

180
>

5700− 5400

180

)
(7.78)

≈ P (Z > 1.667) = 1− Φ (1.667) ≈ .048. (7.79)

�
The law of large numbers is a straightforward consequence of the CLT

whenever the latter holds:

Corollary 7.3.3. Law of Large Numbers. For any positive integer n, let
X1, X2, . . . , Xn be i.i.d. random variables with mean μ and standard devia-
tion σ. Then, for any ε > 0, their mean Xn satisfies the relation

lim
n→∞P

(∣∣Xn − μ
∣
∣ < ε

)
= 1. (7.80)

Proof. By Equation 7.75

Xn − μ =
σ√
n
X

∗
n, (7.81)

and so
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lim
n→∞P

(∣∣Xn − μ
∣
∣ < ε

)
= lim

n→∞P

(∣∣
∣
∣
σ√
n
X

∗
n

∣
∣
∣
∣ < ε

)

= lim
n→∞P

(
−
√
n

σ
ε < X

∗
n <

√
n

σ
ε

)

= Φ (∞)− Φ (−∞) = 1. (7.82)

�

Example 7.3.4. Determining Sample Size.

Suppose that in a public opinion poll, the proportion p of voters who
favor a certain proposition is to be determined. In other words, we want
to estimate the unknown probability p of a randomly selected voter being
in favor of the proposition. We take a random sample, with the responses
being i.i.d. Bernoulli random variables Xi with parameter p and use Xn to
estimate p. Approximately how large a random sample must be taken to
ensure that

P
(∣∣Xn − p

∣
∣ < 0.1

) ≥ 0.95? (7.83)

By the CLT

P
(∣∣Xn − p

∣
∣ < 0.1

)
= P

( ∣
∣Xn − p

∣
∣

√
p (1− p) /n

<
0.1

√
p (1− p) /n

)

≈ P

(

|Z| < 0.1
√

p (1− p) /n

)

= 2Φ

(
0.1

√
p (1− p) /n

)

− 1. (7.84)

Now, this quantity is ≥ .95 if

Φ

(
0.1

√
p (1− p) /n

)

≥ 0.975 (7.85)

or, equivalently, if

0.1
√

p (1− p) /n
≥ Φ−1 (.975) ≈ 1.96 (7.86)

or

√
n � 1.96

0.1

√
p (1− p) (7.87)
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or

n � 384.16p (1− p) . (7.88)

Here p (1− p) has its maximum at p = 1/2, and then p (1− p) = 1/4.
Thus

n � 97 (7.89)

ensures that P
(∣∣Xn − p

∣
∣ < 0.1

) ≥ .95 for any value of p.
The lower bound for n obtained above by the normal approximation

is actually the same as the precise value given by the binomial distri-
bution. Indeed, for n = 97 and p = 1/2 a computer evaluation gives
P
(∣∣Xn − p

∣
∣ < 0.1

)
= 0.958 . . . and for n = 96 and p = 1/2 it gives

P
(∣∣Xn − p

∣
∣ < 0.1

)
= 0.948 . . . .

If we know in advance an approximate value for p, which is far from 1/2,
then Formula 7.88 can be used to obtain a lower value for the required sample
size. �

Exercises

Exercise 7.3.1.

A die is rolled 20 times. Find the probability of obtaining 3 sixes, both by
the binomial p.f. and by the normal approximation with continuity correction
(Equation 7.60.).

Exercise 7.3.2.

A die is rolled 20 times. Find the probability of obtaining 3, 4, or 5 sixes,
both by the binomial p.f. and by the normal approximation with continuity
correction (Equation 7.60.).

Exercise 7.3.3.

Choose 100 independent random numbers, uniformly distributed on the
interval [0, 1]. What is the approximate probability of their average falling in
the interval [0.49, 0.51]?

Exercise 7.3.4.

The heights of 100 persons are measured to the nearest inch. What is the
approximate probability that the average of these rounded numbers differs
from the true average by less than 1%?

Exercise 7.3.5.

A scale is calibrated by repeatedly measuring a standard weight of 10
grams and taking the averageX of these measurements. Due to unpredictable
causes, such as changes in temperature, air pressure, and friction, the indi-
vidual measurements vary slightly. They are taken to be independent random
variables with σ = 6μg each6:

6 1μg = 1 microgram = 10−6g
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1. How many weighings are needed to make σX ≤ 0.5μg?
2. How many weighings are needed to make P

(∣∣X − 10g
∣
∣ < 0.5μg

) ≥ .9?

Exercise 7.3.6.

In Example 7.1.2, we obtained the exact answer to the question of finding
the probability that on a certain night 40 or fewer diners will show up at a
restaurant if the number of diners is Poisson with λ = 50. Answer the same
question approximately, by using the CLT and the fact that a Poisson r.v.
with λ = 50 is the sum of 50 independent Poisson r.v.’s with λ = 1.

7.4 Negative Binomial, Gamma and Beta Random
Variables

In this section, we shall discuss three other named families of random vari-
ables that occur in various applications.

The negative binomial distribution is a generalization of the geometric
distribution: in a sequence of i.i.d. Bernoulli trials, we wait for the rth success,
rather than just the first one. The probability that the rth success occurs on
the kth trial equals the probability that in the first k−1 trials, we have exactly
r − 1 successes and the rth trial is a success, that is,

(
k−1
r−1

)
pr−1q(k−1)−(r−1)

times p. Thus, we make the following definition:

Definition 7.4.1. Negative Binomial Random Variables. Suppose we
perform i.i.d. Bernoulli trials with parameter p, until we obtain r successes,
for a fixed positive integer r. The number Xr of such trials up to and including
the rth success is called a negative binomial random variable7 with parameters
p and r. It has the probability function

f(k) = P(Xr = k) =

(
k − 1

r − 1

)
prqk−r for k = r, r+1, r+2, . . . . (7.90)

The distribution of Xr is called negative binomial, too.

The reason for the name “negative binomial” is that f(k) can be writ-
ten as

f(k) =

( −r

k − r

)
pr (−q)

k−r
for k = r, r + 1, r + 2, . . . , (7.91)

with the definition of binomial coefficients extended for negative numbers on
top as

7 Some authors define a negative binomial r.v. as the number of failures before
the rth success, rather than the total number of trials.
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(−r

i

)
=

(−r) (−r − 1) · · · (−r − i+ 1)

i!
= (−1)

i

(
r + i− 1

i

)
(7.92)

for nonnegative integers r and i, and the binomial theorem can also be ex-
tended8 for negative exponents as

(1 + x)
−r

=

∞∑

i=0

(−r

i

)
xi. (7.93)

From Equations 7.91 and 7.93,

∞∑

k=r

( −r

k − r

)
pr (−q)

k−r
= pr

∞∑

i=0

(−r

i

)
(−q)

i
= pr (1− q)

−r
= 1, (7.94)

and so the probabilities f(k) do, indeed, add up to 1 and are pr times the
terms of a series for a binomial expression with a negative exponent.

Clearly, the geometric distribution is a special case of the negative bino-
mial, with r = 1. Also, Xr is the sum of r i.i.d. geometric random variables
Z1, Z2, . . . , Zr with parameter p, because to get r successes, we first have to
wait Z1 trials for the first success, then Z2 trials for the second success, inde-
pendently of what happened before, and so on. Thus, we can easily compute
E (Xr) and V ar (Xr) as r times E (Zi) and V ar (Zi) , and so, by Exam-
ple 6.1.12 and Exercise 6.3.4,

E (Xr) =
r

p
(7.95)

and

V ar (Xr) =
rq

p2
. (7.96)

Similarly, from Example 6.3.2, the m.g.f. of Xr is the rth power of the m.g.f.
of Zi:

ψ (t) =

(
pet

1− qet

)r

. (7.97)

Example 7.4.1. Number of Children.

A couple wants to have two boys. Find the distribution of the number of
children they must have to achieve this goal. Assume that the children are
boys or girls independently of each other and P(boy) = 1

2 .
Clearly, the number of children is a negative binomial random variable

with parameters p = 1
2 and r = 2. Thus, with f(k) denoting the probability

of needing k children, we have

8 Expand (1 + x)−r in a Taylor series.
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f(k) = (k − 1)

(
1

2

)k

for k = 2, 3, 4, . . . . (7.98)

Furthermore, the expected number of children they need in order to have
two boys is r

p = 4. �
The next type of random variable we want to consider is called a gamma

random variable because its density contains the so-called gamma function,

Γ (t) =

∫ ∞

0

xt−1e−xdx for t > 0. (7.99)

This integral cannot be evaluated in terms of elementary functions but
only by approximate methods, except for some specific values of t, which
include the positive integers.

Integration by parts yields the reduction formula

Γ (t+ 1) = tΓ (t) for t > 0, (7.100)

and from here, using the straightforward evaluation Γ (1) = 1, we obtain

Γ (r) = (r − 1)! for r = 1, 2, 3, . . . . (7.101)

Thus, the gamma function is a generalization of the factorial function from
integer to positive real arguments.

Definition 7.4.2. Gamma Random Variables. A continuous random
variable with density function

f (x) =

{
0 if x ≤ 0

λα

Γ (α)x
α−1e−λx if x > 0

(7.102)

is called a gamma random variable and f (x) the gamma density with param-
eters α and λ, for any real α > 0 and λ > 0.

The essential part of this definition is the fact that f (x) is proportional to
xα−1e−λx for x > 0, and the coefficient λα

Γ (α) just normalizes this expression.

Indeed, with the change of variable u = λx, we get

∫ ∞

0

λα

Γ (α)
xα−1e−λxdx =

λα

Γ (α)

∫ ∞

0

(u
λ

)α−1

e−u 1

λ
du

=
1

Γ (α)

∫ ∞

0

uα−1e−udu = 1. (7.103)

Clearly, for α = 1 the gamma density becomes the exponential density
with parameter λ. More generally, for α = n, a positive integer, the gamma
density turns out to be the density of the sum of n i.i.d. exponential r.v.’s
with parameter λ, as shown below. Hence, for α = n, a gamma r.v. is a
continuous analog of the negative binomial: it is the waiting time for the
occurrence of the nth arrival in a Poisson process with parameter λ.



258 7. Some Special Distributions

Theorem 7.4.1. Gamma as the Sum of Exponentials. For any positive
integer n, let T1, T2, . . . , Tn be i.i.d. exponential random variables with density

f(t) =

{
0 if t ≤ 0

λe−λt if t > 0.
(7.104)

Then Sn = T1 + T2 + . . .+ Tn is a gamma random variable with parameters
α = n and λ, that is, its density is

fn (t) =

{
0 if t ≤ 0

λn

(n−1)! t
n−1e−λt if t > 0.

(7.105)

Proof. We use induction.
For n = 1 Equation 7.105 reduces to Equation 7.104, which is the density

of S1 = T1, and so the statement is true in this case.
Now, assume that Equation 7.105 is true for arbitrary n. Then the con-

volution formula (Equation 5.128) gives

fn+1 (t) =

∫ t

0

fn(x)f1(t− x)dx =

∫ t

0

λn

(n− 1)!
xn−1e−λxλe−λ(t−x)dx

=
λn+1

(n− 1)!
e−λt

∫ t

0

xn−1dx =
λn+1

n!
tne−λt for t > 0. (7.106)

The expression on the right is the same as the one in Equation 7.105 with
n + 1 in place of n. Thus, if Equation 7.105 gives the density of Sn, for any
n, then it gives the density of Sn+1, with n + 1 in place of n, too, and so it
gives the density of Sn for every n. �

The preceding theorem implies that the sum of two independent gamma
random variables, with integer α values, say m and n, and a common λ, is
gamma with α = m+n and the same λ, because it is the sum of m+n i.i.d.
exponential random variables with parameter λ. The sum is still gamma even
if the parameters are not integers:

Theorem 7.4.2. Sum of Independent Gamma Variables. For any
r, s > 0, let R and S be two independent gamma random variables with pa-
rameters α = r and α = s, respectively, and a common λ. Then T = R + S
is gamma with parameters r + s and λ.

Proof. By the convolution formula (Equation 5.128), for t > 0,

fT (t) =

∫ t

0

fR(x)fS(t− x)dx

=

∫ t

0

λr

Γ (r)
xr−1e−λx λs

Γ (s)
(t− x)

s−1
e−λ(t−x)dx

=
λr+s

Γ (r)Γ (s)
e−λt

∫ t

0

xr−1 (t− x)
s−1

dx. (7.107)

In the last integral we change the variable x to u by substituting x = tu and
dx = tdu. Then we get



7.4 Negative Binomial, Gamma and Beta Random Variables 259

fT (t) =
λr+s

Γ (r)Γ (s)
e−λt

∫ 1

0

(tu)
r−1

(t− tu)
s−1

tdu

=
λr+s

Γ (r + s)
tr+s−1e−λt

∫ 1

0

Γ (r + s)

Γ (r)Γ (s)
ur−1 (1− u)

s−1
du. (7.108)

Here the function λr+s

Γ (r+s) t
r+s−1e−λt is the gamma density with parameters

r + s and λ. Since the whole expression on the right is a density as well, we
must have

∫ 1

0

Γ (r + s)

Γ (r)Γ (s)
ur−1 (1− u)

s−1
du = 1 (7.109)

and

fT (t) =
λr+s

Γ (r + s)
tr+s−1e−λt. (7.110)

�

We have an important by-product of the above proof:

Corollary 7.4.1.

∫ 1

0

ur−1 (1− u)
s−1

du =
Γ (r)Γ (s)

Γ (r + s)
. (7.111)

This integral is called the beta integral and its value

B(r, s) =
Γ (r)Γ (s)

Γ (r + s)
(7.112)

the beta function of r and s. It will show up again shortly in the density of
beta random variables.

Example 7.4.2. Expectation and Variance of Gamma Variables.

For the Xi in 7.4.1, E (Xi) =
1
λ and V ar (Xi) =

1
λ2 , and so if T is gamma

with parameters α = n and arbitrary λ, then E (T ) = n
λ and V ar (T ) = n

λ2 .
These expressions remain valid for arbitrary α in place of n: For a gamma
random variable T with arbitrary α and λ, we have, with the change of
variable u = λx,

E (T ) =

∫ ∞

0

λα

Γ (α)
xαe−λxdx =

λα

Γ (α)

∫ ∞

0

(u
λ

)α

e−u 1

λ
du

=
1

λΓ (α)

∫ ∞

0

uαe−udu =
Γ (α+ 1)

λΓ (α)
=

α

λ
. (7.113)



260 7. Some Special Distributions

Similarly,

V ar (T ) =
α

λ2
. (7.114)

(The proof is left as an exercise.) �
Another important case in which we obtain a gamma random variable is

described in the following theorem.

Theorem 7.4.3. Square of a Normal Random Variable. Let X be an
N
(
0, σ2

)
random variable. Then Y = X2 is gamma with α = 1

2 and λ = 1
2σ2 .

Proof. By Equation 5.57

fY (y) =

{ 1
2
√
y

[
fX

(√
y
)
+ fX

(−√
y
)]

if y > 0

0 if y ≤ 0
. (7.115)

In the present case,

fX(x) =
1√
2πσ

e−x2/2σ2

for −∞ < x < ∞, (7.116)

and so

fY (y) =

{
1

σ
√
2πy

e−y/2σ2

if y > 0

0 if y ≤ 0
. (7.117)

For y > 0, this density is proportional to y−1/2e−y/2σ2

and is therefore gamma
with α = 1

2 and λ = 1
2σ2 . �

Since the coefficient in Definition 7.4.2 with α = 1
2 and λ = 1

2σ2 and
the coefficient in Equation 7.117 normalize the same function, they must be
equal, that is,

[
1/
(
2σ2

)]1/2

Γ (1/2)
=

1

σ
√
2π

(7.118)

must hold. Hence, we must have

Γ

(
1

2

)
=

√
π. (7.119)

Using Equation 7.119 and the reduction formula, Equation 7.100, we ob-
tain (Exercise 7.4.11) the values of the gamma function for positive half-
integer arguments:

Γ

(
2k + 1

2

)
=

√
π (2k)!

22kk!
for k = 0, 1, 2, . . . . (7.120)
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In various statistical applications, we encounter the sum of the squares
of independent standard normal random variables. As a consequence of The-
orems 7.4.3 and 7.4.2, such sums have gamma distributions, but we have a
special name associated with them and their densities are specially tabulated.
Thus, we have the following definition and theorem:

Definition 7.4.3. Chi-Square Random Variables. For independent stan-
dard normal random variables Z1, Z2, . . . , Zn, the sum χ2

n = Z2
1+Z2

2+. . .+Z2
n

is called a chi-square random variable with n degrees of freedom.

Theorem 7.4.4. Chi-Square is Gamma. The distribution of χ2
n is gamma

with parameters α = n
2 and λ = 1

2 , and its density is

fχ2
n
(x) =

{
0 if x ≤ 0

1

2
n/2

Γ (n/2)
x

n
2 −1e−

x
2 if x > 0. (7.121)

Proof. By Theorem 7.4.3, Z2
i is gamma with parameters α = 1

2 and λ = 1
2 ,

for all i, and so, by repeated application of the result of Theorem 7.4.2, the
statement follows. �

Corollary 7.4.2. Expectation and Variance of Chi-Square.
E
(
χ2
n

)
= n and V ar

(
χ2
n

)
= 2n.

Proof. These values follow at once from Example 7.4.2 and Equation 7.121.
�

Corollary 7.4.3. Density of χn. The density of χn =
√

χ2
n is

fχn
(x) =

{
0 if x ≤ 0

2

2
n/2

Γ (n/2)
xn−1e−

x2

2 if x > 0.
(7.122)

We leave the proof as Exercise 7.4.10.

Example 7.4.3. Moment Generating Function of Chi-Square.

For independent standard normal random variables Z1, Z2, . . . , Zn, the
m.g.f. of χ2

n = Z2
1 + Z2

2 + . . .+ Z2
n is given by

ψn (t) = E
(
e
∑n

i=1 Z2
i t
)
=

n∏

i=1

E
(
eZ

2
i t
)
. (7.123)

Here

E
(
eZ

2
i t
)
=

1√
2π

∫ ∞

−∞
ez

2te−z2/2dz =
1√
2π

∫ ∞

−∞
e−z2(1−2t)/2dz for t <

1

2
.

(7.124)
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Making the change of variable u = z
√
1− 2t, we get

E
(
eZ

2
i t
)
=

1√
2π

√
1− 2t

∫ ∞

−∞
e−u2/2du =

1√
1− 2t

for t <
1

2
. (7.125)

Thus,

ψn (t) =

n∏

i=1

E
(
eZ

2
i t
)
=

(
1√

1− 2t

)n

= (1− 2t)
−n/2

for t <
1

2
. (7.126)

�
Gamma random variables, with values of the parameter α not just integers

or half-integers, are often used to model continuous random variables with
unknown or approximately known distribution on (0,∞). Similarly, continu-
ous random variables with unknown distribution on [0, 1] are often modelled
by beta random variables, to be defined below. This is especially true in some
statistical applications of Bayes’ theorem, in which the prior probability P
of an event is taken to be a random variable with such a distribution on
[0, 1] , and then the posterior distribution turns out to be beta, too. (See
Example 7.4.4 below.)

Definition 7.4.4. Beta Random Variables. A continuous random vari-
able with density function9

f (x) =

{
1

B(r,s)x
r−1 (1− x)

s−1
if 0 ≤ x ≤ 1

0 otherwise
(7.127)

is called a beta random variable and f (x) the beta density with parameters r
and s, for any real r > 0 and s > 0. Here

B (r, s) =
Γ (r)Γ (s)

Γ (r + s)
. (7.128)

Notice that the beta distribution with r = s = 1 is the uniform distribu-
tion on [0, 1].

Example 7.4.4. Updating Unknown Probabilities by Bayes’ Theo-
rem.

Suppose the probability P of an event A is unknown and is taken to be a
uniform random variable on [0, 1] , which is a (somewhat controversial) way
of expressing the fact that we have no idea what the value of P is. Assume
that we conduct n ≥ 1 independent performances of the same experiment,
and obtain k successes, that is, obtain A exactly k times. How should we
revise the distribution of P in light of this result?

9 We assume 00 = 1 where necessary.
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We have already treated this problem for n = 1 in Example 5.6.3. The
computation for general n > 1 is similar; we just use a binomial distribution
for the numberX of successes instead of the Bernoulli distribution used there.
Thus,

fX|P (k, p) =

(
n

k

)
pk (1− p)

n−k
for k = 0, 1, . . . , n (7.129)

and

fP (p) =

{
1 for p ∈ [0, 1]
0 otherwise

. (7.130)

By Equation 5.171, (the
(
n
k

)
in the numerator and denominator cancel)

fP |X (p, k) =

{
pk(1−p)n−k

∫ 1
0
pk(1−p)n−kdp

for p ∈ [0, 1] and k = 0, 1, . . . , n

0 otherwise
. (7.131)

Thus the posterior density of P is beta with parameters r = k + 1 and
s = n− k + 1. �

Example 7.4.5. Expectation and Variance of Beta Variables.

The expected value is very easy to compute, because the relevant integral
produces another beta function. Thus, if X is beta with parameters r and
s, then

E (X) =
1

B (r, s)

∫ 1

0

x · xr−1 (1− x)
s−1

dx =
B (r + 1, s)

B (r, s)

=
Γ (r + 1)Γ (s)

Γ (r + s+ 1)
· Γ (r + s)

Γ (r)Γ (s)
=

r

r + s
. (7.132)

Similarly,

V ar (X) =
rs

(r + s)
2
(r + s+ 1)

. (7.133)

We leave the proof of this formula as Exercise 7.4.18. �

Exercises

Exercise 7.4.1.

Find the probability of obtaining, in i.i.d., parameter p Bernoulli trials,
r successes before s failures.

Exercise 7.4.2.

Let Nr be the number of i.i.d., parameter p Bernoulli trials needed to
produce either r successes or r failures, whichever occurs first. Find the p.f.
of Nr.
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Exercise 7.4.3.

Let Yr be the number of failures in i.i.d., parameter p Bernoulli trials
before the rth success. Find the p.f. of Yr.

Exercise 7.4.4.

1. A die is rolled until six shows up for the second time. What is the prob-
ability that no more than eight rolls are needed?

2. How many rolls are needed to make the probability of getting the second
6 on or before the last roll exceed 1/2?

Exercise 7.4.5.

For any positive integers r and s, let Xr be the number of i.i.d. Bernoulli
trials with parameter p up to and including the rth success and Xr+s their
number up to and including the (r + s)th success. Find the joint p.f. of Xr

and Xr+s.

Exercise 7.4.6.

Let Sm denote the number of successes in the first m of m + n i.i.d.
parameter p Bernoulli trials for any positive integers m and n. Find the p.f.
of Sm under the condition that the rth success, for any positive r ≤ m+ n,
occurs on the (m+ n)th trial.

Exercise 7.4.7.

Show that, for α ≥ 1 the mode of the gamma density (that is the x-value
where f (x) takes on its maximum) is α−1

λ .

Exercise 7.4.8.

Sketch the gamma density for the following (α, λ) pairs: (1, 1) , (1, 2) , (2, 1) ,
(1, 1/2) , (1/2, 1) , (1/2, 2) , (4, 4).

Exercise 7.4.9.

For a gamma random variable T with arbitrary α and λ, prove:

1. E
(
T k

)
= α(α+1)···(α+k−1)

λk for any positive integer k.
2. V ar (T ) = α

λ2 .

3. The m.g.f. of T is ψ (t) =
(

λ
λ−t

)α

for t < λ.

Exercise 7.4.10.

Prove Corollary 7.4.3.
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Exercise 7.4.11.

Prove Equation 7.120.

Exercise 7.4.12.

Choose a point at random in the plane, with its coordinates X and Y
independent standard normal random variables. What is the probability that
the point is inside the unit circle?

Exercise 7.4.13.

Let X and Y be i.i.d N
(
0, σ2

)
normal random variables. Find the density

of U = X2 + Y 2.

Exercise 7.4.14.

Let X1, X2, . . . , Xn, be i.i.d N
(
0, σ2

)
normal random variables. Find the

density of V =
∑n

i=1 X
2
i .

Exercise 7.4.15.

Let X1, X2, . . . , Xn, be i.i.d uniform random variables on [0, 1]. Show
that Y = max (X1, X2, . . . , Xn) and Z = min (X1, X2, . . . , Xn) are beta and
find their parameters r and s.

Exercise 7.4.16.

Show that the mode of the distribution given by Equation 7.131 (that is,
the p-value where fP |X (p|k) takes on its maximum) is the relative frequency
k
n . (You need to treat the cases k = 0 and k = n separately from the others!)

Exercise 7.4.17.

Sketch the beta density for the following (r, s) pairs: (1, 2) , (2, 1) , (2, 2) ,
(1, 3) , (1/2, 1) , (11, 21).

Exercise 7.4.18.

For a beta random variable X with arbitrary r and s, prove

1. E
(
Xk

)
= r(r+1)···(r+k−1)

(r+s)(r+s+1)···(r+s+k−1) for any positive integer k.

2. V ar (X) = rs
(r+s)2(r+s+1)

.

Exercise 7.4.19.

Modify Example 7.4.4 by taking the prior distribution to be beta with
arbitrary, known values r and s. Find the posterior distribution of the event
A if in n ≥ 1 independent performances of the same experiment we obtain
k ≤ n successes.
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7.5 Multivariate Normal Random Variables

In many applications, we have to deal simultaneously with two or more nor-
mal random variables whose joint distribution is a direct generalization of
the normal distribution. For example, the height and weight of a randomly
selected person is such a pair and so are the test scores of a student on two
exams in a math course and the heights of a randomly selected father-son
pair. Also, in statistical samples from a normally distributed population, the
joint observations follow a multivariate normal distribution.

We take a somewhat indirect, but mathematically convenient, approach to
defining bivariate random variables. We start with two independent standard
normal random variables and transform them linearly.

Definition 7.5.1. Bivariate Normal Random Variables. Let Z1and Z2

be independent standard normal random variables and a11, a12, a21, a22, b1
and b2 any constants satisfying a211 + a212 	= 0, a221 + a222 	= 0 and a11a22 −
a12a21 	= 0. Then

X1 = a11Z1 + a12Z2 + b1 and

X2 = a21Z1 + a22Z2 + b2 (7.134)

are said to form a bivariate normal pair.

By Theorems 7.2.4 and 7.2.6, the marginals X1 and X2 are (univariate)
normal with means μ1 = b1 and μ2 = b2 and variances σ2

1 = a211 + a212
and σ2

2 = a221 + a222, respectively. Furthermore, σ1,2 = Cov (X1, X2) =
a11a21 + a12a22, by the definition of Z1 and Z2 as independent standard
normal random variables, and the correlation coefficient of X1 and X2 is
ρ = (a11a21 + a12a22) /σ1σ2. Note that ρ 	= ±1 by Corollary 6.4.1 and the
requirement that a11a22 − a12a21 	= 0.

In Theorem 6.4.2, we saw that for independent random variables X and Y
whose expectations exist, Cov (X,Y ) = 0. One of the most important prop-
erties of bivariate normal random variables is that the converse of this fact
holds for them:

Theorem 7.5.1. For Bivariate Normal Random Variables, Zero
Covariance Implies Independence. If X1 and X2 are bivariate normal,
then Cov (X1, X2) = 0 implies their independence.

Proof. We are going to use the bivariate moment generating function

ψ (s, t) = E
(
esX1+tX2

)
(7.135)

to prove this theorem.
By Theorem 7.2.6, Y = sX1 + tX2 is normal, because it is a linear com-

bination of the original, independent, random variables Z1 and Z2. Clearly,
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it has mean μY = sμ1 + tμ2 and variance σ2
Y = s2σ2

1 + t2σ2
2 + 2stσ1,2. (Here

we wrote σ1,2 for Cov (X1, X2).) Thus, by the definition of the m.g.f. of Y as
ψY (t) = E

(
etY

)
and by Equation 7.47,

ψ (s, t) = ψY (1) = esμ1+tμ2+(s2σ2
1+t2σ2

2+2stσ1,2)/2. (7.136)

Hence, if σ1,2 = 0, then ψ (s, t) factors as

ψ (s, t) = esμ1+s2σ2
1/2etμ2+t2σ2

2/2, (7.137)

which is the product of the moment generating functions of X1 and X2.
Now, if X1 and X2 are independent, then, clearly,

ψ (s, t) = E
(
esX1+tX2

)
= E

(
esX1etX2

)
= E

(
esX1

)
E
(
etX2

)

= esμ1+s2σ2
1/2etμ2+t2σ2

2/2, (7.138)

the same function as the one we obtained above from the assumption
σ1,2 = 0. By the uniqueness of moment generating functions, which holds
in the two-dimensional case as well, X1 and X2 must therefore be indepen-
dent if σ1,2 = 0. �

Note that this theorem does not say that if X1 and X2 are only sep-
arately, rather than jointly, normal, then Cov (X1, X2) = 0 implies their
independence. That statement is not true in general, as Exercise 7.5.4 shows.

Define two new standard normal random variables as

Y1 =
a11
σ1

Z1 +
a12
σ1

Z2 and

Y2 =
1

√
1− ρ2

[(
a21
σ2

− a11ρ

σ1

)
Z1 +

(
a22
σ2

− a12ρ

σ1

)
Z2

]
(7.139)

One can check by some straightforward calculations (7.5.1) that Y1 and Y2

are indeed standard normal and Cov (Y1, Y2) = 0. Thus, by Theorem 7.5.1,
Y1 and Y2 are independent. Furthermore, we can write X1 and X2 in terms
of Y1 and Y2 as

X1 = σ1Y1 + μ1, and

X2 = σ2

(
ρY1 +

√
1− ρ2Y2

)
+ μ2 (7.140)

From here we can easily obtain the conditional expectation, variance and
density of X2 given X1 = x1, because, if X1 = x1, then Y1 = (x1 − μ1) /σ1

and

X2 = σ2

(
ρ
x1 − μ1

σ1
+
√

1− ρ2Y2

)
+ μ2. (7.141)
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Thus, since Y2 is independent of Y1, it is unaffected by the condition X1 = x1,
and so, under this condition, X2 is normal with mean

E (X2|X1 = x1) = μ2 + ρσ2
x1 − μ1

σ1
(7.142)

and variance

V ar (X2|X1 = x1) =
(
1− ρ2

)
σ2
2 . (7.143)

Hence

fX2|X1
(x2, x1) =

1
√

2π (1− ρ2)σ2

exp
−
(
x2 − μ2 − ρσ2

x1−μ1

σ1

)2

2 (1− ρ2)σ2
2

. (7.144)

Observe that x2 = E (X2|X1 = x1) is a linear function of x1. The graph
of this function in the x1x2-plane is called the regression line or least squares
line of X2 on X1, and its equation can also be written in the form

x2 − μ2

σ2
= ρ

x1 − μ1

σ1
, (7.145)

or as

z2 = ρz1, (7.146)

where we wrote z1 and z2 for the standardizations of x1 and x2. Thus, the
regression line goes through “the point of averages” (μ1, μ2) and has, in stan-
dard units, slope ρ.

The name “regression” was coined by Francis Galton in the 1880s. He
studied the dependence of children’s height on the height of their parents,
and noticed that the children of tall parents tended to be shorter and the
children of short parents taller than their parents, in spite of the fact that
the distribution of heights was the same in both generations. He named this
effect ”regression to the mean” or the ”regression effect.” He multiplied all
female heights by 1.08 and considered X1 to be the mid-parent height and X2

their grown-up child’s height and noticed that (X1, X2) is a bivariate normal
pair. Thus, if we take μ1 = μ2 = μ and σ1 = σ2 = σ in Equation 7.145, then
it becomes

x2 − μ = ρ (x1 − μ) . (7.147)

Since ρ is between 0 and 1, this equation shows that

|x2 − μ| < |x1 − μ| , (7.148)

unless x1 = x2 = μ, exactly what he observed.
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The explanation of the effect is that the height of a person is partly in-
herited and partly due to random environmental causes during development.
Both parts contribute to the regression effect: The height of an individual is
controlled by a large number of inherited recessive genes, but not all of these
are expressed in a person. When both parents are tall, only a fraction of the
expressed increased-height genes coincide, and in their children only those
will be expressed in which they inherit the increased-height form from both
parents Thus, in the children, fewer of such genes will increase their height,
than in their parents. On the other hand, the environmental effect is purely
random and is centered at the population mean, and so part of the tallness
of a parent is just due to luck, which will not be inherited, and for the child,
luck is random around the mean. In fact there is a regression effect in the
reverse direction as well: very tall children have generally shorter parents and
very short children taller parents.

Note that, by Equation 7.145, the regression effect occurs not just when
σ1 = σ2, but also whenever σ1 > ρσ2 even if μ1 	= μ2, but it does not occur
if σ1 ≤ ρσ2. However, in standard units, it does occur for all nondegenerate
values of the parameters.

Regression to the mean occurs in many situations. For example, a student
may score very well on an exam but may not score so well on an equally
difficult second exam, because part of the reason for the first high score may
be luck and the second exam may not be as lucky as the first one. Similarly,
a stock may perform very well one year but not so well the next year. This
may be explained again by attributing much of the first high performance to
good luck and the second worse performance to bad luck.

Mistaking the regression effect for something causal is called the regression
fallacy. For instance, the student who scored poorly on an exam and scored
better on a second one may not have really improved but may have just
had better luck. Sometimes the regression fallacy can lead to bad policies or
absurd conclusions. For example, a famous psychologist, Daniel Kahneman,
observed a situation in which an instructor concluded that praise is counter-
productive and berating is effective. This happened at an Israeli flight school,
where cadets were praised when they did well and were screamed at when
they executed some maneuver badly. Most of the time, the praised cadets
did worse the next time and the berated ones did better. But the change was
just the regression effect, and attributing it to the praise or berating is the
regression fallacy.

Returning to the mathematics, note that the conditional variance
V ar (X2|X1 = x1) is the same for every value of x1. Statisticians call this
property of the bivariate normal distribution homoscedasticity (Greek for
“same scatter”). Other bivariate distributions generally do not have this
property; such distributions, for which V ar (X2|X1 = x1) is a nonconstant
function of x1, are called heteroscedastic.
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Multiplying the conditional density in Equation 7.144 by the marginal
density

fX1
(x1) =

1√
2πσ1

exp
− (x1 − μ1)

2

2σ2
1

, (7.149)

we obtain the joint density of X1 and X2. Thus, we have proved the following
theorem:

Theorem 7.5.2. Bivariate Normal Density. If X1 and X2 form a bi-
variate normal pair with variances σ1, σ2 and correlation coefficient ρ 	= ±1,
then their joint density is given by

f (x1, x2) =
1

2π
√

(1− ρ2)σ1σ2

· (7.150)

exp

{
−1

2 (1− ρ2)

[(
x1 − μ1

σ1

)2

− 2ρ

(
x1 − μ1

σ1

)(
x2 − μ2

σ2

)
+

(
x2 − μ2

σ2

)2
]}

.

Clearly, if X1 and X2 have a joint density like this one, then we can write
them as in Equations 7.140 in terms of standard normal Y1 and Y2, which
shows that X1 and X2 are a bivariate normal pair. In fact, many books define
bivariate normal pairs as random variables that have a joint density of this
form.

Notice the symmetry of f (x1, x2) with respect to interchanging the sub-
scripts 1 and 2. Consequently, the conditional expectation, variance, and
density of X1 given X2 = x2 can be obtained from the foregoing conditional
expressions simply by interchanging the subscripts 1 and 2.

Example 7.5.1. Level Curves and Regression Line.

Assume that the parameters in the example of the heights of parents and
children are μ1 = μ2 = μ = 69′′, σ1 = σ2 = σ = 2.6′′ and ρ = 2/3.. Then the
level curves of the bivariate density are ellipses given by the equation

(x1 − 69)
2 − 4

3
(x1 − 69) (x2 − 69) + (x2 − 69)

2
= c, (7.151)

for various values of c. In Figure 7.5 we have plotted three of these curves
together with the corresponding regression line

x2 − 69 =
2

3
(x1 − 69) . (7.152)

We have also drawn a vertical line at x1 = 71 to show that its segment inside
an ellipse is bisected by the regression line. This observation can be explained
by the fact that the conditional density in Equation 7.144 for any x1 is normal
and so it is centered at its mean, which is a point on the regression line. (See
also Exercise 7.5.12.)
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Fig. 7.5. Level curves of a bivariate normal p.d.f. and the corresponding regression
line.

Example 7.5.2. Two Exams.

The scores on two successive exams taken by the students of the same
large class usually approximate a bivariate normal distribution. Assume that
X1 and X2, the scores of a randomly selected student on two exams, are
bivariate normal with μ1 = μ2 = 70, σ1 = σ2 = 12 and ρ = 0.70. Suppose a
student scored 90 on the first exam, what is his expected score on the second
exam and what is the probability that he will score 90 or more on the second
exam?

The conditional expected score on the second exam is given by Equa-
tion 7.142:

E (X2|X1 = 90) = 70 + 0.70 · 12 · 90− 70

12
= 84. (7.153)

Notice that the high score of 90 on the first exam gives a mean prediction
of only 84 on the second exam. This result is an instance of the regression
effect, which, as mentioned above, is universal for bivariate normal variables:
given an “extreme” value of one of the variables (as measured in standard
units), the expected value of the other variable will be less extreme.

The conditional variance of X2 is given by Equation 7.143:

V ar (X2|X1 = 90) =
(
1− 0.702

)
122 = 73.44. (7.154)

Thus, under the condition X1 = 90, X2 is normal with μ = 84 and
σ =

√
73.44 ≈ 8.57. Therefore
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P (X2 ≥ 90|X1 = 90) = 1− Φ

(
90− 84

8.57

)
≈ 0.242. (7.155)

�

Example 7.5.3. Heights of Husbands and Wives.

In a statistical study, the heights of husbands and their wives were mea-
sured and found to have a bivariate normal distribution. Let X1 denote the
height of a randomly selected husband and X2 the height of his wife, with
μ1 = 68”, μ2 = 64”, σ1 = 4”, σ2 = 3.6”, ρ = 0.25. (The slight positive
correlation can be attributed to the fact that, to some extent, taller people
tend to marry taller ones, and shorter people shorter ones.)

Given these data,

a) what is the expected height of a man whose wife is 61” tall,
b) what is the probability of the wife being taller than her husband, if the

husband is of average height,
c) what is the probability of the wife being taller than the third quartile of

all the wives’ heights, if her husband’s height is at the third quartile of
all the husbands’ heights?

a) The conditional expected height of a man whose wife is 61” tall is given
by Equation 7.142, with the subscripts switched:

E (X1|X2 = 61) = 68 + 0.25 · 4 · 61− 64

3.6
≈ 67.17. (7.156)

b) The conditional variance of X2, if the husband is of average height, is
given by Equation 7.143:

V ar (X2|X1 = 68) =
(
1− 0.252

)
3.62 ≈ 12.15 (7.157)

Thus, under the condition X1 = 68, X2 is normal with μ = 64 and
σ =

√
12.15 ≈ 3.49. Therefore

P (X2 > 68|X1 = 68) = 1− Φ

(
68− 64

3.49

)
≈ 0.126. (7.158)

c) The z-value for the third quartile is, from P(Z ≤ z) = .75, z.75 ≈ 0.6745.
Thus, the third quartile of all the wives’ heights is x2,.75 = μ2 +σ2z.75 ≈
64 + 3.6 · 0.6745 ≈ 66.428” and the third quartile of all the husbands’
heights is x1,.75 = μ1+σ1z.75 ≈ 68+4·0.6745 ≈ 70.698”. Hence, under the
condition X1 = 70.698, X2 is normal with μ ≈ 64+0.25 ·3.6 · 70.698−68

4 ≈
64.607 and σ =

√
(1− 0.252) 3.62 ≈ 3.4857. Therefore

P (X2 > 66.428|X1 = 70.698) ≈ 1− Φ

(
66.428− 64.607

3.4857

)

≈ 1− Φ (0.5224) ≈ 0.321. (7.159)
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Note that if we write X1 and X2 in standard units as Z1 and Z2, then the
condition X1 = 70.698 corresponds to Z1 = 0.6745 and under this condition,
by Equation 7.145, Z2 is normal with μ = ρz1 ≈ 0.25 · 0.6745 ≈ 0.1686 and
σ =

√
(1− 0.252) ≈ 0.96825. Thus,

P (X2 > x2,.75|X1 = x1,.75) = P (Z2 > z.75|Z1 = z.75)

≈ 1− Φ

(
0.6745− 0.1686

0.96825

)

≈ 1− Φ (0.5224) ≈ 0.321, (7.160)

the same as before. As this calculation in standard units shows, the result
does not depend on μ1, μ2, σ1, σ2, but only on ρ. �

Example 7.5.4. Density with a Homogeneous Quadratic Exponent.

Let X1 and X2 have a joint density of the form

f (x1, x2) = C exp
−1

2
(x2

1 − 2x1x2 + 4x2
2), (7.161)

where C is an appropriate constant. Show that (X1, X2) is a bivariate normal
pair and find its parameters and C.

This problem could be solved by integration, but it is much easier to
just compare the exponents in Equations 7.150 and 7.161, which is what we
shall do.

First, clearly, μ1 = μ2 = 0, and the equality of the exponents requires
that we solve

1

(1− ρ2)

(
x2
1

σ2
1

− 2ρ
x1x2

σ1σ2
+

x2
2

σ2
2

)
= ax2

1−2bx1x2+cx2
2 for all x1, x2, (7.162)

for the unknowns σ1, σ2 and ρ, with a = b = 1 and c = 4. Hence

a =
1

(1− ρ2)σ2
1

, b =
ρ

(1− ρ2)σ1σ2
, c =

1

(1− ρ2)σ2
2

(7.163)

and so

ρ2 =
b2

ac
=

1

4
, 1− ρ2 =

ac− b2

ac
=

3

4
(7.164)

and

σ2
1 =

1

a (1− ρ2)
=

c

ac− b2
=

4

3
, σ2

2 =
1

c (1− ρ2)
=

a

ac− b2
=

1

3
. (7.165)

Since also σ1 > 0, σ2 > 0 and sign(ρ) = sign(b), we obtain σ1 = 2√
3
,

σ2 = 1√
3
, ρ = 1

2 and C = 1

2π
√

(1−ρ2)σ1σ2

=
√
3

2π .
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Thus, we have found the values of the parameters that make the density
given by Equation 7.161 correspond to a bivariate normal density, thereby
also showing that (X1, X2) is a bivariate normal pair. �

The method of the foregoing example yields the following generalization:

Theorem 7.5.3. Bivariate Normal Density with General Quadratic
Exponent. A pair of random variables (X1, X2) is bivariate normal if and
only if its density is of the form

f (x1, x2)

= C exp

(−1

2

[
a (x1 − μ1)

2 − 2b (x1 − μ1) (x2 − μ2) + c (x2 − μ2)
2
])

,

(7.166)

for any constants a, b, c, satisfying10 a > 0 and ac− b2 > 0, and C =
√
ac−b2

2π .

Example 7.5.5. Density with an Inhomogeneous Quadratic Expo-
nent.

Let X1 and X2 have a joint density of the form

f (x1, x2) = A exp

(−1

2
(x2

1 − 2x1x2 + 4x2
2 − 4x1 + 10x2)

)
, (7.167)

where A is an appropriate constant. Show that (X1, X2) is a bivariate normal
pair and find its parameters and A.

First, we want to put f (x1, x2) in the form of Equation 7.166. If we expand
the terms in Equation 7.166 and compare the result with Equation 7.167.
Since variances and covariances do not depend on the values of μ1 and μ2,
we can set μ1 = μ2 = 0 in Equation 7.166. Thus we find that σ1, σ2 and ρ
depend only on the quadratic terms, and therefore, together with a = b = 1
and c = 4, are the same as in Example 7.5.4.

To find μ1 and μ2, we may compare the first degree terms of the exponents
in Equations 7.166 and 7.167. So, we must have

(−2aμ1 + 2bμ2)x1 = −4x1 and (−2cμ2 + 2bμ1)x2 = 10x2, (7.168)

that is,

−μ1 + μ2 = −2 and μ1 − 4μ2 = 5. (7.169)

Thus, μ1 = 1 and μ2 = −1 and

f (x1, x2) = C exp

(−1

2

[
(x1 − 1)

2 − 2 (x1 − 1) (x2 + 1) + 4 (x2 + 1)
2
])

,

(7.170)

10 A quadratic form (that is, a polynomial with quadratic terms only) whose coef-
ficients satisfy these conditions is called positive definite, because its values are
then positive for any choice of x1 and x2. (See any linear algebra text.)
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where C =
√
3

2π as in Example 7.5.4, and A is C times the exponential of the
constant term in the quadratic expression above, that is,

A =
√
3

2π exp
(

−1
2

[
(−1)

2 − 2 (−1) (1) + 4 (1)
2
])

=
√
3

2π e
−7/2.

Thus, by putting f (x1, x2) in the form of Equation 7.166, we have shown
that (X1, X2) is a bivariate normal pair and found all of its parameters. �

We have another straightforward consequence of Definition 7.5.1:

Theorem 7.5.4. Linear Combinations of Bivariate Normals are
Bivariate Normal. If X1 and X2 form a bivariate normal pair and, for
any constants c11, c12, c21, c22, d1 and d2 satisfying c211+c212 	= 0, c221+c222 	= 0
and c11c22 − c12c21 	= 0,

T1 = c11X1 + c12X2 + d1 and

T2 = c21X1 + c22X2 + d2, (7.171)

then T1 and T2 are a bivariate normal pair, too.

Proof. Substituting X1 and X2 from Equations 7.134 into the definition of
T1 and T2, we get the latter as linear functions of Z1 and Z2, which shows
that they are a bivariate normal pair, too. �

Corollary 7.5.1. Existence of Independent Linear Combinations.
If X1 and X2 form a bivariate normal pair, then there exist constants
c11, c12, c21, c22, satisfying c211+ c212 	= 0, c221+ c222 	= 0 and c11c22− c12c21 	= 0,
such that

T1 = c11X1 + c12X2 and

T2 = c21X1 + c22X2 (7.172)

are independent normal random variables.

Proof. Suppose X1 and X2 are given in terms of their parameters σ1 > 0,
σ2 > 0, ρ, μ1, μ2. If ρ = 0, then X1 and X2 are themselves independent, and
so assume that ρ 	= 0. Clearly,

Cov (T1, T2) = c11c21V ar(X1)

+ (c11c22 + c12c21)Cov (X1, X2) + c12c22V ar(X2)

= c11c21σ
2
1 + (c11c22 + c12c21)σ1σ2ρ+ c12c22σ

2
2 . (7.173)

If we set, for instance, c21 = 0, c11 = c22 = 1 and c12 = −ρσ1/σ2, then
Cov (T1, T2) = 0 and the inequalities required of the cij ’s are also satisfied,
and so T1 and T2 are independent. There exist infinitely many other solutions
as well. One, a rotation, given in Exercise 7.5.5, is especially interesting. �
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Definition 7.5.1 can easily be generalized to more than two variables:

Definition 7.5.2. Multivariate Normal Random Variables. For any
integers m,n ≥ 2, let Z1, Z2,. . . , Zn be independent standard normal random
variables and aij and bi, for all i = 1, 2, . . . ,m, j = 1, 2,. . . , n, any constants
satisfying

∑n
j=1 a

2
ij 	= 0 for all i. Then the random variables

Xi =
n∑

j=1

aijZj + bi for i = 1, 2, . . . ,m (7.174)

are said to form a multivariate normal m-tuple.

Note that the joint distribution of the Xi may be less than n-dimensional.
(It is n-dimensional if and only if the matrix (aij) has rank n.)

Next, we state some theorems about multivariate normal random variables
without proof.

Theorem 7.5.5. Two Linearly Independent Linear Combinations of
Independent Normals Are Bivariate Normal. Any two of the Xi de-
fined above, say Xi and Xk, form a bivariate normal pair, provided that nei-
ther Xi − bi nor Xk − bk is a scalar multiple of the other.

Theorem 7.5.6. For Multivariate Normal Random Variables Zero
Covariances Imply Independence. If X1, X2,. . . , Xm form a multivariate
normal m-tuple and Cov (Xi, Xk) = 0 for all i, k, then X1, X2,. . . , Xm are
totally independent.

Theorem 7.5.7. Density Function of Multivariate Normal Random
Variables. X1, X2,. . . , Xm form a multivariate normal m-tuple if and only
if their joint density is of the form

f (x1, x2, . . . , xm) = C exp

[

−1

2

m∑

i=1

m∑

k=1

cik (xi − μi) (xk − μk)

]

, (7.175)

where the μi and μk are any constants and the cik are such that the quadratic
form

∑m
i=1

∑m
k=1 cik (xi − μi) (xk − μk) is positive semidefinite11 and C is a

normalizing constant.

The last theorem could be sharpened by giving an explicit formula for
C and relating the cik to the covariances (the μi are the expected values),
but even to state these relations would require concepts from linear algebra
and the proof would require multivariable calculus. We leave such matters to
more advanced books.

11 A quadratic form is positive semidefinite if its value is ≥ 0 for all arguments.
For instance, in two dimensions (x+ y)2 is positive semidefinite.
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Exercises

Exercise 7.5.1.

Show that Y1 and Y2 defined by Equations 7.139 are standard normal and
Cov (Y1, Y2) = 0.

Exercise 7.5.2.

Let (X1, X2) be a bivariate normal pair with parameters μ1 = 2,
μ2 = −1, σ1 = 3, σ2 = 2 and ρ = 0.8. Find

1. f (x1, x2) ,
2. E (X2|X1 = x1) and E (X1|X2 = x2) ,
3. V ar (X2|X1 = x1) and V ar (X1|X2 = x2) ,
4. fX2|X1

(x2|x1) and fX1|X2
(x1|x2) ,

5. fX1
(x1) and fX2

(x2).

Exercise 7.5.3.

Let X1 and X2 have a joint density of the form

f (x1, x2) = A exp
−1

2
(x2

1 + x1x2 + 2x2
2 − 2x1 + 6x2), (7.176)

where A is an appropriate constant. Show that (X1, X2) is a bivariate normal
pair and find its parameters and A.

Exercise 7.5.4.

Show that if (X,Y ) has the joint density

f (x, y) =
1

2π

[(√
2e−x2/2 − e−x2

)
e−y2

+
(√

2e−y2/2 − e−y2
)
e−x2

]
,

(7.177)

which is not bivariate normal and then X and Y have standard normal
marginal densities and their covariance is zero, but they are not independent.

Exercise 7.5.5.

Let (X1, X2) be a bivariate normal pair with Cov (X1, X2) 	= 0. Show
that the rotation

T1 = X1 cos θ −X2 sin θ

T2 = X1 sin θ +X2 cos θ (7.178)

by the angle θ results in independent normal T1 and T2 if and only if

cot 2θ =
V ar (X2)− V ar (X1)

2Cov (X1, X2)
. (7.179)
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Exercise 7.5.6.

What is the probability that the average score of a randomly selected
student in the two exams of Example 7.5.2 will be over 80?

Exercise 7.5.7.

What is the 90th percentile score in the second exam of Example 7.5.2
for those students who scored 80 on the first exam?

Exercise 7.5.8.

The heights and weights of a large number of men were found to have
a bivariate normal distribution with ρ = 0.7. If a randomly selected man’s
height from this population is at the third quartile, then what is the percentile
rank of the expected value of his weight under this condition?

Exercise 7.5.9.

Prove that a pair (X1, X2) of random variables is bivariate normal if and
only if Y = aX1 + bX2 is normal for every choice of constants a and b,.not
both zero.

Exercise 7.5.10.

What is the probability of the wife being taller than her husband for a
randomly selected couple from the population described in Example 7.5.3
(without any restriction on the husband’s height)?

Exercise 7.5.11.

Let (X1, X2) be a bivariate normal pair with parameters μ1 = 2,
μ2 = −1, σ1 = 3, σ2 = 2 and ρ = 0.8. Find the parameters and the joint
density of U1 = X1 + 2X2 and U2 = X1 − 2X2 + 1.

Exercise 7.5.12.

Prove algebraically that the center of any vertical chord of an ellipse given
by Equation 7.151 lies on the regression line given by Equation 7.152.



8. The Elements of Mathematical Statistics

8.1 Estimation

In probability theory, we always assumed that we knew some probabilities,
and we computed other probabilities or related quantities from those. On
the other hand, in mathematical statistics, we use observed data to compute
probabilities or related quantities or to make decisions or predictions.

The problems of mathematical statistics are classified as parametric or
nonparametric, depending on how much we know or assume about the distri-
bution of the data. In parametric problems, we assume that the distribution
belongs to a given family, for instance, that the data are observations of val-
ues of a normal random variable, and we want to determine a parameter or
parameters, such as μ or σ. In nonparametric problems, we make no assump-
tion about the distribution and want to determine either single quantities
like E(X) or the whole distribution, that is, F (x) or f(x), or to use the data
for decisions or predictions.

We begin with some essential terminology. First, we restate and somewhat
expand Definition 7.2.3:

Definition 8.1.1. Random Sample, Statistic, Sample Mean, and
Sample Variance. n independent and identically distributed (abbreviated:
i.i.d.) random variables X1, . . . , Xn are said to form a random sample of size
n from their common distribution. Any function g (X1, . . . , Xn) of the sam-
ple variables is called a statistic. The particular statistics Xn = 1

n

∑
Xi and

Σ̂2 = 1
n

∑n
i=1

(
Xi −Xn

)2
are called the sample mean and sample variance,

respectively. The probability distribution of a statistic is sometimes called a
sampling distribution.

Suppose that the common p.f. or p.d.f. of the Xi is f(x) or, if we want to
indicate the dependence on a parameter, f(x; θ). We shall denote the joint
p.f. or p.d.f. of (X1, . . . , Xn) by fn(x) or fn(x; θ), where we use the vector
abbreviations x = (x1, . . . , xn) for the possible values of X = (X1, . . . , Xn).
We shall use the general notation θ for vector-valued parameters, too, for
example, for (μ, σ) in case of normal Xi.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9 8
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Definition 8.1.2. Estimator and Estimate. Given a random sample X
whose distribution depends on an unknown parameter θ, a statistic g (X) is
called an estimator of θ if, for any observed value x of X, g (x) is considered
to be an estimate of θ. The estimator g (X) is a random variable, and to

emphasize its connection to θ, we sometimes denote it by Θ̂. The observed
value g (x) is a number (or a vector), which we also denote by θ̂.

The most commonly used method for obtaining estimators and estimates
is the following.

Definition 8.1.3. Method of Maximum Likelihood. Consider a random
sample X whose distribution depends on an unknown parameter θ. For any
fixed x, the function fn(x; θ) regarded as a function L(θ) of θ, is called the

likelihood function of θ. A value θ̂ of θ that maximizes L(θ) is called a max-

imum likelihood estimate of θ. In many important applications, θ̂ exists, is
unique, and is a function of x. For θ̂ = g (x) , we call the random variable

Θ̂ = g (X) the maximum likelihood estimator of θ. We abbreviate both maxi-
mum likelihood estimate and maximum likelihood estimator as MLE.

The reasoning behind this method is that we feel that the most likely
value, among the various possible values of θ, should be one that makes the
probability (or probability density) of the observed x as high as possible. For
example, consider a sample of just one observation x from a normal distri-
bution with unknown mean μ (the general parameter θ is now μ) and known
σ. If we observe x = 2, then among the p.d.f. curves shown in Figure 8.1, the
right-most one, with μ = 2, is the most likely to have generated this x, and
so we choose μ̂ = 2, because that choice gives the highest probability to X
being near the observed x = 2.

0.1

0.2

0.3

0-3 -2 -1 1 2 3 4            x

Fig. 8.1. Three possible p.d.f.’s from which the observation x = 2 was generated.
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Next, we present several examples of the use of the method.

Example 8.1.1. Estimating the Probability of an Event.

Consider any event A in any probability space and let p denote its un-
known probability. Let X be a Bernoulli r.v. with parameter θ = p so that
X = 1 if A occurs and 0 otherwise. (Such an X is called the indicator func-
tion of A.) To estimate p, we perform the underlying experiment n times and
observe the corresponding i.i.d. Bernoulli random variables X1, . . . , Xn. The
p.f. of Xi can be written as

f(xi; p) = pxi (1− p)
1−xi for xi = 0, 1. (8.1)

Hence the likelihood function of p is

L (p) = fn(x; p) =
n∏

i=1

pxi (1− p)
1−xi = p

∑
xi (1− p)

n−∑
xi . (8.2)

To find the maximum of L (p), we may differentiate ln (L (p)):

ln (L (p)) =
∑

xi ln p+
(
n−

∑
xi

)
ln (1− p) , (8.3)

and

d

dp
ln (L (p)) =

∑
xi

1

p
−
(
n−

∑
xi

) 1

1− p
. (8.4)

Setting this expression to 0, dividing by n, and writing xn = 1
n

∑
xi, we get

xn
1

p
− (1− xn)

1

1− p
= 0. (8.5)

This equation gives the critical value p = xn. The second derivative would
show that L has a maximum there, as required. Thus, our maximum like-
lihood estimate of p is p̂ = xn, and the corresponding maximum likelihood
estimator is P̂ = Xn. �

The estimator above is used to estimate the mean (if it exists) of arbitrary
random variables as well and has two noteworthy properties:

1. It is unbiased, that is, its expected value is the true (though usually
unknown) value of the parameter: E

(
Xn

)
= μ, by Equation 6.88. (In

the Bernoulli case μ = p.)
2. It is consistent, meaning that it converges to μ in probability as n →

∞, that is, limn→∞ P
(∣∣Xn − μ

∣
∣ < ε

)
= 1, by the law of large numbers,

Theorem 6.2.7.
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Example 8.1.2. Estimating the Mean of a Normal Distribution
with Known Variance.

For a random sample from an N(μ, σ2) distribution with known σ and
unknown μ, the likelihood function of μ is

L (μ) = fn(x;μ) =

n∏

i=1

1√
2πσ

e−(xi−μ)2/2σ2

=

(
1√
2πσ

)n

e−
∑

(xi−μ)2/2σ2

.

(8.6)

Clearly, this function takes on its maximum when

g(μ) =
1

2σ2

n∑

i=1

(xi − μ)
2

(8.7)

is minimum. Differentiating and setting g′(μ) to zero, we get

g′(μ) = − 1

2σ2

n∑

i=1

2 (xi − μ) = 0, (8.8)

from which

n∑

i=1

xi − nμ = 0. (8.9)

Hence μ = 1
n

∑
xi = xn is the critical value of μ. Since g′′(μ) = n

σ2 > 0, the
function g has a minimum and the function L a maximum at μ̂ = xn.

Thus, again, the maximum likelihood estimate is xn, and the maximum
likelihood estimator is M̂ = Xn, with the same two properties that were
mentioned at the end of the preceding example. �

Example 8.1.3. Estimating the Mean and Variance of a Normal
Distribution.

For a random sample from an N(μ, σ2) distribution with unknown μ and
σ, the likelihood function is a function of two variables, or, in other words,
the parameter θ may be regarded as the two-dimensional vector

(
μ, σ2

)
or as

(μ, σ). Thus

L (μ, σ) = fn(x;μ, σ) =

n∏

i=1

1√
2πσ

e−(xi−μ)2/2σ2

=

(
1√
2πσ

)n

e−
∑

(xi−μ)2/2σ2

.

(8.10)

Now, we need to set the two partial derivatives of L equal to zero and
solve the resulting two equations simultaneously. The solution of ∂L

∂μ = 0
turns out to be independent of σ and exactly the same as in the previous
example. So, we get μ̂ = xn again.
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To solve ∂L
∂σ = 0, we use logarithmic differentiation:

lnL (μ, σ) = −n ln
√
2π − n lnσ − 1

2σ2

n∑

i=1

(xi − μ)
2

(8.11)

and

∂

∂σ
lnL (μ, σ) = −n

σ
+

1

σ3

n∑

i=1

(xi − μ)
2
= 0, (8.12)

which yields

σ =

(
1

n

n∑

i=1

(xi − μ)
2

)1/2

. (8.13)

Using the second derivative test for functions of two variables, we could show
that L has a maximum at these values of μ and σ.

Hence the MLE of the standard deviation is

σ̂ =

(
1

n

n∑

i=1

(xi − xn)
2

)1/2

. (8.14)

We leave it as an exercise to show that the MLE σ̂2 of the variance equals σ̂2.
Next, we are going to show that the corresponding estimator, the sample

variance

Σ̂2 =
1

n

n∑

i=1

(
Xi −Xn

)2
(8.15)

is biased.
Let us first reformulate the sum in the above expression:

n∑

i=1

(
Xi −Xn

)2
=

n∑

i=1

X2
i − 2Xn

n∑

i=1

Xi + nX
2

n. (8.16)

Substituting
∑n

i=1 Xi = nXn in the middle term on the right, we get

n∑

i=1

(
Xi −Xn

)2
=

n∑

i=1

X2
i − nX

2

n. (8.17)

Hence

E

(
1

n

n∑

i=1

(
Xi −Xn

)2
)

=
1

n

n∑

i=1

E
(
X2

i

)− E
(
X

2

n

)
. (8.18)
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Using Equations 6.75 and 6.88, we obtain

E

(
1

n

n∑

i=1

(
Xi −Xn

)2
)

=
1

n

n∑

i=1

[
V ar

(
X2

i

)
+ μ2

]−
[
V ar

(
X

2

n

)
+ μ2

]

=
1

n

n∑

i=1

[
σ2 + μ2

]− σ2

n
− μ2 =

n− 1

n
σ2.

(8.19)

As the above formula shows, we can define an unbiased estimator of the
variance by

V̂ =
n

n− 1
Σ̂2 =

1

n− 1

n∑

i=1

(
Xi −Xn

)2
, (8.20)

and this is the estimator used by most statisticians, together with the corre-
sponding estimate v̂ instead of σ̂2. In fact, many books call this V̂ the sample
variance, and most statistical calculators have keys for both v̂ and σ̂2. For
large n, the two estimates differ very little, and the choice is really arbitrary
anyway. In principle, however, σ̂2 seems more natural, and although V̂ is an

unbiased estimator of the variance,
√

V̂ is not an unbiased estimator of the
standard deviation.1 �

Let us note that the sample variance (in either form), just as the sample
mean, is used to estimate the variance (if it exists) of arbitrary random

variables and not just of normal ones. The proof above shows that V̂ is
unbiased for those too, and both Σ̂2 and V̂ are consistent by the central
limit theorem.

Example 8.1.4. Estimating the Upper Bound of a Uniform Distri-
bution.

Let X be uniform on the interval [0, θ], with the value of the parameter
θ unknown. Then the p.f. of X is given by

f (x; θ) =

{
1
θ if 0 ≤ x ≤ θ
0 otherwise,

(8.21)

and so the likelihood function is given by

L (θ) =

{
1
θn if 0 ≤ xi ≤ θ for i = 1, . . . n
0 otherwise.

(8.22)

Since 1
θn is a decreasing function of θ, its maximum occurs at the smallest

value of θ that the inequalities xi ≤ θ allow. (Recall from calculus that

1 The requirement that an estimator be unbiased can lead to absurd results. See
M. Hardy, An illuminating counterexample, Am. Math. Monthly 110 (2003)
234–238.
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the maximum of a continuous function on a closed interval may occur at
an endpoint of the interval, rather than at a critical point.) Thus the MLE
estimate of θ must be the largest observed value xi, that is,

θ̂ = max {x1, . . . , xn} . (8.23)

Note, however, the curious fact that if X were defined to be uniform on
the open interval (0, θ) , rather than on the closed interval, then the MLE
would not exist, because then we would have to maximize L (θ) subject to
the conditions 0 < xi < θ and so max {x1, . . . , xn} would not be a possible
value for θ. �

For all its many successes and popularity, the method of maximum like-
lihood does not always work. In some cases, the maximum does not exist or
is not unique.

Often another method, the method of moments is used to find estimators.
This method consists of expressing a parameter as a function of the moments
of the r.v. and using the same function of the sample moments as an estimator
of the parameter.

Example 8.1.5. Estimating the Parameter of an Exponential Dis-
tribution.

Consider an exponential r.v. X with parameter λ. Then, by 6.1.5, λ =
1/E (X). Hence, according to the method of moments, we estimate λ by

Λ̂ = 1/Xn. On the other hand, by Equation 6.80, λ = 1/SD(X) as well, and

so we could also estimate λ by 1/Σ̂. �

Example 8.1.6. Estimating the Parameter of a Poisson Distribu-
tion.

Consider a Poisson r.v. X with parameter λ. Then, by Theorem 7.1.2
λ = E (X) = V ar (X). Thus, the method of moments suggests the estimator

Λ̂ = Xn or Λ̂ = Σ̂2. �

Another popular method for obtaining estimators is based on Bayes’ the-
orem, but we shall not discuss it here.

On the other hand, even the best estimator can be off the mark. For
instance, if we toss a fair coin, say, ten times, we may easily get six heads, and
so by Example 8.1.1, we would estimate p as 0.6. Consequently, we want to
know how much confidence we can have in such an estimate. This question is
usually answered by constructing intervals around the estimate so that these
intervals cover the true value of the parameter with a given high probability.
In other words, we construct interval estimates instead of point estimates.
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Example 8.1.7. Interval Estimates of the Mean of a Normal Dis-
tribution with Known Variance.

Let Xi be i.i.d. N(μ, σ2) random variables for i = 1, . . . , n. Then, by
Corollary 7.2.3, the sample mean Xn is N(μ, σ2/n), and so

P

(∣∣
∣
∣
Xn − μ

σ/
√
n

∣
∣
∣
∣ < c

)
= 2Φ (c)− 1 (8.24)

for any c > 0, or, equivalently,

P

(
Xn − c

σ√
n
< μ < Xn + c

σ√
n

)
= 2Φ (c)− 1. (8.25)

If we assume that σ is known and μ is unknown, then Equation 8.25 can

be interpreted as saying that the random interval
(
Xn − c σ√

n
, Xn + c σ√

n

)

contains the unknown, but fixed, parameter μ with probability 2Φ (c)−1. We
must emphasize that this statement is different from our usual probability
statements in which we were concerned with a random variable falling in a
fixed interval. Here the μ is fixed, and the endpoints of the interval are random
variables, because Xn is a statistic computed from a random sample.

Now, if we observe a value xn ofXn, then the fixed, and no longer random,
interval

(
xn − c

σ√
n
, xn + c

σ√
n

)
(8.26)

is called a confidence interval for μ with confidence coefficient or level γ =
2Φ (c)−1, or a 100γ percent confidence interval. We cannot say that μ falls in
this interval with probability γ, because neither μ nor the interval is random,
and that is why we use the word “confidence” rather than “probability.”
The corresponding probability statement, Equation 8.25, implies that if we
observe many such confidence intervals from different samples, that is, with
different observed values for xn, then approximately 100γ percent of them
will contain μ. Whether a single such interval will contain μ or not, we usually
cannot say. What we can always say is that, by its definition, our interval is
a member of a large set of similar potential intervals, 100γ percent of which
do contain μ.

It was natural for us to start our discussion of confidence intervals with
an arbitrary value for c, but, in applications, it is more common to start with
given confidence coefficients γ. Then c can be computed as

c = Φ−1

(
γ + 1

2

)
. (8.27)

Thus, for instance, if we want a 95% confidence interval for μ, then
γ = .95 yields c = Φ−1

(
1.95
2

)
= Φ−1 (.975) ≈ 1.96, that is, c will be

the 97.5th percentile of the standard normal distribution, which is ap-
proximately 1.96. Hence, for an observed sample mean xn, the interval(
xn − 1.96 σ√

n
, xn + 1.96 σ√

n

)
is a 95% confidence interval for μ. �

We generalize the concepts introduced in the above example as follows.
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Definition 8.1.4. Confidence Intervals. Consider a random sample X
whose distribution depends on an unknown parameter θ and two statistics
A = g1 (X) and B = g2 (X) with A < B. If a and b are any observed values
of A and B and P(A < θ < B) = γ, then (a, b) is called a 100γ percent
confidence interval for θ, and γ the confidence coefficient or confidence level
of the interval (a, b).2 If A = −∞ or B = ∞, then (−∞, b) and (a,∞) are
called one-sided confidence intervals.

The construction in Example 8.1.7 of confidence intervals for the mean of
a normal distribution can be used for the mean of other distributions or with
unknown σ, in case of large samples, when the CLT is applicable. In case σ
is unknown, we just use σ̂ from Equation 8.14 in Equation 8.25.

Example 8.1.8. Confidence Interval for the Probability of an Event.

As in Example 8.1.1, consider any event A in any probability space and let
p denote its unknown probability. Let X be a Bernoulli r.v. with parameter
p so that X = 1 if A occurs and 0 otherwise. To estimate p, we perform the
underlying experiment n times and observe the corresponding i.i.d. Bernoulli
random variables X1, . . . , Xn. As in Example 8.1.1, let P̂ = Xn and p̂ = xn.
We use the sample variance (Equation 8.15) as the estimator of the variance
of X. In the present case,

∑n
i=1 X

2
i =

∑n
i=1 Xi because each Xi is 0 or 1,

and so

Σ̂2 =
1

n

n∑

i=1

(
Xi −Xn

)2
=

1

n

n∑

i=1

X2
i −X

2

n

=
1

n

n∑

i=1

Xi −X
2

n = Xn −X
2

n = P̂
(
1− P̂

)
. (8.28)

Having observed the values x1, . . . , xn, we use the corresponding estimate

σ̂2 = p̂ (1− p̂) (8.29)

of σ2. Notice that this estimate is the same as that which we would get by
replacing p in Equation 6.89 by p̂.

Now, if n is large, then, by the de Moivre-Laplace theorem, the distribu-
tion of P̂ = Xn is approximately normal, and so, for any c > 0, the interval

(

p̂− c

√
p̂ (1− p̂)

n
, p̂+ c

√
p̂ (1− p̂)

n

)

(8.30)

from Example 8.1.7 is an approximate confidence interval for p with confi-
dence level γ = 2Φ (c)− 1, provided both endpoints lie between 0 and 1.

2 Some people use a slightly different terminology. They call the random interval
(A,B) a confidence interval and (a, b) its observed value.
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If one of the endpoints lies outside [0, 1] , then, since p is a probability, we

use a one-sided confidence interval. For instance, if p̂ + c
√

p̂(1−p̂)
n > 1, then

the interval
(

p̂− c

√
p̂ (1− p̂)

n
, 1

)

(8.31)

is an approximate confidence interval for p with confidence level γ = 1−Φ (−c)
= Φ (c) , because

γ = P

(

P̂ > p̂− c

√
p̂ (1− p̂)

n

)

= P

⎛

⎝ P̂ − p̂
√

p̂(1−p̂)
n

> −c

⎞

⎠ ≈ P (Z > −c) .

(8.32)

�

As can be seen from the general definition, a confidence interval does not
have to be symmetric about the estimate. In the examples above, however,
the symmetric confidence interval was the shortest one. On the other hand,
in some applications, we are interested in one-sided confidence intervals, as
in the example below.

Example 8.1.9. Voter Poll.

Suppose a politician obtains a poll that shows that 52% of 400 likely
voters, randomly selected from a much larger population, would vote for
him. What confidence can he have that he would win the election, assuming
that there are no changes in voter sentiment until election day?

We need the same setup as in Example 8.1.8. We know the sample size
n and the proportion p̂ of favorable voters in the sample and want to find
the confidence level of the winning interval3 (.50, ∞) for the proportion p of
favorable voters in the voting population.

The normal approximation gives

P

(
Xn − p

σ/
√
n

< c

)
= Φ (c) , (8.33)

for any c > 0, or, equivalently,

P

(
Xn − c

σ√
n
< p

)
= Φ (c) . (8.34)

Thus, with p̂ = xn and σ̂2 = p̂ (1− p̂) , the interval

(
p̂− c

√
p̂(1−p̂)

n , ∞
)

is a

γ = Φ (c) level confidence interval for p.

3 Of course, a probability cannot be greater than 1, and so the upper limit of the
interval should be 1 rather than ∞, but the normal approximation gives only
a minuscule probability to the (1,∞) interval, and we may therefore ignore this
issue.
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From the given data, p̂ = .52 and n = 400 and so

(

p̂− c

√
p̂ (1− p̂)

n
, ∞

)

= (0.52− 0.02498c, ∞) . (8.35)

The politician wants to know the confidence level of the (0.50, ∞) inter-
val. So, we need to solve 0.52 − 0.02498c = 0.50, and we get c = 0.80 and
γ = Φ (0.80) = 0.788. Thus, by this poll, he can have approximately 78.8%
confidence in winning the election. �

Exercises

Exercise 8.1.1.

In Equation 8.158, replace σ2 by v and differentiate with respect to v to

show that the MLE σ̂2 = v̂ of the variance equals σ̂2.

Exercise 8.1.2.

Find the MLE for the parameter λ of an exponential r.v.

Exercise 8.1.3.

Show that σ̂2, as given by Equation 8.14 for a normal r.v.X and n distinct
values x1, . . . , xn, equals the variance of a discrete r.v. X∗ with n distinct,
equally likely possible values x1, . . . , xn.

Exercise 8.1.4.

Find the MLE λ̂ for the parameter λ of a Poisson r.v. (Note that this
MLE does not exist if all observed values equal 0.)

Exercise 8.1.5.

Let X be a continuous r.v. whose p.d.f., for λ > 0, is given by

f (x;λ) =

{
λxλ−1 if 0 < x < 1

0 otherwise.
(8.36)

a) Find the MLE for the parameter λ.
b) Find an estimator for λ by the method of moments. (Hint: First compute

E(X).)
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Exercise 8.1.6.

Let X be uniform on the interval [θ1, θ2]. Find the MLEs of θ1 and θ2.
(Hint: The extrema occur at the endpoints of an interval.)

Exercise 8.1.7.

Let X be uniform on the interval (0, θ). Show that
Θ = n+1

n max(X1, . . . , Xn) is an unbiased estimator of θ.

Exercise 8.1.8.

A random sample of 50 cigarettes of a certain brand of cigarettes is tested
for nicotine content. The measurements result in a sample mean μ̂ = 20mg
and sample SD σ̂ = 4mg. Find 90, 95, and 99% confidence intervals for the
unknown mean nicotine content μ of this brand, using the normal approxi-
mation.

Exercise 8.1.9.

A random sample of 500 likely voters in a city is polled, and 285 are found
to be Democrats. Find 90, 95, and 99% approximate confidence intervals for
the percentage of Democrats in the city.

Exercise 8.1.10.

In a certain city, the mathematics SAT scores of a random sample of 100
students are found to have mean μ̂1 = 520 in 2002, and of another random
sample of 100 students, μ̂2 = 533 in 2003, with the same SD σ̂1 = σ̂2 = 60
in both years. The question is whether there is a real increase in the average
score for the whole city, or is the increase due only to chance fluctuation in
the samples. Find the confidence level of the one-sided confidence interval
(0,∞) for the difference μ = μ2 − μ1. Use the normal approximation and
σ̂2 = σ̂2

1 + σ̂2
2 . What conclusion can you draw from the result?

8.2 Testing Hypotheses

In many applications, we do not need to estimate the value of a parameter
θ, we just need to decide which of two nonoverlapping sets, Ω0 or ΩA, it is
likely to lie in. The assumption that it falls in Ω0 is called the null hypothesis
H0 and that it falls in ΩA, the alternative hypothesis HA.
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Often, we want to test some treatment of the population under study, and
then the null hypothesis corresponds to the assumption that the treatment
has no effect on the value of the parameter, while the alternative hypothesis
to the assumption that the treatment has an effect. In other cases, we may
compare two groups and then the null hypothesis corresponds to the assump-
tion that there is no difference between certain parameters for the two groups,
while the alternative hypothesis corresponds to the assumption that there is
a difference. Based on a test statistic Y from sample data, we wish to accept
one of these hypotheses for the population(s) and reject the other. In this
section, we consider only one-point sets for H0, of the form Ω0 = {θ0}. Such
a hypothesis is called simple. Any hypothesis that corresponds to more than
one θ value is called composite. HA is mostly considered to be composite,
with ΩA of the form {θ|θ < θ0} , {θ|θ > θ0} or {θ|θ 	= θ0}. The distribution
of a test statistic Y under the assumption H0 is called its null distribution.

Example 8.2.1. Cold Remedy.

Suppose a drug company wants to test the effectiveness of a proposed
new drug for reducing the duration of the common cold. The drug is given to
n = 100 randomly selected patients at the onset of their symptoms. Suppose
that the length of the illness in untreated patients has mean μ0 = 7 days and
SD σ = 1.5 days. Let X denote the average length of the cold in a sample of
100 treated patients, and, say, we observe X = 5.2 in the actual sample. This
example fits in the general scheme by the identifications θ = μ and Y = X.

The question is: Is this reduction just chance variation due to randomness
in the sample, or is it real, that is, due to the drug? In other words, we want
to decide whether the result X = 5.2 is more likely to indicate that the
sample comes from a population with mean μ = 7 or one with reduced mean
μ < 7. (One may think of this population as the millions of possible users of
this drug. Would they see a reduced duration on average?) More precisely,
we assume that X is normally distributed (by the CLT, even if the individual
durations are not) with SD σ/

√
n, but with an unknown mean μ. Then we

want to decide, based on the observed value of the estimator X of μ, which
of the hypotheses μ = μ0 or μ < μ0 to accept. The first of these conditions
is H0 and the second one is HA. (To be continued.) �

Example 8.2.2. Weight Reduction.

We want to test the effectiveness of a new drug for weight reduction and
administer it, say, to a random sample of 36 adult women for a month. Let X
denote the average weight loss (as a positive value) of these women from the

beginning to the end of the month and Σ̂ the sample SD of the weight losses.
Suppose we observe X = 1.5 lbs. and Σ̂ = 4 lbs. By the CLT, we assume
that the average weight loss of these women is normally distributed, and we
estimate σ by the observed value of σ̂ = 4 lbs. The mean weight loss μ (of a
hypothetical population, from which the sample is drawn) is unknown, and
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we want to decide whether the observed X value supports the null hypothesis
μ = 0, that is, whether the observed average weight reduction is just chance
variation due to randomness in the sample or it supports the alternative
hypothesis μ > 0, that the reduction is real, that is, caused by the drug. (To
be continued.) �

Now, how do we decide which hypothesis to accept and which to reject?
We use a test statistic Y , like X in the examples above, which is an estimator
of the unknown parameter θ, and designate a set C such that we reject H0

and accept HA when the observed value of Y falls in C, and accept H0 and
reject HA otherwise. We allow no third choice.4 This procedure is called a
(statistical) test, and the set C is called the rejection region (we reject H0)
or the critical region of the test.5

The set C is usually taken to be an interval of the type [c,∞) or (−∞, c]
or the union of two such intervals. Which of these types of sets to use as C,
is determined by the alternative hypothesis. If HA is of the form μ < μ0, as
in Example 8.2.1, then HA is supported by small values of X, and so we take
C to be of the form (−∞, c]. On the other hand, as in Example 8.2.2, if HA

is of the form μ > μ0, then HA is supported by large values of X, and so we
take C to be of the form [c,∞). Finally, if HA is of the form μ 	= μ0, then we
take C = [μ0 + c,∞) ∪ (−∞, μ0 − c]. (In this section, we assume that H0 is
of the form μ = μ0.)

To complete the description of a test, we still need to determine the value
of the constant c in the definition of the critical region. We determine c from
the probability of making the wrong decision.

There are two types of wrong decisions that we can make: rejecting H0,
when it is actually true, which is called an error of type 1, and accepting H0

when HA is true, which is called an error of type 2. In the examples above,
a type 1 error would mean that we accept an ineffective drug, while a type
2 error would mean that we reject a good drug. The usual procedure is to
prescribe a small value α for the probability of an error of type 1 and devise
a test, that is, a rejection region C, such that the probability of Y falling in
C is α if H0 is true. The probability α of a type 1 error is called the level of
significance of our test. Thus

α = P
(
X ∈ C|H0

)
= P(type 1 error). (8.37)

α is traditionally set to be 5% or 1%, and then, knowing the distribution
of X when H0 is true, we use Equation 8.37 to determine the set C.

4 However, some statisticians prefer to say “do not reject H0” rather than “accept
H0” when the test gives just weak evidence in favor of H0, and they imply or
say that the test is inconclusive or that further testing is needed.

5 In some books, the rejection region is defined to be the set in the n-dimensional
space of sample data that corresponds to C.
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For α = 5%, we call the observed value of Y, if it does fall in C, statistically
significant, and if α is set at 1% and Y is observed to fall in C, then we call
the result (that is, the observed value of Y , supporting HA) highly significant.

In most cases, statistical tests are based on consideration of type 1 errors
alone, as described above. The reason for this is, that we usually want to
prove that a new procedure or drug is effective and we publish or use it only
if the statistical test rejects H0. But in that case we can commit only a type
1 error, i.e., we reject H0 wrongly. In fact, most medical or psychological
journals will accept only statistically significant results.

Nevertheless, in some situations, we want or have to accept H0 and then
type 2 errors may arise. We shall discuss them in the next section.

We are now ready to set up the tests for our earlier examples.

Example 8.2.3. Cold Remedy, Continued.

Our test statistic is X, which we take to be a normal r.v., because n is
sufficiently large for the CLT to apply. Because of this use of the CLT, a test
of this kind is called a large-sample Z-test.

We are interested in the probability of a type 1 error, that is, of wrongly
rejecting H0 : μ = 7, that the drug is worthless, when it actually is worthless.
So, we assume that H0 is true and take the parameters of the distribution
of X to be μ0 and σ/

√
n, which in this case are 7 and 1.5/

√
100 = 0.15,

respectively. Since HA is of the form μ < μ0, we take the rejection region to
be of the form (−∞, c], that is, we reject H0 if X ≤ c. We determine c from
the requirement

P
(
X ≤ c|H0

)
= α. (8.38)

Setting α = 1%, we have

P
(
X ≤ c|H0

)
= P

(
X − 7

0.15
≤ c− 7

0.15

)
≈ Φ

(
c− 7

0.15

)
= .01. (8.39)

Hence

c− 7

0.15
= Φ−1 (.01) ≈ −2.33 (8.40)

and

c ≈ 7− 2.33 · 0.15 ≈ 6.65. (8.41)

Thus, the observed value X = 5.2 is ≤ c, and this result is highly signif-
icant. In other words, the null hypothesis, that the result is due to chance,
is rejected, and the drug is declared effective. (Whether the reduction of the
mean length of the illness from 7 to 5.2 days is important or not, is a different
matter, on which statistical theory has nothing to say. We must not mistake
statistical significance for importance. The terminology is misleading: a highly
significant result may be quite unimportant; its statistical significance just
means that the effect is very likely real and not just due to chance.) �
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Example 8.2.4. Weight Reduction, Continued.

Our test statistic is again X, which we assume to be normal with mean
μ0 = 0 and SD σ̂/

√
n = 4/6. Since HA is of the form μ > μ0, we take the

rejection region to be of the form [c,∞), that is, we reject H0 if X ≥ c. We
determine c from the requirement

P
(
X ≥ c|H0

)
= α. (8.42)

Setting α = 1%, we have

P
(
X ≥ c|H0

) ≈ P

(
X − 0

0.667
≥ c− 0

0.667

)
≈ 1− Φ

( c

0.667

)
= .01. (8.43)

Hence

c

0.667
= Φ−1 (.99) ≈ 2.33 (8.44)

and

c ≈ 2.33 · 0.667 ≈ 1.55. (8.45)

Thus, the observed value X = 1.5 is < c, and this result is not highly
significant. At this 1% level, we accept H0.

On the other hand, setting α = 5%, we determine c from

P
(
X ≥ c|H0

) ≈ P

(
X − 0

0.667
≥ c− 0

0.667

)
≈ 1− Φ

( c

0.667

)
= .05, (8.46)

and we get

c

0.667
= Φ−1 (.95) ≈ 1.645 (8.47)

and

c ≈ 1.645 · 0.667 ≈ 1.10. (8.48)

Thus, the observed value X = 1.5 is ≥ c, and so this result is significant,
though, as we have seen above, not highly significant.

In other words, the null hypothesis, that the result is due to chance, is
rejected at the α = 5% level but accepted at the α = 1% level. The drug may
be declared probably effective, but perhaps more testing, that is, a larger
sample, is required.

Presenting the result of a test only as the rejection or acceptance of the
null hypothesis at a certain level of significance, does not make full use of
the information available from the observed value of the test statistic. For
instance, in this example, the observed value X = 1.5 was very close to the
c = 1.55 value required for a highly significant result, but this information is
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lost if we merely report what happens at the 1% and 5% levels. In order to
convey the maximum amount of information available from an observation,
we usually report the lowest significance level at which the observation would
lead to a rejection of H0. Thus, we report P

(
X ≥ c|H0

)
for the observed value

c of X. This probability is called the observed significance level or P-value of
the result. In the last example it is

P
(
X ≥ 1.55|H0

) ≈ P

(
X − 0

0.667
≥ 1.55− 0

0.667

)
≈ 1− Φ

(
1.55

0.667

)
≈ 0.0102.

(8.49)

�
In general, we make the following definition:

Definition 8.2.1. P-Value. The observed significance level or P-value of a
result involving a test statistic Y is defined as P(Y ∈ C|H0) with the critical
region C being determined by the observed value c of Y .

In Example 8.2.1, for instance, with c = 5.2, the P-value is

P
(
X ≤ 5.2|H0

)
= P

(
X − 7

0.15
≤ 5.2− 7

0.15

)
≈ Φ (−12) ≈ 0, (8.50)

which calls for the rejection of H0 with virtual certainty, in contrast to the
relatively anemic 1% obtained above in the weight reduction example.

We summarize the Z-test in the following definition:

Definition 8.2.2. Z-Test. We use this test for the unknown mean μ of a
population if we have a) a random sample of any size from a normal distribu-
tion with known σ or b) a large random sample from any distribution so that
X is nearly normal by the CLT. The null hypothesis is H0 : μ = μ0, where
μ0 is the μ-value we want to test against one of the alternative hypotheses
HA : μ > μ0, μ < μ0, or μ 	= μ0. The test statistic is

Z =
X − μ0

σ/
√
n

(8.51)

in case (a), and

Z =
X − μ0

σ̂/
√
n

(8.52)

in case (b), where σ̂ is given by Equation 8.14. Let z denote the observed value
of Z, that is, the value computed from the actual sample, that is z = x−μ0

σ/
√
n
or

z = x−μ0

σ̂/
√
n
, where x is the observed value of the random variable X.

Then, for HA : μ < μ0 the P-value is Φ (z) , for HA : μ > μ0 the P-value
is 1− Φ (z) , and for HA : μ 	= μ0 the P-value is 2 (1− Φ (|z|)).

We reject H0 if the P-value is small and accept it otherwise.
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Example 8.2.5. Testing Fairness of a Coin; a Two-Tailed Test.

Suppose we want to test whether a certain coin is fair or not. We toss it
n = 100 times and want to use the relative frequency X of heads obtained as
our test statistic. We want to find the rejection region that results in a level
of significance α = .05.

X is binomial, but by the CLT, we can approximate its distribution with
a normal distribution with parameters μ = p = P(H) and σ =

√
pq/100.

The hypotheses we want to test are H0 : p = .5 and HA : p 	= .5. Thus,

for H0, σ =
√

1
2 · 1

2 · 1
100 = .05. The rejection region should be of the form

C = (−∞, .5 − c] ∪ [.5 + c,∞) = (.5− c, .5 + c). The requirement α = .05
translates into finding c such that

P (C|H0) = P
(|X − .5| > c

)
= P

( |X − .5|
.05

>
c

.05

)

≈ P
(
|Z| > c

.05

)
= 2

(
1− Φ

( c

.05

))
= .05, (8.53)

or

Φ
( c

.05

)
= 0.975. (8.54)

Hence c/.05 ≈ 1.96 and c ≈ .098. So, we accept H0, that is, declare the coin
fair, if X falls in the interval (0.402, 0.598) , and reject H0 otherwise. �

In many statistical tests, we have to use distributions other than the
normal, as in the next example.

Example 8.2.6. Sex Bias in a Jury .

Suppose the 12 members of a jury were selected randomly from a large
pool of potential jurors consisting of an equal number of men and women,
and the jury ends up with three women and nine men. We wish to test
the hypothesis H0 that the probability p of selecting a woman is p0 = 1/2,
versus the alternative HA that p < 1/2. Note that H0 means that the jury is
randomly selected from the general population, about half of which consists
of women, and HA means that the selection is done from a subpopulation
from which some women are excluded.

The test statistic we use is the number X of women in the jury. This X
is binomial, and under the assumption H0, it has parameters n = 12 and
p0 = 1/2. The rejection region is of the form {x ≤ c}, and to obtain the
P-value for the actual jury, we must use c = 3. Thus, the P-value is

P (X ≤ 3|H0) =

3∑

k=0

(
12

k

)(
1

2

)12

≈ .073. (8.55)
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So, although the probability is low, it is possible that there was no sex
bias in this jury selection, and we accept the null hypothesis. To be more
certain, one way or the other, we would have to examine more juries selected
by the same process. �

In cases where the sample is small, the distribution is unknown, and the
evidence seems to point very strongly against the null hypothesis; we may
use Chebyshev’s inequality to estimate the P-value, as in the next example.

Example 8.2.7. Age of First Marriage in Ancient Rome.

Lelis, Percy, and Verstraete6 studied the ages of Roman historical figures
at the time of their first marriage. They did this to refute earlier improbably
high age estimates that were based on funerary inscriptions. Others had found
that for women, the epitaphs were written by their fathers up to an average
age of 19 and after that by their husbands and jumped to the conclusion that
women first married at an average age of 19. (A similar estimate of 26 was
obtained for men.)

From the historical record, the ages at first marriage of 26 women were
11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15,
15, 16, 16, 17, 17.

The mean of these numbers is 14.0, and the standard deviation is 1.57.
A random sample of size 26 is just barely large enough to assume that

the average is normally distributed with standard deviation 1.57√
26

≈ 0.31;

nevertheless, we first assume this but then obtain another estimate without
this assumption as well.

This sample, however, is a sample of convenience. We may assume though
that it is close to a random sample, at least from the population of upper
class women. We also assume that marriage customs remained steady during
the centuries covered. (For this reason, we omitted three women for whom
records were available from the Christian era.)

We take the null hypothesis to be that the average is 19 and the alternative
that it is less. With the above assumptions, we can compute the P-value, that
is, the probability that the mean in the sample turns out to be 14 or less if
the population mean is 19, as

P
(
X ≤ 14

)
= P

(
X−19
0.31 ≤ 14−19

0.31

)
≈ Φ

(
14−19
0.31

) ≈ Φ (−16) ≈ 0.

Thus, the null hypothesis must be rejected with practical certainty, unless
the assumptions can be shown to be invalid.

The ridiculously low number we obtained depends heavily on the valid-
ity of the normal approximation, which is questionable. We can avoid it and
compute an estimate for the P-value by using Chebyshev’s inequality (see
Theorem 6.2.6) instead, which is valid for any distribution. Using the latter,

6 A. A. Lelis, W. A. Percy and B. C. Verstraete, The Age of Marriage in Ancient
Rome (The Edwin Mellen Press, 2003)
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we have P
(∣∣Xn − μ

∣
∣ > ε

)
= P

(∣∣Xn − 19
∣
∣ > 5

) ≤ σ2

nε2 ≈ 1.572

26·52 ≈ 3.8 × 10−3.
This estimate, though very crude (in the sense that the true P-value is prob-
ably much lower), is much more reliable than the one above, and it is still
sufficiently small to enable us to conclude that the null hypothesis, of an
average age 19 at first marriage, is untenable.

So, how can one explain the evidence of the tombstones? Apparently,
people were commemorated by their fathers if possible, whether they were
married or not at the time of their deaths, and only after the death of the
father (who often died fairly young) did this duty fall to the spouse. �

In many applications, we analyze the difference of paired observations.
For instance, the difference in the blood pressure of people before and af-
ter administering a drug can be used to test the effectiveness of the drug.
Similarly, differences in twins (both people and animals) are often used to
investigate effects of drugs, when one twin is treated and the other is not. The
genetic similarity of the twins ensures that the observed effect is primarily
due to the drug and not to other factors.

Example 8.2.8. Smoking and Bone Density.

The effect of smoking on bone density was investigated by studying pairs
of twin women.7 A reduction in bone density is an indicator of osteoporosis,
a serious disease, mainly of elderly women, which frequently results in bone
fractures. Among other results, the bone density of the lumbar spine of 41
twin pairs was measured, the twins of each pair differing by 5 or more pack-
years of smoking. (Pack-years of smoking was defined as the lifetime tobacco
use, calculated by the number of years smoked times the average number of
cigarettes smoked per day, divided by 20.) The following mean bone densities
were obtained (SE means the SD of the mean):

Lighter smoker (g/cm2) Heavier smoker (g/cm2) Difference
Mean ± SE 0.795 ± 0.020 0.759 ± 0.021 0.036 ± 0.014

The null hypothesis was that the mean bone densities μ2 and μ1 of the
two populations, the heavier and the lighter smokers, are equal, that is, μ =
μ1 − μ2 = 0 and the alternative that μ > 0. The test statistic is the mean
difference in the sample, which is large enough for the normal approximation
to apply. Thus, the observed z-value is z = 0.036

0.014 ≈ 2.57, and so the P-
value is P(Z2 − Z1 > 2.57) ≈ 1−Φ (2.57) ≈ 0.005, a highly significant result.
Apparently, smoking does cause osteoporosis. �

We shall return to hypothesis testing with different parameters and dis-
tributions in later sections.

7 J. L. Hopper and E. Seeman, The Bone Density of Female Twins Discordant for
Tobacco Use. NEJM, Feb. 14, 1994.
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Exercises

In all questions below where a decision is required, formulate a null and
an alternative hypothesis for a population parameter, set up a test statistic
and a rejection region, compute the P-value, and draw a conclusion whether
to accept or reject the null hypothesis. Use the normal approximation where
possible.

Exercise 8.2.1.

At a certain school, there are many sections of calculus classes. On the
common final exam, the average grade is 66 and the SD is 24. In a section
of 32 students (who were randomly assigned to this section), the average
turns out to be only 53. Is this explainable by chance or does this class likely
come from a population with a lower mean, due to some real effect, like bad
teaching, illness, or drug use?

Exercise 8.2.2.

On a large farm, the cows weigh on the average 520 kilograms. A special
diet is tried for 50 randomly selected cows to increase their weight, which is
then observed to have an average of 528 kilograms and an SD of 25 kilograms.
Is the diet effective?

Exercise 8.2.3.

Assume that a special diet is tried for 50 randomly selected cows and their
weight is observed to increase an average of 10 kilograms with an SD of 20
kilograms. Is the diet effective?

Exercise 8.2.4.

In a certain large town, 10% of the population is black and 90% is white.
A jury pool of 50, supposedly randomly selected people, turns out to be all
white. Is there evidence of racial discrimination here?

Exercise 8.2.5.

As in Example 8.2.7, Lelis et al. also considered 83 Roman men in order
to refute two earlier estimates of 28 and 24 years for the average age at
first marriage. Although this was a sample of convenience, obtained from
historical records of famous men, we may assume that it is a random sample.
They found a sample mean of 21.17 and sample standard deviation 5.47. Does
this sample refute the null hypotheses of μ = 28 and μ = 24?
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Exercise 8.2.6.

Suppose a customer wants to buy a large lot of computer chips. The
manufacturer claims that 99% of the chips are defect-free. The customer
tests a random sample of n = 50 of them and finds one defective chip in the
sample. Use the binomial distribution for the number X of nondefective chips
in the sample to test H0 : p0 = 0.99 versus the alternative HA : p < 0.99,
where p is the probability that a chip is nondefective. Is the claim acceptable?

Exercise 8.2.7.

Let X1, . . . , Xn be a random sample with n = 100, from a population
with σ = 2 and unknown mean μ. Test H0 : μ = μ0 versus HA : μ 	= μ0 by
rejecting H0 if |X − μ0| > c for some c. Find c such that the P-value is 0.05.

8.3 The Power Function of a Test

In the preceding section, we discussed type 1 errors, that is, errors committed
when H0 is true but is erroneously rejected. Here we are going to consider
errors of type 2, that is, errors committed when H0 is erroneously accepted
although HA is true. Whenever we accept H0, we should consider the possi-
bility of a type 2 error.

Since HA is usually composite, that is, corresponds to more than just a
single value of the parameter, we cannot compute the probability of a type
2 error without specifying which value of θ in ΩA this probability β (θ) is
computed for. Thus, with Y denoting the test statistic and C its critical
region (where we reject H0),

β (θ) = P (type 2 error |θ ∈ ΩA) = P
(
Y ∈ C|θ ∈ ΩA

)
. (8.56)

β (θ) is sometimes called the size of a type 2 error for the given value θ.

Definition 8.3.1. Power Function. The power function of a test is the
function given by

π (θ) = P (Y ∈ C|θ) for θ ∈ Ω0 ∪ΩA (8.57)

and the function given by 1 − π (θ) the operating characteristic function of
the test.

The reason for the name “power function” is that for θ ∈ ΩA the value
of the function measures how likely it is that we reject H0 when it should
indeed be rejected, that is, how powerful the test is for such θ.
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The name “operating characteristic function” comes from applying such
tests to acceptance sampling, that is, to deciding whether to accept a lot of
certain manufactured items, by counting the number x of nondefectives in the
sample and accepting the lot if x is greater than some prescribed value and
rejecting it otherwise. Accepting the lot corresponds to accepting H0 that the
manufacturing process operates well enough, and 1− π (θ) = P

(
Y ∈ C|θ) is

its probability. For θ ∈ ΩA, 1− π (θ) = β (θ).
Clearly, if H0 is simple, that is, Ω0 = {θ0} , then

π (θ) =

{
α if θ ∈ Ω0

1− β (θ) if θ ∈ ΩA
. (8.58)

Example 8.3.1. Cold Remedy, Continued.

Let us determine the power function for the test discussed in Exam-
ples 8.2.1 and 8.2.3. In these examples n = 100, θ0 = μ0 = 7, and Y = X,
which is approximately normally distributed with parameters θ = μ, and
SD = .15. For α = .01, we obtained the rejection region C = {x : x ≤ 6.65}.
Thus,

π (μ) = P
(
X ∈ C|μ) = P

(
X ≤ 6.65|μ)

= P

(
X − μ

0.15
≤ 6.65− μ

0.15

)
≈ Φ

(
6.65− μ

0.15

)
for μ ≤ 7, (8.59)

and the graph of this power function is given in Figure 8.2.
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Fig. 8.2. Graph of y = π (μ).

Let us examine a few values of π (μ) as shown in the graph.
For μ = 7, π (7) ≈ .01 = α = P(type 1 error) = probability of accepting

a worthless drug as effective.



302 8. The Elements of Mathematical Statistics

At μ = 6.65, the boundary of the rejection region, π (6.65) = .5, which is
reasonable, because a slightly higher μ would lead to an incorrect acceptance
of H0 and a slightly lower μ to a correct rejection of H0. Thus, at μ = 6.65
we are just as likely to make a correct decision as an incorrect one.

For μ-values between 6.65 and 7, the probability of (an incorrect) rejection
of H0 decreases as it should, because μ is getting closer to μ0 = 7.

For μ ≤ 6.2, π (μ) is almost 1. Apparently, 6.2 is sufficiently far from
μ0 = 7, so that the test (correctly) rejects H0 with virtual certainty.

For μ-values between 6.2 and 6.65, the probability of (a correct) rejection
of H0 decreases from 1 to .5, because the closer the true value of μ is to 6.65,
the less likely it becomes that the test will reject H0.

Note that we could extend π (μ) to μ-values greater than 7, but doing
so would make sense only if we changed H0 from μ = 7 to μ ≥ 7. In this
changed H0, we would have π (μ) < .01 = α for μ > 7. �

Notice that the rejection region C and the power function π (θ) do not
depend on the exact form of H0 and HA. For example, the same C and π (θ)
that we had in the example above could describe a test for deciding between
H0 : 6.9 ≤ μ ≤ 7 and HA : μ ≤ 6.9 as well.

In general, whether H0 is composite or not, we define the size of the test
to be

α = sup
θ∈Ω0

π (θ) = lub P (type 1 error) . (8.60)

In case of a simple H0, that is, for H0 : θ = θ0, this definition reduces to
α = π (θ0).

Example 8.3.2. Testing Fairness of a Coin, Continued.

Here we continue Example 8.2.5. We test whether a certain coin is fair
or not. We toss it n = 100 times and use the relative frequency X of heads
obtained as our test statistic with the normal approximation, to test the
value of the parameter θ = p = P(H). We obtained C = (0.402, 0.598) as
the rejection region for α = .05. Now we want to find the power function for
this test.

By definition π (p) = P
(
X ∈ C|p) , and so

π (p) = P
(
X ≤ 0.402|p)+ P

(
X ≥ 0.598|p)

= P

(
X − p

√
p (1− p) /100

≤ 0.402− p
√

p (1− p) /100

)

+ P

(
X − p

√
p (1− p) /100

≥ 0.598− p
√

p (1− p) /100

)

≈ Φ

(
0.402− p

√
p (1− p) /100

)

+ 1− Φ

(
0.598− p

√
p (1− p) /100

)

. (8.61)
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As can be seen in Figure 8.3, π (p) has its minimum α = .05 at p = 1
2

and equals 0.5 at the boundary points p = 0.402 and p = 0.598 of the
rejection region. For p ≤ 0.3 and p ≥ 0.7, a correct rejection of H0 occurs
with probability practically 1, that is, the probability β (p) = 1 − π (p) of a
type 2 error is near zero there.

�
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Fig. 8.3. Graph of y = π (p).

When we design a test, we want to make the probabilities of both types of
errors small, that is, we want a power function that is small on Ω0 and large
on ΩA. Generally, we have a choice of the values of two variables: the sample
size n and the boundary value c of the rejection region, and so, if we do not
fix n in advance as in the preceding examples, then we can prescribe the size
β (θ) of the type 2 error at some point in the rejection region in addition to
prescribing α. This procedure is illustrated in the next example.

Example 8.3.3. Cold Remedy, Again.

As in Example 8.3.1, we assume θ0 = μ0 = 7, and an approximately
normal T = X with mean θ = μ but SD = 1.5/

√
n. With the rejection

region of the form C = (−∞, c) , we want to determine c and n such that
α = .01 and β (6) = .01 as well. These conditions amount to

P
(
X ≤ c|μ = 7

)
= P

(
X − 7

1.5/
√
n
≤ c− 7

1.5/
√
n

∣
∣
∣
∣μ = 7

)
≈ Φ

(
c− 7

1.5/
√
n

)
= .01

(8.62)

and

P
(
X ≥ c|μ = 6

)
= P

(
X − 6

1.5/
√
n
≥ c− 6

1.5/
√
n

∣
∣
∣
∣μ = 6

)
≈ 1−Φ

(
c− 6

1.5/
√
n

)
= .01.

(8.63)
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Hence
c− 7

1.5/
√
n
= Φ−1 (.01) = −2.3263 (8.64)

and
c− 6

1.5/
√
n
= Φ−1 (.99) = 2.3263. (8.65)

These two equations are solved (approximately) by c = 6.5 and n = 49, which
yield the power function

π (μ) = P
(
X ∈ C|μ) = P

(
X ≤ 6.5|μ)

= P

(
X − μ

1.5/7
≤ 6.5− μ

1.5/7

)
≈ Φ

(
6.5− μ

1.5/7

)
for μ ≤ 7, (8.66)

whose graph is shown in Figure 8.4.

0

0.2

0.4

0.6

0.8

1

y

6.2 6.4 6.6 6.8 7µ

Fig. 8.4. Graph of y = π (μ).

This graph is much flatter than Figure 8.2, because here we are satisfied
with less accuracy than in Example 8.3.1. Here we required β (6) = .01, but in
Example 8.3.1, we had β (6) ≈ 10−5. On the other hand, in the present case,
we can get away with a smaller sample, which is often a useful advantage. �

Exercises

Exercise 8.3.1.

a) In Example 8.3.1, what is the meaning of a type 2 error?
b) What is the probability that we accept the drug as effective if μ = 6.5?
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Exercise 8.3.2.

a) In Example 8.3.2, what is the meaning of a type 2 error?
b) What is the probability that we accept the coin as fair if p = 0.55?

Exercise 8.3.3.

As in Exercise 8.2.1, consider a large school where there are many sections
of calculus classes, and on the common final exam, the average grade is 66,
the SD is 24, and a certain section has 32 students. We want to test whether
the given section comes from the same population or one with a lower average
but with the same SD, that is, test H0 : μ = 66 against HA : μ < 66. Find
the rejection region that results in a level of significance α = .05 and find
and plot the power function for this test.

Exercise 8.3.4.

As in Exercise 8.2.2, consider a special diet for n cows randomly selected
from a population of cows weighing on average 500 kilograms with an SD of 25
kilograms. Find the critical region and the sample size n for a test, in terms of
the average weight X of the cows in the sample, to measure the effectiveness
of the diet, by deciding between H0 : μ = 500 against HA : μ > 500, with
level of significance α = .05 and β (515) = .05. Find and plot the power
function for this test, using the normal approximation.

Exercise 8.3.5.

Suppose a customer wants to buy a large lot of computer memory chips
and tests a random sample of n = 12 of them. He rejects the lot if there is
more than one defective chip in the sample and accepts it otherwise. Use the
binomial distribution to find and plot the operating characteristic function
of this test as a function of the probability p of a chip being nondefective.

8.4 Sampling from Normally Distributed Populations

As mentioned before, in real life, many populations have a normal or close
to normal distribution. Consequently, statistical methods devised for such
populations are very important in applications.

In Corollary 7.2.3, we saw that the sample mean of a normal population
is normally distributed, and in Example 8.1.7, we gave confidence intervals
based on X for an unknown μ when σ was known.

Here we shall discuss sampling when both μ and σ are unknown. In this
case, we use the MLE estimators X and Σ̂2 for μ and σ2 (see Example 8.1.3)
and first want to prove that, surprisingly, they are independent of each other,
in spite of the fact that they are both functions of the same r.v.’s Xi.

Before proving this theorem, we present two lemmas.
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Lemma 8.4.1. For a random sample from an N(μ, σ2) distribution, Xi−X
and X are uncorrelated.

Proof. From Corollary 7.2.3, we know that E
(
X
)
= μ, and so E

(
Xi −X

)
=

μ − μ = 0. Let us change over to the new variables Yi = Xi − μ. Then
Y = 1

n

∑n
j=1 Yj = X − μ and

Cov
(
Xi −X,X

)
= E

((
Xi −X

) (
X − μ

))
= E

((
Yi − Y

)
Y
)

= E
(
YiY

)− E
(
Y

2
)
. (8.67)

Now, E (YiYj) = E (Yi)E (Yj) = 0, if i 	= j, and E
(
Y 2
i

)
= σ2. Thus,

E
(
YiY

)
=

1

n

n∑

j=1

E (YiYj) =
1

n
E
(
Y 2
i

)
=

σ2

n
. (8.68)

Also, from Corollary 7.2.3

E
(
Y

2
)
= V ar

(
X
)
=

σ2

n
, (8.69)

and therefore

Cov
(
Xi −X,X

)
= 0. (8.70)

�

Lemma 8.4.2. If, for any integer n > 1, (X1, X2, . . . , Xn) form a multi-
variate normal n-tuple and Cov (Xi, Xn) = 0 for all i 	= n, then Xn is
independent of (X1, X2, . . . , Xn−1).

Proof. The proof will be similar to that of Theorem 7.5.1. We are going to
use the multivariate moment generating function

ψ1,2,...,n (s1, s2, . . . , sn) = E

(

exp

(
n∑

i=1

siXi

))

. (8.71)

By Theorem 7.2.6, Y =
∑n

i=1 siXi is normal, because it is a linear combi-
nation of the original independent random variables Zi. Clearly, it has mean

μY =

n∑

i=1

siμi (8.72)

and variance

σ2
Y = E

((
n∑

i=1

si (Xi − μi)

)2)
= E

((
n∑

i=1

si (Xi − μi)

)(
n∑

j=1

sj (Xj − μj)

))

= E

(
n∑

i=1

n∑
j=1

sisj (Xi − μi) (Xj − μj)

)
=

n∑
i=1

n∑
j=1

sisjσij . (8.73)
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Here σij = Cov (Xi, Xj) if i 	= j, and σii = V ar (Xi). Thus, by the definition
of the m.g.f. of Y as ψY (t) = E

(
etY

)
and by Equation 7.47,

ψ1,2,...,n (s1, s2, . . . , sn) = ψY (1) = exp

⎛

⎝
n∑

i=1

siμi +
1

2

n∑

i=1

n∑

j=1

sisjσij

⎞

⎠ .

(8.74)

Now, separating the terms with a subscript n from the others, we get

ψ1,2,...,n (s1, s2, . . . , sn) = exp

(
n−1∑
i=1

siμi +
1

2

n−1∑
i=1

n−1∑
j=1

sisjσij + snμn +
1

2
s2nσnn

)
,

(8.75)

because we assumed σin = σni = 0. Hence ψ1,2,...,n (s1, s2, . . . , sn) factors as

exp

⎛

⎝
n−1∑

i=1

siμi +
1

2

n−1∑

i=1

n−1∑

j=1

sisjσij

⎞

⎠ exp

(
snμn +

1

2
s2nσnn

)

= ψ1,2,...,n−1 (s1, s2, . . . , sn−1)ψn (sn) , (8.76)

which is the product of the moment generating functions of (X1, X2, . . .,
Xn−1) and Xn.

Now, if (X1, X2, . . . , Xn−1) and Xn are independent, then their joint
m.g.f. factors into precisely the same product. So, by the uniqueness of mo-
ment generating functions, which holds in the n-dimensional case as well,
(X1, X2, . . . , Xn−1) and Xn must be independent if σin = 0 for all i. �

We are now ready to prove the promised theorem.

Theorem 8.4.1. Independence of the Sample Mean and Variance.
For a random sample from an N(μ, σ2) distribution, the sample mean X =
1
n

∑n
i=1 Xi and the sample variance Σ̂2 = 1

n

∑n
i=1

(
Xi −X

)2
are indepen-

dent.

Proof. X and each Xi − X can be written as linear combinations of the
standardizations of the i.i.d. normal Xi variables and have therefore a multi-
variate normal distribution. By Lemma 8.4.1, Cov

(
Xi −X,X

)
= 0 for all i

and, by Lemma 8.4.2 applied to the n+1 variables Xi−X and X, we obtain
that

(
X1 −X,X2 −X, . . . ,Xn −X

)
and X are independent. Hence, by an

obvious extension of Theorem 5.5.7 to n + 1 variables, X is independent of

Σ̂2 = 1
n

∑n
i=1

(
Xi −X

)2
. �
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Next, we turn to obtaining the distribution of Σ̂2.
First, note that the sum

∑n
i=1 (Xi − μ)

2
/σ2 is a chi-square random vari-

able with n degrees of freedom. (See Definition 7.4.3.) Interestingly, the use

of X, in place of μ, in the definition of Σ̂2 just reduces the number of degrees
of freedom by 1 and leaves the distribution chi-square:

Theorem 8.4.2. Distribution of the Sample Variance. For a random

sample from an N(μ, σ2) distribution, the scaled sample variance nΣ̂2

σ2 =
1
σ2

∑n
i=1

(
Xi −X

)2
is a chi-square random variable with n − 1 degrees of

freedom.

Proof. We can write

Σ̂2 =
1

n

n∑

i=1

(
Xi −X

)2
=

1

n

n∑

i=1

[
(Xi − μ)− (

X − μ
)]2

=
1

n

n∑

i=1

(Xi − μ)
2 − 2

n

(
X − μ

) n∑

i=1

(Xi − μ) +
(
X − μ

)2
, (8.77)

and simplifying on the right, we get

Σ̂2 =
1

n

n∑

i=1

(Xi − μ)
2 − (

X − μ
)2

. (8.78)

Multiplying both sides by n/σ2 and rearranging result in

nΣ̂2

σ2
+

(
X − μ

σ/
√
n

)2

=
n∑

i=1

(
Xi − μ

σ

)2

. (8.79)

The terms under the summation sign are the squares of independent standard
normal random variables, and so their sum is chi-square with n degrees of
freedom. The two terms on the left are independent, and the second term is

chi-square with 1 degree of freedom. If we denote the m.g.f. of nΣ̂2

σ2 by ψ (t),
then, by Theorem 6.3.2 and Example 7.4.3,

ψ (t) (1− 2t)
−1/2

= (1− 2t)
−n/2

for t <
1

2
. (8.80)

Hence

ψ (t) = (1− 2t)
−(n−1)/2

for t <
1

2
, (8.81)

which is the m.g.f. of a chi-square random variable with n − 1 degrees of
freedom. �
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Example 8.4.1. Confidence Interval for the SD of Weights of Pack-
ages.

For manufacturers of various packages, it is important to know the vari-
ability of the weight around the nominal value. For example, assume that the
weight of a 1 lb. package of sugar is normally distributed with unknown σ.
(It doesn’t matter whether we know μ or not.) We take a random sample of
n = 20 such packages and observe the value σ̂ = 1.2 oz. for the sample SD
Σ̂. Find 90% confidence limits for σ.

By Theorem 8.4.2, 20Σ̂2

σ2 has a chi-square distribution with 19 degrees of
freedom. To find 90% confidence limits for σ, we may obtain, from a table or
by computer, the 5th and the 95th percentiles of the chi-square distribution
with 19 degrees of freedom, that is, look up the numbers χ2

.05 and χ2
.95 such

that

P
(
χ2
19 ≤ χ2

.05

)
= 0.05 (8.82)

and

P
(
χ2
19 ≤ χ2

.95

)
= 0.95. (8.83)

We find χ2
.05 ≈ 10.12 and χ2

.95 ≈ 30.14. Therefore,

P

(

10.12 <
20Σ̂2

σ2
≤ 30.14

)

≈ 0.90. (8.84)

For Σ̂ = 1.2 the double inequality becomes

10.12 <
20 · 1.22

σ2
≤ 30.14, (8.85)

which can be solved for σ to give, approximately,

0.98 ≤ σ < 1.69. (8.86)

�
As we have seen, the distribution of the statistic nΣ̂2

σ2 , used to estimate
the variance, does not depend on μ. On the other hand, the distribution of
the estimator X for μ depends on both μ and σ, and so, it is not suitable for
constructing confidence intervals or tests for μ if σ is not known.

William S. Gosset, writing under the pseudonym Student (because his em-
ployer, the Guinness brewing company did not want the competition to learn
that such methods were useful in the brewery business) in 1908 introduced
the statistic

T =
X − μ

Σ̂/
√
n− 1

, (8.87)
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(named Student’s T with n − 1 degrees of freedom) which is analogous to

the Z =
(X−μ)
σ/

√
n

statistic but does not depend on σ. It is widely used for

constructing confidence intervals or tests for μ from small samples (approx-
imately, n ≤ 30) from a normal or nearly normal population with unknown
σ. For larger samples, the central limit theorem applies and we can use Z
with σ̂ in place of σ, as in Examples 8.1.7 and 8.2.3. In fact, the density of T
approaches the density of Z as n → ∞.

Next, we are going to derive the density of T in several steps.

Theorem 8.4.3. Density of a Ratio. If X and Y are independent con-
tinuous random variables with density functions fX and fY , respectively, and
fY (y) = 0 for y ≤ 0, then the density of U = X/Y is given by

fU (u) =

∫ ∞

0

yfY (y) fX (yu) dy. (8.88)

Proof. We have

FU (u) = P

(
X

Y
≤ u

)
=

∫∫

x/y≤u

fX (x) fY (y) dxdy

=

∫ ∞

0

fY (y)

(∫ yu

−∞
fX (x) dx

)
dy. (8.89)

Hence, by differentiating under the first integral sign on the right and using
the chain rule and the first part of the fundamental theorem of calculus, we
obtain

fU (u) = F ′
U (u) =

∫ ∞

0

fY (y)

(
d

d (yu)

∫ yu

−∞
fX (x) dx

)
∂ (yu)

∂u
dy

=

∫ ∞

0

fY (y) [fX (yu) y] dy. (8.90)

�

Theorem 8.4.4. Density of
√
nZ/χn for Independent Z and χn. If

Z is standard normal and χn is chi with n degrees of freedom and they are
independent of each other, then

U =

√
nZ

χn
(8.91)

has density

fU (u) =
Γ
(
n+1
2

)

√
nπΓ

(
n
2

)
(
1 +

u2

n

)−(n+1)/2

for −∞ < u < ∞. (8.92)



8.4 Sampling from Normally Distributed Populations 311

Proof. Apply Theorem 8.4.3 to U =
√
nZ
χn

. The density of X =
√
nZ is

fX(x) =
1√
2πn

e−x2/2n for −∞ < x < ∞ (8.93)

and, by Corollary 7.4.3, the density of Y = χn is

fY (x) =
2

2n/2Γ (n/2)
xn−1e−

x2

2 for 0 < x < ∞. (8.94)

Thus,

fU (u) =

∫ ∞

0

y
2

2n/2Γ (n/2)
yn−1e−

y2

2
1√
2πn

e−
(yu)2

2n dy

=
2

2n/2Γ (n/2)
√
2πn

∫ ∞

0

yne
− y2

2

(
1+u2

n

)

dy. (8.95)

Upon substituting t = y2

2

(
1 + u2

n

)
in the last integral, we get

fU (u) =

(
1 + u2

n

)−(n+1)/2

√
nπΓ

(
n
2

)
∫ ∞

0

t
n−1
2 e−tdt. (8.96)

Here, by the definition of the Γ -function (257), the integral equals Γ
(
n+1
2

)
,

yielding the desired result. �

Theorem 8.4.5. Distribution of T . For a random sample of size n from
an N(μ, σ2) distribution, Student’s statistic

T =
X − μ

Σ̂/
√
n− 1

(8.97)

with n−1degrees of freedom, has the same distribution as the random variable
U =

√
n− 1Z/χn−1 for independent Z and χn−1, and its density is

fT (t) =
Γ
(
n
2

)

√
(n− 1)πΓ

(
n−1
2

)
(
1 +

t2

n− 1

)−n/2

for −∞ < t < ∞. (8.98)

Proof. By Corollary 7.2.3, Z =
(
X − μ

)√
n/σ is standard normal, and

by Theorem 8.4.2, χn−1 = Σ̂
√
n/σ is chi with n − 1 degrees of freedom.

Also, they are independent, by Theorem 8.4.1. Thus, Theorem 8.4.4 applied
to these variables, with n − 1 in place of n, yields the statement of the
theorem. �

The density given by Equation 8.98 is called Student’s t-density with n−1
degrees of freedom. The values of the corresponding distribution function are
usually obtained from tables or by computer from statistical software.
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Note that E (T ) does not exist for n = 1 degree of freedom (it is the
Cauchy distribution) and, by symmetry, E (T ) = 0 for n > 1 degrees of
freedom.

Also note that this density does not depend on μ and σ, and so it is
suitable for constructing confidence intervals or tests for μ if σ is not known.

As mentioned at the end of Example 8.1.3, most statisticians use

V̂ =
n

n− 1
Σ̂2 =

1

n− 1

n∑

i=1

(
Xi −Xn

)2
(8.99)

as an estimator of the unknown variance of a normal population, instead of
Σ̂2. Using the corresponding estimator

Σ+ =

√
n

n− 1
Σ̂ =

(
1

n− 1

n∑

i=1

(
Xi −Xn

)2
)1/2

(8.100)

for the standard deviation, we can write Student’s T as

T =
X − μ

Σ+/
√
n
. (8.101)

This way of writing T brings it into closer analogy to the statistic

Z =
X − μ

σ/
√
n
, (8.102)

used for estimating μ when σ is known.

Example 8.4.2. Confidence Interval for the Mean Weight of Pack-
ages.

As in Example 8.4.1, assume that the weight of a 1 lb. package of sugar
is normally distributed with unknown σ and consider a random sample of
n = 20 such packages and observe the values x = 16.1 oz. and σ̂ = 1.2 oz. for
the sample mean X and SD Σ̂. Find 90% confidence limits for μ.

By Theorem 8.4.5, T =
(
X − μ

)√
n− 1/Σ̂ has the t-distribution with 19

degrees of freedom in this case. Thus, we need to determine two numbers t1
and t2 such that P(t1 < T < t2) = .90 for this distribution. It is customary to
choose t1 = −t2 = −t. Then, by the left-right symmetry of the t-distributions,
we want to find t such that P(T < −t) = .05. From a t-table we obtain
t ≈ 1.7291, and so

P

(

−1.7291 <
X − μ

Σ̂/
√
19

< 1.7291

)

= .90, (8.103)
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or, equivalently,

P

(

X − 1.7291
Σ̂√
19

< μ < X + 1.7291
Σ̂√
19

)

= .90. (8.104)

Substituting the observed values x = 16.1 and σ̂ = 1.2 for X and Σ̂, we get

15.624 < μ < 16.576 (8.105)

as a 90% confidence interval for μ. �

Example 8.4.3. Small Sample Test for Weight Reduction .

As in Example 8.2.2, we want to test the effectiveness of a new drug for
weight reduction and administer it, this time, to a random sample of just
10 adult women for a month. We assume that the weight loss (as a positive
value), from the beginning to the end of the month, of each of these women is

i.i.d. normal. Let X denote the average weight loss and Σ̂ the sample SD of
the weight losses. Suppose we observe x = 1.5 lbs. and σ̂ = 4 lbs. We estimate
σ by the observed value of σ̂ = 4 lbs. The mean weight loss μ is unknown,
and we want to find the extent to which the observed X value supports the
null hypothesis μ = 0, that is, to find the P-value of the observed average
weight reduction.

Since the sample is small, σ is unknown, and the population is normal,
we may use the T -statistic with mean μ0 = 0 and with 9 degrees of freedom
for our test. Since HA is of the form μ > μ0, we take the rejection region to
be of the form [1.5,∞), that is, we reject H0 if X ≥ 1.5 or, equivalently, if
T ≥ t, where

t =
x− μ0

σ̂/
√
n− 1

=
1.5− 0

4/
√
9

= 1.125. (8.106)

From a t-table,

P (T ≥ 1.125) = .145. (8.107)

This P-value is fairly high, which means that the probability of an er-
roneous rejection of the null hypothesis would be high, or, in other words,
our observed result can well be explained by the null-hypothesis: the weight
reduction is not statistically significant. �

The test of the preceding example is called the t-test or Student’s t-test
and is used for hypotheses involving the mean μ of a normal population when
the sample is small (n ≤ 30) and the SD is unknown and is estimated from
the sample.
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Exercises

Exercise 8.4.1.

The lifetimes of five light bulbs of a certain type are measured and are
found to be 850, 920, 945, 1008, and 1022 hours, respectively. Assuming that
the lifetimes are normally distributed, find 95% confidence intervals for μ
and σ.

Exercise 8.4.2.

In high-precision measurements, repeated results usually vary due to un-
controllable and unknown factors. Scientists generally adopt the Gauss model
for such measurements, according to which the measured data are like samples
from a normally distributed population. Suppose a grain of salt is measured
three times and is found to weigh 254, 276, and 229 micrograms, respectively.
Assuming the Gauss model, with μ being the true weight and σ unknown,
find a 95% confidence interval for μ, centered at x.

Exercise 8.4.3.

At the service counter of a department store, a sign says that the average
service time is 2.5 minutes. To test this claim, five customers were observed,
and their service times turned out to be 140, 166, 177, 132, and 189 seconds,
respectively. Assuming a normal distribution for the service times, test H0 :
μ = 150 sec. against HA : μ > 150 sec. Find the P-value and draw a
conclusion whether the store’s claim is acceptable or not.

Exercise 8.4.4.

A new car model is claimed to run at 40 miles/gallon on the highway.
Five such cars were tested, and the following fuel efficiencies were found: 42,
36, 39, 41, and 37 miles/gallon. Assuming a normal distribution for the fuel
efficiencies, test H0 : μ = 40 against HA : μ < 40. Find the P-value and
draw a conclusion whether the claim is acceptable or not.

Exercise 8.4.5.

Prove that the density fT (t) of T, given by Equation 8.98, tends to the
standard normal density ϕ (t) as n → ∞.
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Exercise 8.4.6.

In Example 8.2.8, we cited a study of twins (Footnote 7), in which the
following mean bone densities of the lumbar spine of 20 twin pairs were also
measured for twins of each pair differing by 20 or more pack-years of smoking
(rather than just 5 pack-years, as discussed earlier):

Lighter smoker (g/cm2) Heavier smoker (g/cm2) Difference
Mean ± SE 0.794 ± 0.032 0.726 ± 0.032 0.068 ± 0.020

Assuming normally distributed data, do a t-test for the effect of smoking
on bone density.

Exercise 8.4.7.

Prove that for T with n > 2 degrees of freedom V ar (T ) = n
n−2 . Hint:

use the fact that the U =
√
nZ
χn

in Theorem 8.4.4 has a t-distribution with n
degrees of freedom and Z and χn are independent.

8.5 Chi-Square Tests

In various applications, where a statistical experiment may result in several,
not just two, possible outcomes, chi-square distributions provide tests for
proving or disproving an underlying theoretical prediction of the observations.

Example 8.5.1. Pea Color.

In 1865, an Austrian monk, Gregor Mendel, published a revolutionary
scientific article in which he proposed a theory for the inheritance of certain
characteristics of pea plants, on the basis of what we now call genes and he
called entities. This was truly remarkable, because he arrived at his theory
by cross-breeding experiments, without ever being able to see genes under
a microscope. Among other things, he found that when he crossed purebred
yellow-seeded with purebred green-seeded plants, then all the hybrid seeds
turned out yellow, but when he crossed these hybrids with each other, then
about 75% of the seeds turned out yellow and 25% green.

He explained this observation as follows: there are two variants (alleles)
of a gene that determine seed color: say, g and y. Each seed contains two of
these variants, and the seeds containing gy, yg and yy are yellow and those
containing gg are green. (We call y dominant and g recessive.) Every ordinary
cell of a plant contains the same pair as the seed from which it grew, but the
sex cells (sperm and egg) get only one of these genes, by splitting the pair of
ordinary cells. The purebred parents have gene pairs gg and yy, and so their
sex cells have g and y, respectively. (Purebred plants with only yellow seeds
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can be produced by crossing yellows with each other over several generations,
until no greens are produced.) Thus, the first-generation hybrids all get a g
from one parent and a y from the other, resulting in type gy or yg. (Actually,
these two types are the same; we just need to distinguish them from each
other for the purpose of computing probabilities, as we did for two coins.)
The seeds of these hybrids all look yellow.

In the next generation, when crossing first-generation hybrids with each
other, each parent may contribute a g or a y to each sex cell with equal
probability, and when those mate at random, we get all four possible pairs
with equal probability. Since three pairs gy, yg, and yy look yellow and only
one, gg, looks green, p = P(yellow) = 3/4 = p0 and q = P(green) = 1/4 = q0.

Suppose that to test the theory, we grow n = 1000 second-generation
hybrid seeds and obtain n1 = 775 yellow and n2 = 225 green seeds. We take
H0 : p = p0 and q = q0, and HA : p 	= p0 and q 	= q0. Karl Pearson in 1900
suggested using the following statistic for such problems:

K2 =
(N1 − np0)

2

np0
+

(N2 − nq0)
2

nq0
, (8.108)

where N1 and N2 are the random variables whose observed values are n1

and n2.
The reasons for choosing this form are that (N1 − np0)

2
and (N2 − nq0)

2

measure the magnitude of the deviations of the actual from the expected
values, and we should consider only their sizes relative to the expected values.
A large value of (N1 − np0)

2
indicates a relatively bigger discrepancy from

the expectation when np0 is small, than when it is large. The fractions take
care of this consideration. (The fact that the numerators are squared but the
denominators are not, may seem strange, but it makes the mathematics come
out right.)

This statistic is especially useful when there are more than two possible
outcomes. In the present case, we could just use the Z-test for p (assuming
large n), since q is determined by p. (See Exercise 8.5.1.) We may, however,
use K2, as well. Substituting q0 = 1−p0 and N2 = n−N1 in Equation 8.108,
we obtain

K2 = (N1 − np0)
2

(
1

np0
+

1

nq0

)
(8.109)

or, equivalently,

K2 =
(N1 − np0)

2

np0q0
. (8.110)

By the CLT, the distribution of (N1 − np0) /
√
np0q0 tends to the standard

normal as n → ∞, and so the distribution of K2 tends to the chi-square
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distribution with one degree of freedom. Thus, using the chi-square table and
the given values of n, n1, p0, q0, we get the large-sample approximation of the
P-value of the test as

P

(

K2 ≥ (n1 − np0)
2

np0q0

)

= P

(

K2 ≥ (775− 750)
2

1000 · 3
4 · 1

4

)

≈ P
(
χ2
1 ≥ 3.33

) ≈ .068. (8.111)

Hence, the null hypothesis can be accepted. �

Observe that, because of the relation N1 + N2 = n together with
p0 + q0 = 1, the sum of two dependent square terms in Equation 8.108 re-
duces to just one such term in Equation 8.110. In other words, only one of
N1 or N2 is free to vary. Similarly, if there are k > 2 possible outcomes, the
relation expressing the fact that the sample size is n, and correspondingly the
sum of the probabilities is 1, produces k− 1 independent square terms in the
generalization of Equation 8.108. In fact, if we also use the data to estimate
r parameters of the given distribution p01, p02, . . . , p0k (examples of this will
follow), then the number of independent terms turns out to be k − 1 − r,
which is also the number of degrees of freedom for the limiting chi-square
random variable. Thus, the number of degrees of freedom equals the number
of independent random variables Ni that are free to vary. Hence the name
“degrees of freedom.”

We summarize all this as follows:

Definition 8.5.1. Chi-Square Test for a Finite Distribution. Suppose
we consider an experiment with k ≥ 2 possible outcomes, with unknown
probabilities p1, p2, . . . , pk, and we want to decide between two hypotheses
H0 : pi = p0i for all i = 1, 2, . . . , k and HA : pi 	= p0i for some i = 1, 2, . . . , k,
where p01, p02, . . . , p0k are given.

We consider n independent repetitions of the experiment with the random
variables Ni denoting the number of times the ith outcome occurs, for i = 1,
2, . . . , k, where

∑k
i=1 Ni = n. We use the test statistic

K2 =
k∑

i=1

(Ni − np0i)
2

np0i
. (8.112)

It can be proved that the distribution of K2 tends to the chi-square distribution
with k−1 degrees of freedom. Furthermore, if we also use the data to estimate
r parameters of the given distribution p01, p02, . . . , p0k, then the distribution of
K2 tends to the chi-square distribution with k−1−r degrees of freedom..Thus,
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we obtain the P-value of the test approximately,8 for large n, by using the chi-
square table for P =P

(
χ2 ≥ χ̂2

)
, where

χ̂2 =
k∑

i=1

(ni − np0i)
2

np0i
(8.113)

is the observed value of K2. If P is less than 0.05, we say that HA is significant
and if it is less than 0.01, highly significant and accept HA, and otherwise
we accept H0. In particular, a small value of χ̂2 that leads to a large P-value
is strong evidence in favor of H0 (provided that the data are really from a
random sample). �

It may be helpful to remember Formula 8.113 in words as

χ̂2 =
∑

all categories

(observed frequency− expected frequency)
2

expected frequency
, (8.114)

where the expected frequencies are based on H0.

Example 8.5.2. Are Murders Poisson Distributed?

In a certain state, the following table shows the number ni of weeks in
three years with i murders. Can we model these numbers with a Poisson
distribution?

i 0 1 2 3 4 5 6 7 8
ni 4 12 23 34 33 23 16 8 3

First, we have to determine the parameter of the Poisson distribution with
the best fit to these data. Since for a Poisson random variable λ = E (X) ,
we should use x, that is, the average number of murders per week, as the
estimate of λ. Thus we choose

λ =
1

156

7∑
i=1

ini

=
1

156
(0 · 4 + 1 · 12 + 2 · 23 + 3 · 34 + 4 · 33 + 5 · 23 + 6 · 16 + 7 · 8 + 8 · 3)

= 3.7372 (8.115)

and so,

p0i =
3.7372ie−3.7372

i!
for i = 0, 1, 2, . . . . (8.116)

8 A rough rule of thumb is that n should be large enough so that np0i ≥ 10 for
each i, although some authors go as low as 5 instead of 10 and, for large k, even
allow a few np0i to be close to 1.
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Some of the numbers np0i are less than 10, and so, to safely use the chi-square
approximation, we lump those together into two categories and tabulate the
expected frequencies as follows:

i 0, 1 2 3 4 5 6 7, 8, . . .
np0i 17.603 25.95 32.327 30.203 22.575 14.061 13.279

Since we now have k = 7 categories and r = 1 estimated parameter, we
use chi-square with 5 degrees of freedom. Thus,

χ̂2 ≈ (16− 17.603)
2

17.603
+

(23− 25.95)
2

25.95
+

(34− 32.327)
2

32.327
+

(33− 30.203)
2

30.203

+
(23− 22.575)

2

22.575
+

(16− 14.061)
2

14.061
+

(11− 13.279)
2

13.279
≈ 1.4935 (8.117)

and from a table, the corresponding P-value is P
(
χ2
5 ≥ χ̂2

) ≈ 0.91. Thus,
we have very strong evidence for accepting H0, that is, that the data came
from a Poisson distribution with λ = 3.7372, except that there may be some
distortion within the lumped categories. �

In the example above, we tested whether the data represented a random
sample from a Poisson distributed population. In general, a test for deciding
whether the distribution of a population is a specified one is called a test
for goodness of fit. For discrete distributions and large n, the chi-square test
can be used for this purpose as above. For continuous distributions, we re-
duce the problem to a discrete one by partitioning the domain into a finite
number of intervals and approximating the continuous distribution by the
discrete distribution given by the probabilities of the intervals. Although this
approximation may mask some features of the original distribution, it is still
widely used in many applications as in the following example.

Example 8.5.3. Grades.

The grades assigned by a certain professor in several calculus classes were
distributed according to the following table:

Points (85,100] (70,85] (55,70] (40,55] [0,40]
Grade A B C D F
Frequ. 45 56 157 83 52

Do these grades represent a random sample from an underlying normal
distribution?

To answer this question, first we have to estimate μ and σ of the best
fitting normal distribution, and then we may use a chi-square test as follows.
First, n = 393, and we estimate μ and σ, by using the midpoints of the
class-intervals, as
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x =
1

393
(92.5 · 45 + 77.5 · 56 + 62.5 · 157 + 47.5 · 83 + 20 · 52) = 59.28,

(8.118)

and

σ̂ =
1√
393

[(92.5− 59.28)
2 · 45 + (77.5− 59.28)

2 · 56 + (62.5− 59.28)
2 · 157

+ (47.5− 59.28)
2 · 83 + (20− 59.28)

2 · 52]1/2
= 20.28. (8.119)

Using the normal distribution with these parameters, we get the proba-
bilities p0i for the class-intervals as

P ((85, 100]) = Φ

(
100− 59.28

20.28

)
− Φ

(
85− 59.28

20.28

)
≈ 0.10, (8.120)

P ((70, 85]) = Φ

(
85− 59.28

20.28

)
− Φ

(
70− 59.28

20.28

)
≈ 0.20, (8.121)

P ((55, 70]) = Φ

(
70− 59.28

20.28

)
− Φ

(
55− 59.28

20.28

)
≈ 0.29, (8.122)

P ((40, 55]) = Φ

(
55− 59.28

20.28

)
− Φ

(
40− 59.28

20.28

)
≈ 0.25, (8.123)

P ((40, 55]) = Φ

(
40− 59.28

20.28

)
− Φ

(
0− 59.28

20.28

)
≈ 0.16, (8.124)

and the expected numbers np0i as

Points (85,100] (70,85] (55,70] (40,55] [0,40]
np0i 39.3 78.6 114 98.3 63

Thus,

χ̂2 ≈ (45− 39.3)2

39.3
+
(56− 78.6)2

78.6
+
(157− 114)2

114
+
(83− 98.3)2

98.3
+
(52− 63)2

63
≈ 27.8.

(8.125)

and the number of degrees of freedom is 5 − 1 − 2 = 2, because we had five
categories and estimated two parameters from the data. Hence, a chi-square
probability computation gives the P-value P

(
χ2
2 ≥ χ̂2

) ≈ 10−6. Thus, we
reject the null hypothesis, that the distribution is normal, with a very high
degree of confidence. �

The chi-square test can also be used for testing independence of two dis-
tributions. We illustrate how by an example, first.
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Example 8.5.4. Age and Party of Voters.

We take a random sample of 500 voters in a certain town and want to
determine whether the age and party affiliation categories, as discussed in
Examples 4.3.3 and 4.3.6, are independent of each other in the population.
Thus, we take H0 to be the hypothesis that each age category is independent
of each party category and HA that they are not independent. We shall give
a quantitative formulation of these hypotheses below.

Suppose the sample yields the following observed frequency table for this
two-way classification, also called a contingency table:

Age\ Party Republican Democrat Independent Any affiliation
Under 30 41 52 60 153
30 to 50 55 64 60 179
Over 50 48 53 67 168

Any age 144 169 187 500

First, we convert this table to a table of relative frequencies, by dividing
each entry by 500:

Age\ Party Republican Democrat Independent Any affiliation
Under 30 .082 .104 .120 .306
30 to 50 .110 .128 .120 .358
Over 50 .096 .106 .134 .336

Any age .288 .338 .374 1.000

These numbers represent the probabilities that, given the sample, a ran-
domly chosen one of the 500 persons would fall in the appropriate category.
Now, under the assumption of independence, the joint probabilities would
be the products of the marginal probabilities. For instance, we would have
P(Under 30∩Republican) = .306 · .288 = .088128. We show these products
in the next table:

Age\ Party Republican Democrat Independent Any affiliation
Under 30 .088128 .103428 .114444 .306
30 to 50 .103104 .121004 .133892 .358
Over 50 .096768 .113 568 .125664 .336

Any age .288 .338 .374 1.000

Thus, the promised quantitative expression of H0 is the assumption that
the joint probabilities in the population (not in the sample) of the cross
classification are the nine joint probabilities in the table above.

Hence, the expected frequencies under H0 are 500 times these probabili-
ties, as given below:
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Age\ Party Republican Democrat Independent Any affiliation
Under 30 44.064 51.714 57.222 153
30 to 50 51.552 60.502 66.946 179
Over 50 48.384 56.784 62.832 168

Any age 144 169 187 500

Consequently,

χ̂2 ≈ (41− 44.064)
2

44.064
+

(52− 51.714)
2

51.714
+

(60− 57.222)
2

57.222

+
(55− 51.552)

2

51.552
+

(64− 60.502)
2

60.502
+

(60− 66.946)
2

66.946

+
(48− 48.384)

2

48.384
+

(53− 56.784)
2

56.784
+

(67− 62.832)
2

62.832
≈ 2.035. (8.126)

The number of degrees of freedom is 9 − 4 − 1 = 4, because the number
of terms is k = 9, and the marginal probabilities may be regarded as pa-
rameters estimated from the data and r = 4 of them determine all six (any
two of the row-sums determine the third one, and the same is true for the
column-sums). Hence, a chi-square probability computation gives the P-value
P
(
χ2
4 ≥ χ̂2

) ≈ .73, which suggests the acceptance of the independence
hypothesis.9 �

The method of the example above can be generalized to arbitrary two-way
classifications:

Theorem 8.5.1. Chi-Square Test for Independence from Contin-
gency Tables. Suppose we want to test the independence of two kinds of
categories in a population, with a categories of the first kind and b of the
second. We take a random sample of size n and construct a size a× b contin-
gency table from the observed k = ab joint frequencies nij. We convert this
table to a table of relative frequencies rij = nij/n and compute the row and

column sums ri =
∑b

j=1 rij and sj =
∑a

i=1 rij. We define the k joint proba-
bilities p0,ij = risj and take H0 to be the hypothesis that the unknown joint
probabilities pij in the population satisfy pij = p0,ij for all i = 1, 2, . . . , a
and j = 1, 2, . . . , b, that is, that the relative frequencies rij come from the
probability distribution p0,ij , which represents independent categories with the
appropriate marginals ri and sj .

We define

K2 =
a∑

i=1

b∑

i=1

(Nij − np0,ij)
2

np0,ij
, (8.127)

9 The result could be explained by non-independent distributions as well, but a
computation of type 2 errors would be hopeless because of the various ways
non-independence can occur.
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where the Nij is the random variable whose observed values are the nij . The
ri and sj are parameters estimated from the data but, since

∑
ri = 1 and∑

sj = 1, we need to estimate only r = a + b − 2 parameters. Thus, the
distribution of K2 tends to the chi-square distribution with k − 1 − r =
(a− 1) (b− 1) degrees of freedom. We obtain the P-value of the test approx-
imately, for large n, by using a chi-square table for P =P

(
χ2 ≥ χ̂2

)
, where

χ̂2 =

a∑

i=1

b∑

i=1

(nij − np0,ij)
2

np0,ij
(8.128)

is the observed value of K2.

There exists still another use of chi-square, which is very similar to the one
above: testing contingency tables for homogeneity. In such problems, we have
several subpopulations and a sample of prescribed size from each, and we want
to test whether the probability distribution over a set of categories is the same
in each subpopulation. If it is, then we call the population homogeneous over
the subpopulations with respect to the distribution over the given categories.
For example, we could modify Example 8.5.4 by taking the three age groups
as the subpopulations, deciding how many we wish to sample from each group
and testing whether the distribution of party affiliation is the same in each
age group, that is, whether the population is homogeneous over age with
respect to party affiliation. We do such a modification of Example 8.5.4 next:

Example 8.5.5. Testing Homogeneity of Party Distribution Over
Age Groups.

Suppose we decide to sample 150 voters under 30, 200 voters between 30
and 50, and 250 voters over 50 and want to test whether the distribution of
party affiliation is the same in each age group of the population. We observe
the following sample data:

Age\ Party Republican Democrat Independent Any affiliation
Under 30 41 55 54 150
30 to 50 52 66 82 200
Over 50 61 83 106 250

Any age 154 204 242 600

Under H0, which is the assumption of homogeneity, the most likely proba-
bility distribution of party affiliation can be obtained by dividing each column
sum by 600, and then the expected frequencies can be computed by multiply-
ing these fractions by each row sum. Thus, for instance P(Republican) = 154

600
and E(n(Under 30∩Republican)) = 154

600 · 150 = 38.5. As this calculation
shows, under the present H0, the expected frequencies are computed exactly
as in the test for independence, and we get them as
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Age\ Party Republican Democrat Independent Any affiliation
Under 30 38.50 51.00 60.50 150
30 to 50 51.33 68.00 80.67 200
Over 50 64.17 85.00 100.83 250

Any age 154 204 242 600

Thus,

χ̂2 ≈ (41− 38.50)
2

38.50
+

(55− 51)
2

51
+

(54− 60.5)
2

60.5

+
(52− 51.33)

2

51.33
+

(66− 68)
2

68
+

(82− 80.67)
2

80.67

+
(61− 64.17)

2

64.17
+

(83− 85)
2

85
+

(106− 100.83)
2

100.83
≈ 1.73 (8.129)

The number of independent data is k = 6, because in each row, the three
frequencies must add up to the given row sum and so only two are free to
vary. We estimated r = 2 independent column sums as parameters. Thus,
the number of degrees of freedom is k− r = 4,.the same as in Example 8.5.4.
(We do not need to subtract 1, because the fact that the sum of the joint
frequencies is 600 has already been used in eliminating a column sum.) Hence,
a chi-square probability computation gives the P-value P

(
χ2
4 ≥ χ̂2

) ≈ .78.
This is strong evidence for accepting the hypothesis of homogeneity. �

We can generalize Example 8.5.5:

Theorem 8.5.2. Chi-Square Test for Homogeneity. If a population is
made up of several subpopulations and we want to test whether the distribution
over certain categories is the same in each subpopulation, then we take a
sample of prescribed size from each subpopulation and construct a contingency
table from the observed frequencies for each category in each subpopulation.
We compute chi-square and the number of degrees of freedom exactly as in
the test for independence and draw conclusions in the same way.

Exercises

Exercise 8.5.1.

Use the Z-test for p in Example 8.5.1 (assuming large n) instead of the
chi-square test, and show that it leads to the same P-value.
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Exercise 8.5.2.

The grades assigned by a certain professor in several calculus classes to
n = 420 students were distributed according to the following table:

Points (85,100] (70,85] (55,70] (40,55] [0,40]
Grade A B C D F
Frequ. 40 96 138 99 47

Over the years, the calculus grades in the department have been normally
distributed with μ = 63 and σ = 18. Use a chi-square test to determine
whether the professor’s grades may be considered to be a random sample
from the same population.

Exercise 8.5.3.

Explain why in the chi-square test for homogeneity, just as in the chi-
square test for independence, the number of degrees of freedom is
(a− 1) (b− 1), where now a is the number of subpopulations and b the num-
ber of categories.

Exercise 8.5.4.

Assume the same data as in Example 8.5.5 and set up a chi-square test
to test the homogeneity of age distribution over party affiliation, that is, test
whether this sample indicates the same age distribution in each party. What
general conclusion can you draw from this example?

Exercise 8.5.5.

My calculator produced the following list of twenty random numbers:
.366, .428, .852, .602, .852, .598, .766, .627, .432, .939,
.618, .217, .002, .060, .391, .004, .099, .288, .630, .499.

Does this sample support the hypothesis that the calculator generates
random numbers from the uniform distribution (apart from rounding) over
the interval [0, 1]?

Exercise 8.5.6.

In an office, the numbers of incoming phone calls in thirty ten-minute peri-
ods were observed to be 3, 2, 1, 0, 0, 1, 4, 0, 0, 1, 1, 1, 2, 3, 2, 0, 0, 1, 2, 1, 1, 1, 2, 2,
3, 3, 2, 1, 4, 1.

Does this sample support the hypothesis that the number of calls follows
a Poisson distribution?
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Exercise 8.5.7.

The following table shows the numbers of students distributed according
to grade and sex in some of my recent elementary statistics classes:

Sex\ Grade A B C D F P
M 5 6 4 4 7 5
F 9 11 9 11 9 8

Does this sample support the hypothesis that in such classes grades are
independent of sex?

8.6 Two-Sample Tests

In many situations, we want to compare statistics gathered from two samples.
For example, in testing medications, patients are assigned at random to

two groups whenever possible: the treatment group, in which patients get
the new drug to be tested, and the control group, in which patients get no
treatment. To avoid bias, the assignment is usually double blind, that is,
neither the patients, nor the physicians know who is in which group. To
ensure this blindness, the patients in the control group are given something
like a sugar pill (called a placebo), that has no effect, and both the patient
and the administering physician are kept in the dark by an administrator
who keeps a secret record of who got a real pill and who got a fake one.

Other two-sample situations involve comparisons between analogous re-
sults, like exam scores, incomes, prices, various health statistics, etc. in differ-
ent years, or between different groups, like men and women or Republicans
and Democrats, and so on.

Comparing the means of two independent normal or two arbitrary, large
samples is very easy:

Definition 8.6.1. Two-Sample Z-Test. In this test, we compare the un-
known means μ1 and μ2 of two populations, using two independent samples ei-
ther a) of arbitrary sizes n1 and n2 from two normal distributions with known
σ1 and σ2 or b) of large sizes n1 and n2 from any distributions so that X1

and X2 are nearly normal by the CLT. The null hypothesis is H0 : μ1 = μ2,
or equivalently, μ = μ1 − μ2 = 0 and we want to test against one of the
alternative hypotheses HA : μ > 0, μ < 0, or μ 	= 0. Thus, in these two cases,
X1 − X2 is normal or may be taken as normal. Hence, writing σ̂2

1 and σ̂2
2

for the observed sample variances, we use the test statistics, standard normal
under H0,

Z =
X1 −X2

σX

(8.130)
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in case (a), and

Z =
X1 −X2

σ̂X

(8.131)

in case (b), where

σX =

√
σ2
1

n1
+

σ2
2

n2
(8.132)

and

σ̂X =

√
σ̂2
1

n1
+

σ̂2
2

n2
. (8.133)

From this point on, we proceed exactly as in the one-sample Z-test.

We can verify that the distribution of the Z above is standard normal in
case (a) and nearly so in case (b):

Under H0, in case (a), X1 and X2 are independent sample means of
samples of sizes n1 and n2 from two normal populations with common mean
μ and standard deviations σ1 and σ2. Thus, the means of X1 and X2 are

both the same μ and their variances are σ2

n1
and σ2

n2
. Hence, X1−X2 is normal

with mean 0 and standard deviation σX =
√

σ2
1

n1
+

σ2
2

n2
, and so Z = X1−X2

σX

is standard normal. In case (b), we just need to replace σ1 and σ2 by their
estimates from the samples.

Example 8.6.1. Exam Scores of Men and Women.

On a calculus test at a certain large school, a random sample of 25 women
had a mean score of 64 and SD of 14 and a random sample of 25 men had
a mean score of 60 and SD of 12. Can we conclude that the women at this
school do better in calculus?

We use a large-sample Z-test for the difference μ = μ1 − μ2 of the two
mean scores, with μ1 denoting the women’s mean score in the population and
μ2 that of the men. We take H0 : μ = 0 and HA : μ > 0. The test statistic is
X1 −X2, with X1 denoting the women’s mean score in the sample and X2

that of the men. The rejection region is {x1 − x2 ≥ 64− 60}. We may assume

that, under H0, X1 −X2 is approximately normal with SD
√

142+122

25 ≈ 3.7.

Thus, we obtain the P-value as P
(
X − Y ≥ 4|H0

)
= P

(
X−Y
3.7 ≥ 4

3.7

)
≈ 1 −

Φ
(

4
3.7

) ≈ 0.14. Consequently, we accept the null hypothesis that the men
and women have the same average score in the population; the discrepancy
in the samples is probably just due to chance caused by the random selection
process. �
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Example 8.6.2. Osteoarthritis Treatment.

D.O. Clegg et al.10 have studied the effects of the popular supplements
glucosamine, chondroitin sulfate, and the two in combination for painful knee
osteoarthritis. Among many other results, they found that 188 of 313 ran-
domly selected patients on placebo obtained at least 20% decrease in their
WOMAC pain scores and 211 of 317 randomly selected patients on the com-
bined supplements obtained a similar decrease. Do these results show a sig-
nificant effect of the supplements versus the placebo?

Now, the sample proportions P̂1 and P̂2 of successful decreases are bino-
mial (divided by n) with expected values p̂1 = 188

313 ≈ 0.601 and p̂2 = 211
317 ≈

0.666. We take H0 : p2 = p1 and HA : p2 > p1. For the computation of σ̂
we use the pooled samples with p̂ = 399

630 . Thus, under H0, P̂2 − P̂1 is ap-

proximately normal with mean μ = 0 and σ̂ =

√
p̂ (1− p̂)

(
1
n1

+ 1
n2

)
=

√
399
630

(
1− 399

630

) (
1

313 + 1
317

) ≈ 0.0384. Hence, P
(
P̂2 − P̂1 > 0.065

)
≈ 1 −

Φ
(

0.065
0.0384

) ≈ 1− Φ (1.693) ≈ 0.045. The effect seems to be just barely signifi-
cant.

Note, however, that the authors reported an unexplained P-value of 0.09
and drew the conclusion that the result was not significant. The discrepancy
is probably due to their use of a two-tailed test, but that seems to be unwar-
ranted, since we want to test the efficacy of the supplements and not their
absolute difference from the placebo. Among their other results, however,
they reported a much more significant response to the combined therapy for
patients with moderate-to-severe pain at baseline, than the numbers above
for all patients. (See Exercise 8.6.4.)

The very high placebo effect can probably be explained by the patients’
use of acetaminophen in addition to the experiment. �

The t-test can also be generalized for two independent samples:

Definition 8.6.2. Two-Sample t-Test. In this test, we compare the un-
known means μ1 and μ2 of two normal populations with unknown common
σ = σ1 = σ2, using independent, small samples of sizes n1 and n2, re-
spectively, from the two normal distributions. Again, the test hypotheses are
H0 : μ1 = μ2, or equivalently, μ = μ1 − μ2 = 0, and one of the alternatives
HA : μ > 0, μ < 0, or μ 	= 0. Under H0, with

ŜX =

√
Σ̂2

1

n2
+

Σ̂2
2

n1
·
√

n1 + n2

n1 + n2 − 2
, (8.134)

10 D.O. Clegg et al. Glucosamine, Chondroitin Sulfate, and the Two in Combination
for Painful Knee Osteoarthritis. NEJM. Feb. 2006.
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the test statistic

T =
X1 −X2

ŜX

, (8.135)

has a t-distribution with n1 + n2 − 2 degrees of freedom.

We consider this test only under the assumption σ1 = σ2, which is very
reasonable in many applications: For instance, if the two samples are taken
from a treatment group and a control group, then the assumption underlying
H0, that the treatment has no effect, would imply that the two populations
have the same characteristics, and so not only their means but also their
variances are equal. The case σ1 	= σ2 is discussed in more advanced texts.

We can verify the distribution of the T above as follows.
Under H0, X1 and X2 are sample means of samples of sizes n1 and n2

from a normal population with mean μ and standard deviation σ. Thus, their

means are the same μ and their variances are σ2

n1
and σ2

n2
. Hence, X1 − X2

is normal with standard deviation σX =
√

σ2

n1
+ σ2

n2
, and Z = X1−X2

σX
is

standard normal.
By Theorem 8.4.2,

S2
1

σ2
=

1

σ2

m∑

i=1

(
X1i −X1

)2
and

S2
2

σ2
=

1

σ2

n∑

i=1

(
X2i −X2

)2
(8.136)

are chi-square random variables with n1 − 1 and n2 − 1 degrees of freedom,
respectively. Thus,

V =
S2
1

σ2
+

S2
2

σ2
(8.137)

is chi-square with n1 + n2 − 2 degrees of freedom.
Hence, by Theorem 8.4.5,

U = Z

√
n1 + n2 − 2

V
(8.138)

has a t-distribution with n1 + n2 − 2 degrees of freedom. Now, we show that
this U is the same as the T in Equation 8.135:

Indeed, Σ̂2
1 =

S2
1

n1
and Σ̂2

2 =
S2
2

n2
, and so,

V =
n1Σ̂

2
1

σ2
+

n2Σ̂
2
2

σ2
. (8.139)
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Thus,

U =
X1 −X2√

σ2

n1
+ σ2

n2

√
n1 + n2 − 2
n1Σ̂

2
1

σ2 +
n2Σ̂

2
2

σ2

=
X1 −X2√

1
n1

+ 1
n2

√
n1 + n2 − 2

n1Σ̂2
1 + n2Σ̂2

2

=
(
X1 −X2

)√ n1 + n2 − 2

n1Σ̂2
1 + n2Σ̂2

2

· n1n2

n1 + n2
(8.140)

=
(
X1 −X2

)√√√√ 1
n1Σ̂

2
1+n2Σ̂

2
2

n1n2

· n1 + n2 − 2

n1 + n2
=

(
X1 −X2

)
√

Σ̂2
1

n2
+

Σ̂2
2

n1
·
√

n1+n2
n1+n2−2

= T,

as was to be shown.

Example 8.6.3. Cure for Stuttering in Children.

Mark Jones et al.11 conducted an experiment in which they compared a
treatment, called the Lidcombe Programme, with “no treatment” as control.
Here we describe a much abbreviated version of the experiment and the
results.

“The children allocated to the Lidcombe program arm received the treat-
ment according to the program manual. Throughout the program, parents
provide verbal contingencies for periods of stutter free speech and for mo-
ments of stuttering. This occurs in conversational exchanges with the child
in the child’s natural environment. The contingencies for stutter free speech
are acknowledgment (”That was smooth”), praise (”That was good talking”),
and request for self-evaluation (”Were there any bumpy words then?”). The
contingencies for unambiguous stuttering are acknowledgment (”That was a
bit bumpy”) and request for self-correction (”Can you say that again?”). The
program is conducted under the guidance of a speech pathologist. During the
first stage of the program, a parent conducts the treatment for prescribed
periods each day, and parent and child visit the speech pathologist once a
week. The second stage starts when stuttering has been maintained at a fre-
quency of less than 1.0% of syllables stuttered over three consecutive weeks
inside and outside the clinic and is designed to maintain those low levels.”

The authors measured the severity of stuttering (% of syllables stuttered)
before randomization (that is, the random assignment of children to the two
groups) and after nine months. They assumed that the hypothetical popula-
tions corresponding to the two groups were normal and independent, and con-
sequently they used a two-sample t-test. They obtained the following means
and SDs (the latter in parentheses):

Treatment Control
n 27 20
Before 6.4 (4.3) 6.8 (4.9)
At nine months 1.5 (1.4) 3.9 (3.5)

11 Randomized controlled trial of the Lidcombe programme of early stuttering in-
tervention. Mark Jones et al., BMJ Sep. 2005.
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At nine months, from Equation 8.133, σ̂X2−X1
=

√
1.42

27 + 3.52

20 ≈ 0.8.

Thus, a 95% confidence interval for the difference δ = μ2 − μ1 between the
two populations in average % of syllables stuttered at nine months is approx-
imately 2.4± 1.6.

Apparently, the authors made no use of the “before randomization” fig-
ures. They should have compared the improvements of the two groups:
6.4 − 1.5 = 4.9 to 6.8 − 3.9 = 2.9, rather than just the end results. We
cannot do this comparison from the data presented, because we have no way
of knowing the SDs of these differences. The “before” and “after” figures are
not independent, for they refer to the same children, and so we cannot use
Equation 8.133 to compute the SDs of the improvements. The only way these
SDs could have been obtained would have been to note the improvement of
each child and to compute the SDs from those.

To test the significance of the nine months results, the authors considered
H0 : δ = 0 and HA : δ > 0. Under H0 the t-value for the difference is about

2.4
/ [

0.8
√

(27 + 20)/(27 + 20− 2)
]
≈ 2.9 with n1 + n2 − 2 = 45 degrees of

freedom. By statistical software, P(T > 2.9) ≈ 0.003. This result is highly
significant: the treatment is effective. �

Next, we present a test for comparing the variances of two indepen-
dent normal populations. Since the normalized sample variances from Equa-
tion 8.136 are chi-square, with n1 − 1 and n2 − 1 degrees of freedom, respec-
tively, it is customary to compare the unbiased sample variances

V̂1 =
1

n1 − 1

m∑

i=1

(
X1i −X1

)2
and V̂2 =

1

n2 − 1

n∑

i=1

(
X2i −X2

)2
(8.141)

to each other. For this comparison, we use their ratio, rather than their
difference, because when σ1 = σ2 = σ, the sampling distribution of the
difference depends on σ, but that of the ratio does not.

Such a ratio has a special, somewhat unfortunately named distribution,
because it conflicts with the notation for d.f.’s. It was so named in honor of
its discoverer, Ronald A. Fisher.

Definition 8.6.3. F -Distributions. Let χ2
m and χ2

n be independent chi-
square random variables with m and n degrees of freedom, respectively. Then

Fm,n =
χ2
m/m

χ2
n/n

=
nχ2

m

mχ2
n

(8.142)

is said to have an F -distribution with m and n degrees of freedom.

Theorem 8.6.1. Density of F -Distributions. The density of the Fm,n

above is given by
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f(x) =

{
0 if x ≤ 0

c x(m/2)−1

(mx+n)(m+n)/2 if x > 0,
(8.143)

where

c =
Γ
(
m+n

2

)
mm/2nn/2

Γ
(
m
2

)
Γ
(
n
2

) . (8.144)

Proof. Theorem 7.4.4 gives the density of a chi-square variable as

fχ2
n
(x) =

{
0 if x ≤ 0

1

2
n/2

Γ (n/2)
x

n
2 −1e−

x
2 if x > 0. (8.145)

Hence, by Example 5.3.1, the density of χ2
n/n is

fχ2
n/n

(x) =

{
0 if x ≤ 0

n

2
n/2

Γ (n/2)
(nx)

n
2 −1

e−
nx
2 if x > 0. (8.146)

Now, we apply Theorem 8.4.3 to the ratio of the two scaled chi-square ran-
dom variables in Definition 8.6.3, with densities as given in Equation 8.146:
For x > 0,

f (x) =

∫ ∞

0

yfχ2
n/n (y) fχ2

m/m (xy) dy

=

∫ ∞

0

y
n

2n/2Γ (n/2)
(ny)

n
2
−1 e−

ny
2

m

2m/2Γ (m/2)
(mxy)

m
2
−1 e−

mxy
2 dy

=
mm/2nn/2x(m/2)−1

2(m+n)/2Γ (m/2)Γ (n/2)

∫ ∞

0

y
m+n

2
−1e−

(mx+n)y
2 dy. (8.147)

If we change the variable y to u = (mx+n)y
2 in the last integral, then we get

f (x) =
mm/2nn/2x(m/2)−1

2(m+n)/2Γ (m/2)Γ (n/2)
· 2(m+n)/2

(mx+ n)
(m+n)/2

∫ ∞

0

y
m+n

2 −1e−udu

=
mm/2nn/2x(m/2)−1

Γ (m/2)Γ (n/2)
· Γ

(
m+n

2

)

(mx+ n)
(m+n)/2

. (8.148)

�

Note that the explicit expression for the F -density is not very useful. We
obtain associated probabilities from tables or by computer.

Definition 8.6.4. F -Test. We use this test for comparing the standard
deviations σ1 and σ2 of two normal populations with unknown σ1 and σ2

and arbitrary μ1 and μ2. We take two independent samples of arbitrary
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sizes n1 and n2, respectively, from the two populations. The null hypothe-
sis is H0 : σ1 = σ2, and we test against one of the alternative hypotheses
HA : σ1 < σ2, σ1 > σ2, or σ1 	= σ2. We consider the test statistic V̂1/V̂2

(see Equation 8.141), which has an F -distribution with n1 and n2 degrees of
freedom under H0.

Let us mention that this test is very sensitive to deviations from normality,
and if the populations are not very close to normal, then other tests must be
used.

Example 8.6.4. Oxygen in Wastewater.

Miller and Miller12 discuss the following example. A proposed method for
the determination of the chemical oxygen demand of wastewater is compared
with the accepted mercury salt method. The measurements are assumed to
come from independent normal populations. The new method is considered
to be better than the old one, if its SD is smaller than the SD of the old
method.

The following results were obtained:

μ̂ (mg/L) V̂ (mg/L) n
1. Standard Method 72 10.96 6
2. Proposed Method 72 2.28 8

Thus, we use the test statistic F5,7, which now has the value 10.96
2.28 ≈ 4.8.

The null hypothesis is H0 : σ1 = σ2, and the alternative is HA : σ1 > σ2.
Thus, the P-value is the probability of the right tail. Statistical software gives
P (F5,7 > 4.8) ≈ 0.03. This result is significant, that is, we accept HA that
the new method is better. �

Exercises

Exercise 8.6.1.

St. John’s wort extract (hypericum) is a popular herbal supplement for the
treatment of depression. Researchers in Germany conducted an experiment,
in which they showed that it compares favorably with a standard drug called
paroxetine.13 Among other results, they found the following mean decreases
on the Montgomery-Åsberg depression rating scale, from baseline to day 42:

12 Statistics for Analytical Chemistry, J.C. Miller and J. N. Miller.
13 Acute treatment of moderate-to-severe depression with hypericum extract WS

5570 (St John’s wort): randomised controlled double blind non-inferiority trial
versus paroxetine

A Szegedi, R Kohnen, A Dienel, M Kieser, BMJ, March 2005.
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Hypericum Paroxetine
n 122 122
mean (SD) 16.4 (10.7) 12.6 (10.6)

Find the P-value of a two-sample z-test, to show that the superior efficacy
of St. John’s wort extract is highly significant.

Exercise 8.6.2.

Show that a random variable X has a t-distribution with n degrees of
freedom if and only if X2 has an F distribution with 1 and n degrees of
freedom.

Exercise 8.6.3.

Prove that E (Fm,n) =
n

n−2 if n > 2. Hint : use the independence of the
chi-square variables in the definition of Fm,n.

Exercise 8.6.4.

D. O. Clegg et al.(Footnote 10, page 328) reported a highly significant
response to the combined therapy with glucosamine and chondroitin sulfate
for patients with moderate-to-severe pain at baseline. They found that 38 of
70 such randomly selected patients on placebo obtained at least 20% decrease
in their WOMAC pain scores and 57 of 72 such randomly selected patients
on the combined supplements obtained a similar decrease. Find the P-value
of the effect of the supplements versus the placebo.

8.7 Kolmogorov-Smirnov Tests

In the 1930s, two Russian mathematicians A. N. Kolmogorov and N. V.
Smirnov developed several goodness of fit tests, two of which we are going to
describe here. The first of these tests is designed to determine whether sample
data come from a given distribution, and the second test, whether data of
two samples come from the same distribution or not. These are instances of
nonparametric tests.

These tests use a distribution function constructed from sample data:

Definition 8.7.1. Empirical or Sample Distribution Function. Let
x1, x2, . . . , xn be arbitrary real numbers and assign probability 1

n to each of
them. This discrete uniform distribution is called the empirical or sample
distribution of the data. The corresponding distribution function is called the
empirical or sample distribution function Fn (x). In other words,

Fn (x) =
1

n
· (number of xi ≤ x). (8.149)
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Clearly, Fn (x) is a step function, increasing from zero to one, and is
continuous from the right. If the xi values are distinct, then Fn (x) has a
jump of size 1

n at each of the xi values. If the xi are sample values from
a population with continuous F, then they should be distinct, although in
practice they may not be, because of rounding.

Example 8.7.1. An Empirical Distribution Function.

The graph in Figure 8.5 shows the empirical distribution function for a
sample of size n = 4 with distinct xi values. It has jumps of size 1

4 at the
sample values x1, x2, x3, x4. �

0

1/4

1/2

3/4

1

y

x1 x2 x3 x4 x

Fig. 8.5. The empirical distribution function of a sample

The tests of Kolmogorov and Smirnov use the following quantity as test
statistic:

Definition 8.7.2. Kolmogorov-Smirnov Distance. The Kolmogorov
-Smirnov (K-S) distance of two distribution functions F and G is defined
as the quantity

d = sup
x

|F (x)−G (x) |. (8.150)

(See Figure 8.6.)

Lemma 8.7.1. Alternative Expression for a K-S Distance. If F is a
continuous d. f. and Fn an empirical d.f. for distinct xi values, then the K-S
distance of F and Fn is given by

dn = max
1≤i≤n

(
max{Fn (xi)− F (xi) , F (xi)− Fn (xi) +

1

n
}
)
. (8.151)
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1/4

0

=

1/2
}

3/4

1

y

y F(x)

=y Fn(x)

dn

x1 x2 x3 x4 x

Fig. 8.6. The KS distance

Proof. Assume that the xi values are in increasing order and let x0 = −∞.
Clearly, supx |F (x)−Fn (x) |must be attained at one of the xi values. For,

on an interval [xi−1, xi) or (−∞, x1) , where Fn (x) is constant, F (x)−Fn (x)
is increasing (together with F (x)), and so its supremum is reached at the
right endpoint xi of the interval, and its minimum at the left endpoint xi−1 of
the interval. Thus, supxi−1≤x<xi

|F (x)− Fn (x) | is the larger of the vertical
distances |F (xi−1)− Fn (xi−1) | and |F (xi)− Fn (xi) |, and so supx |F (x)−
Fn (x) | is the largest of the 2n such distances. This maximum distance can
also be found by first finding the larger of the two distances at each xi, that
is, the larger of the vertical distances from the graph of F to the two corners
of the graph of Fn at xi and then finding the maximum of those as i varies
from 1 to n. This procedure can be done without absolute values as stated
in the theorem. �
Definition 8.7.3. One-Sample Kolmogorov-Smirnov Test. Suppose we
want to test whether a certain random variable X has a given continuous
d. f. F (the null hypothesis) or not (the alternative hypothesis).

Consider a random sample of X with distinct observed values x1, x2,
. . . , xn. Construct the corresponding empirical d. f. Fn and find the K-S
distance dn between F and Fn. Tables and software are available for the
null-distribution of the random variable

Dn = max
1≤i≤n

(
max{Fn (Xi)− F (Xi) , F (Xi)− Fn (Xi) +

1

n
}
)
. (8.152)

For small samples, use one of those to find the P-value P(Dn ≥ dn). For large
n, use the formula

P

(

Dn ≥
√

2

n
c

)

≈ 2
∞∑

k=1

(−1)
k−1

e−2k2c2 . (8.153)

Reject the null hypothesis if P is small and accept it otherwise.
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Remarks.

1. The null-distribution of Dn does not depend on F , that is, a single table
works for any continuous F .

2. For discrete random variables, the P-values given in the table are only
upper bounds, that is, the true P-value can be much smaller than the one
obtained from the table. Thus, the K-S test can be used also for discrete
random variables if it leads to the rejection of H0.

3. F must be fully specified. If parameters are estimated from the data,
then the test is only approximate. Separate tables have been obtained by
simulation for the most important parametric families of distributions to
deal with this problem; we do not discuss them.

4. The test is more sensitive to data at the center of the distribution than
at the tails. Various modifications have been developed to correct for this
problem; we do not discuss them.

5. For small samples, the test has low power for Type 2 errors, that is, it
accepts the null hypothesis too easily when it should not.

Example 8.7.2. Are Grades Normal?

In a small class, the grades on a calculus exam were 12, 19, 22, 43, 52, 56,
68, 76, 88, and 95. Do they come from a normal distribution?

First, we compute μ and σ of the data, and then we use a K-S test as
follows: We find μ ≈ 53 and σ ≈ 29 and we take F to be the normal d.f.
with these parameters. (Note that, by Remark 3 above, the test is only ap-
proximate, because the parameters are estimated from the data. However,
the K-S distance of the sample d.f. from the normal d.f. with these param-
eters is correct, and the test is acceptable.) Also, n = 10, and so Fn is
a step function with jumps of size 1/10. Below, we tabulate the values of
F (xi) , Fn (xi) , d+i = Fn (xi) − F (xi) , and d−i = F (xi) − Fn (xi) +

1
n =

1
n − d+i , for each grade xi:

xi 12 19 22 43 52 56 68 76 88 95
F (xi) .079 .121 .143 .365 .486 .541 .698 .786 .886 .926
Fn (xi) .1 .2 .3 .4 .5 .6 .7 .8 .9 1

d+i .021 .079 .157 .035 .014 .059 .002 .014 .014 .074

d−i .079 .021 −.057 .065 .086 .041 .098 .086 .086 .026

Hence dn ≈ 0.157. In the table, the entry for n = 10 under P = 0.20 is
0.322. A smaller dn supports H0 more strongly. Thus, 0.157 would fall under
a P-value considerably higher than 0.20. So, we accept the null hypothesis:
the grades may well come from a normal distribution. �
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Definition 8.7.4. Two-Sample Kolmogorov-Smirnov Test. Suppose
we want to test whether two independent random samples of sizes m and
n, respectively, have the same continuous d. f. (the null hypothesis) or not
(the alternative hypothesis).

Let Fm (x) and Gn (x) denote the empirical distribution functions of the
two samples. Compute their K-S distance

dmn = sup
x

|Fm (x)−Gn (x) |. (8.154)

We have tables and software for the null-distribution of the corresponding
test statistic Dmn. For small samples, use one of those to find the P-value
P(Dmn ≥ dmn). For large samples, use the formula

P

(

Dmn ≥ c

√
m+ n

mn

)

≈ 2

∞∑

k=1

(−1)
k−1

e−2k2c2 . (8.155)

Reject the null hypothesis if P is small and accept it otherwise.

Example 8.7.3. Grades of Men and Women.

Suppose that on an exam in a large statistics class, the grades of m = 5
randomly selected men were 25, 36, 58, 79, and 96, and the grades of n = 6
randomly selected women were 32, 44, 51, 66, 89, and 93. Use the two-sample
K-S test to determine whether the two sets come from the same distribution.

We want to use the result of Exercise 8.7.3 to compute dmn. We list the
necessary quantities in the following table:

zi 25 36 58 79 96
Fm (zi) 1/5 2/5 3/5 4/5 1
Gn (zi) 0 1/6 3/6 4/6 1

|Fm (zi)−Gn (zi) | 6/30 7/30 3/30 4/30 0/30

zi 32 44 51 66 89 93
Fm (zi) 1/5 2/5 2/5 3/5 4/5 4/5
Gn (zi) 1/6 2/6 3/6 4/6 5/6 1

|Fm (zi)−Gn (zi) | 1/30 2/30 3/30 2/30 1/30 6/30

Hence, dmn = 7/30. The critical value at m = 5 and n = 6 in the two-
sample K-S table for α = 0.05 is 20/30. Since dmn is less than this, we
accept the null hypothesis, that the men and women have the same grade
distribution, at the 5% level. In fact, the P-value is apparently much higher
than 0.05. (In general, a small dmn value supports the null-hypothesis, while
a high one supports the alternative.) �
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Exercises

Exercise 8.7.1.

Use the one-sample K-S test to determine whether a sample of size
n = 300 comes from a population with a given continuous d.f. F, if dn = 0.06.

Exercise 8.7.2.

Suppose the grades in a class were 20, 70, 20, 40, 70, 50, 50, 70, 80, and
80. Find and plot the empirical d.f. of this sample.

Exercise 8.7.3.

Let x1, x2, . . . , xm and y1, y2, . . . , yn be the observed values of two sam-
ples. Let {z1, z2, . . . , zl} = {x1, x2, . . . , xm} ∪ {y1, y2, . . . , yn}. Prove that
dmn = maxi |Fm (zi)−Gn (zi) |.

Exercise 8.7.4.

In Exercise 8.5.5, 20 random numbers from a calculator were given, and
the chi-square test was used to decide whether the calculator generates ran-
dom numbers from the uniform distribution (apart from rounding) over the
interval [0, 1]. Answer the same question using the K-S test.

Exercise 8.7.5.

Suppose we have two samples of sizes m = 200 and n = 300, respectively,
and we find dmn = 0.08. Use the two-sample K-S test to decide whether to
accept H0 that they come from the same population.

Exercise 8.7.6.

Suppose the grades in other samples than in Example 8.7.3 were found
to be 25, 28, 39, 52, 75, and 96 for the men and 38, 44, 51, 66, 89, 93, and 98
for the women. Use the two-sample K-S test to determine whether the two
sets come from the same distribution.
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8.8 Regression

In Section 7.5, we saw that the conditional density E (X2|X1 = x1) for a
bivariate normal pair (X1, X2) is a linear function of x1 whose graph in the
x1x2-plane is called the regression line or least squares line of X2 on X1.
Changing the notation from (x1, x2) to (x, y) , we can write its equation as
(see Equation 7.142)

y = μ2 + ρ
σ2

σ1
(x− μ1) . (8.156)

where the parameters are those of the underlying bivariate normal distribu-
tion.

In most applications, the parameters are unknown and we estimate them
from the empirical distribution obtained from observed sample data, that is,
from the distribution that assigns probability 1/n to each data point (x1, x2)
(as in the one-dimensional case in Definition 8.7.1). In Theorem 6.4.5 we
observed that the least squares line for the empirical distribution is given by
Equation 8.156, with the parameters replaced by their estimates from the
data. So, the empirical least squares line is given by

y = μ̂2 + ρ̂
σ̂2

σ̂1
(x− μ̂1) , (8.157)

where the parameters are given by Equations 6.8, 6.62, and 6.145.
We can show that these estimated parameters are maximum likelihood

estimates for the likelihood function built from the conditional density given
in Equation 7.144. Thus, changing (x1, x2) to (x, y) , and assuming that the
Yi are independent under the condition Xi = xi for all i, we write

L =
n∏

i=1

⎛

⎜
⎝

1
√

2π (1− ρ2)σ2

exp
−
(
yi − μ2 − ρσ2

xi−μ1

σ1

)2

2 (1− ρ2)σ2
2

⎞

⎟
⎠

=

(
1

√
2π (1− ρ2)σ2

)n

exp
−∑(

yi − μ2 − ρσ2
xi−μ1

σ1

)2

2 (1− ρ2)σ2
2

. (8.158)

Clearly, for any values of σ2 and ρ, this function is a maximum when the sum
in the exponent is a minimum. Writing a = μ2, b = ρσ2/σ1 and μ1 = x, we
want to minimize

Q (a, b) =
∑

(yi − a− b (xi − x))
2
, (8.159)

that is, we want to find the least squares line y = â+ b̂ (x− x) for the given
points (xi, yi). We can do this algebraically by expanding and completing the
squares of a and b as follows:
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Q (a, b) =
∑

y2i + na2 − 2a
∑

yi + b2
∑

(xi − x)
2 − 2b

∑
(xi − x) yi

=
∑

y2i + n

(
a− 1

n

∑
yi

)2

− 1

n

(∑
yi

)2

+
∑

(xi − x)
2

(

b−
∑

(xi − x) yi
∑

(xi − x)
2

)2

− (
∑

(xi − x) yi)
2

∑
(xi − x)

2 .

(8.160)

Hence Q (a, b) is a minimum for the a, b values

â =
1

n

∑
yi = y (8.161)

and

b̂ =

∑
(xi − x) yi

∑
(xi − x)

2

=
1
n

∑
xiyi − xy

(
1
n

∑
(xi − x)

2 1
n

∑
(yi − y)

2
)1/2

·
(

1
n

∑
(yi − y)

2
)1/2

(
1
n

∑
(xi − x)

2
)1/2

= ρ̂
σ̂2

σ̂1
,

(8.162)

where y, ρ̂, σ̂1, σ̂2 are the parameters of the empirical distribution estimating
the corresponding parameters of the bivariate normal distribution.

The minimum value of Q (a, b) is then

Q
(
â, b̂

)
=
∑(

yi − â− b̂ (xi − x)
)2

. (8.163)

In order to find the MLE for σ2 and ρ, we take the logarithm of L from
Equation 8.158 after substituting â and b̂ and set the partial derivatives of

logL (a, b, σ2, ρ) = −n log
(√

2π (1− ρ2)
)
−n log σ2−

∑(
yi − â− b̂ (xi − x)

)2

2 (1− ρ2)σ2
2

,

(8.164)

with respect to σ2 and ρ equal to zero:

∂

∂σ2
logL (a, b, σ2, ρ) = − n

σ2
+

∑(
yi − â− b̂ (xi − x)

)2

(1− ρ2)σ3
2

= 0, (8.165)

and

∂

∂ρ
logL (a, b, σ2, ρ) =

nρ

1− ρ2
−

ρ
∑(

yi − â− b̂ (xi − x)
)2

(1− ρ2)
2
σ2
2

= 0. (8.166)
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Both of the preceding equations result in

(
1− ρ̂2

)
σ̂2
2 =

1

n

∑(
yi − â− b̂ (xi − x)

)2

=
1

n
Q
(
â, b̂

)
, (8.167)

which shows that the MLE of the variance
(
1− ρ2

)
σ2
2 of the conditional

density, given in Equation 7.144, equals the average least squares deviation
of the data about the regression line.

In some applications, x is a controlled variable and not random, and for
each value xi chosen by the experimenter, we assume that

Yi = g(xi) + εi, (8.168)

for all i, where the εi are i.i.d., normal r.v.’s with mean 0 and variance σ2.
The name regression is retained for this model, too, although there is no
regression effect in this case. The function g is called the regression function.
It is usually assumed to have a given form, and if g(x) = a+ b (x− x) , then
we speak of a simple linear regression, where the adjective “simple” indicates
that x is one-dimensional and “linear” refers to linearity in the parameters a
and b. The discussion above applies, with minor modifications, in this case,
too. If g is a function of several variables, then we speak ofmultiple regression.
but we shall only discuss the simple linear case with g(x) = a + b (x− x) ,
that is, with

Yi = a+ b (xi − x) + εi, (8.169)

except for two exercises on multiple linear regression.
Thus in this case

E (Yi) = a+ b (xi − x) + E (εi) = a+ b (xi − x) (8.170)

and the likelihood function is

L =

n∏

i=1

(
1√
2πσ

exp
− (yi − a− b (xi − x))

2

2σ2

)

=

(
1√
2πσ

)n

exp
−∑

(yi − a− b (xi − x))
2

2σ2
. (8.171)

Similarly as above, we get the same MLE estimates as in the bivariate normal
case and the corresponding estimators

Â =
1

n

∑
Yi (8.172)
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and

B̂ =

∑
(xi − x)Yi

∑
(xi − x)

2 . (8.173)

These estimators are unbiased (conditionally in the bivariate normal case,
which we do not write):

E
(
Â
)
=

1

n

∑
E (Yi) =

1

n

∑
(a+ b (xi − x))

=
1

n

(
na+ b

∑
xi − bnx

)
= a+ b

1

n

∑
xi − bx = a, (8.174)

and

E
(
B̂
)
=

∑
(xi − x)E (Yi)
∑

(xi − x)
2 =

∑
(xi − x) (a+ b (xi − x))

∑
(xi − x)

2

=
a
∑

(xi − x)
∑

(xi − x)
2 +

b
∑

(xi − x)
2

∑
(xi − x)

2 = b. (8.175)

Since the Yi are i.i.d. normal with common variance σ2 (conditionally in
the bivariate normal case, with variance

(
1− ρ2

)
σ2
2 , by Equation 7.143), and

we have

V ar
(
Â
)
=

(
1

n

)2∑
V ar (Yi) =

σ2

n
, (8.176)

V ar
(
B̂
)
=

∑
(xi − x)

2

(∑
(xi − x)

2
)2σ

2 =
nσ̂2

1

(nσ̂2
1)

2σ
2 =

σ2

nσ̂2
1

, (8.177)

and, by Exercise 6.4.10,

Cov
(
Â, B̂

)
= Cov

(
1

n

∑
Yj ,

∑
(xi − x)Yi

∑
(xi − x)

2

)

=

∑
j

∑
i (xi − x)Cov (Yi, Yj)

n
∑

(xi − x)
2 = 0, (8.178)

since, Yi, Yj being independent, Cov (Yi, Yj) = 0 for i 	= j, Cov (Yi, Yi) = σ2,
and

∑
i (xi − x) = 0.

In the simple linear case we estimate the variance of each Yi as

σ̂2 =
1

n

∑(
yi − â− b̂ (xi − x)

)2

. (8.179)
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Hence

σ̂2 =
∑(

yi − y − ρ̂
σ̂2

σ̂1
(xi − x)

)2

=
1

n

∑
(yi − y)2 +

1

n

∑(
ρ̂
σ̂2

σ̂1
(xi − x)

)2

− 2

n

∑(
ρ̂
σ̂2

σ̂1
(xi − x) (yi − y)

)

= σ2
2 + ρ̂2

σ̂2
2

σ̂2
1

σ̂2
1 − ρ̂2

σ̂2
2

σ̂2
1

2

n

∑
((xi − x) (yi − y))2

= σ2
2 + ρ̂2

σ̂2
2

σ̂2
1

σ̂2
1 − 2ρ̂

σ̂2

σ̂1
ρ̂σ̂1σ̂2 = σ̂2

2

(
1− ρ̂2

)
, (8.180)

just as in the bivariate normal case.
Now, Â and B̂ are both normal, because they are linear combinations of

the i.i.d. normal variables Yi, and, by Theorem 7.5.5, they form a bivariate
normal pair. Thus, by Theorem 7.5.1, they are independent (conditionally in
the bivariate normal case).

One of the main uses of regression analysis is the prediction of y-values for
new unmeasured x-values. The theory above can be used to find confidence
intervals for the prediction error. So, if we write in the bivariate normal case

E (Y0|X = x0) = â+ b̂ (x0 − x) (8.181)

for the best prediction at x = x0, then the variance of the prediction error is

V ar
(
Y0 − Â− B̂ (x0 − x) |X = x0

)

= V ar (Y0|X = x0) + V ar
(
Â|X = x0

)
+ (x0 − x)

2
V ar

(
B̂|X = x0

)
,

(8.182)

where the first term is the variance of the y-score around the best prediction
and the second and third terms make up the variance of the prediction. The
MLE of this variance is

σ̂2 =
(
1− ρ̂2

)
(
σ̂2
2 +

σ̂2
2

n
+ (x0 − x)

2 σ̂2
2

nσ̂2
1

)

= σ̂2
2

(
1− ρ̂2

)
(

1 +
1

n
+

(x0 − x)
2

nσ̂2
1

)

. (8.183)

This result shows that the prediction is best at x0 = x, and the farther x0 is
from x the worse it becomes.

Example 8.8.1. Prediction of Exam Score.

In Example 6.4.4, we obtained the empirical least squares line for five data
points (xi, yi) and found, with our current notation, μ̂1 = μ̂2 = 70, σ̂1 =√
5220− 702 ≈ 17.889, σ̂2 =

√
5130− 702 ≈ 15.166, ρ̂ ≈ 5140−702

17.889·15.166 ≈
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0.88, â = 70, and b̂ = 0.75. Assuming an underlying bivariate normal dis-
tribution, find a 90% confidence interval for the y-score of a hypothetical
student whose x-score was x0 = 100.

The prediction for the y-score is

y0 = 70 + 0.75 (100− 70) = 92.5. (8.184)

This result illustrates the regression effect; the first score of 100 was followed
on average by the lower score of 92.5.

A 90% confidence interval for this y-score is the interval given by
P(|Y − y0| < c) = 0.95 for a t-distribution with mean y0 and variance σ̂2

given by Equation 8.183. We must use the t-distribution, since σ̂2 is just
an estimate of the variance and n is small. We need the t-distribution with
n − 2 = 3 degrees of freedom because the two means are fixed. (This is-
sue is explained in more advanced texts.) Thus we must standardize with
σ+ = σ̂

√
5/3 rather than with σ̂ :

P (|Y − y0| < c) = P

(

|T (3)| < c

σ̂
√
5/3

)

= 0.90, (8.185)

and Equation 8.183 gives

σ̂

=

[
(
5130− 702

)
(

1−
(
5140− 702

)2

(5130− 702) · (5220− 702)

)(
1.2 +

302

5 · (5220− 702)

)]1/2

≈ 9.4. (8.186)

So c ≈ 9.4 ·√5/3 · t.95 (3) ≈ 9.4 ·√5/3 · 2.35 ≈ 28.5. Thus an approximate
90% confidence interval for the predicted y-score at x0 = 100 is the interval
92.5 ± 28.5. Unfortunately, this interval is very wide, but the prediction is
based on a very small sample. (Also, it may seem odd that the interval
goes beyond a score of 100, but if the scores were capped at 100, then the
normal model would not apply. Often this is not a problem or the limits of
applicability of a normal model are fudged.) �

Example 8.8.2. Comparison of Two Fertilizers. This example is
taken from a classic work of R. A. Fisher.14.

The yields of grain in bushels per acre were obtained from two plots during
thirty years. The only difference in treatment was that one plot received
nitrate of soda while the other received an equivalent quantity of nitrogen as
sulfate of ammonia. In the course of the experiment, the first plot appears

14 R. A. Fisher, Statistical Methods for Research Workers. Oliver & Boyd, 1925.
Also available at http://psychclassics.yorku.ca/Fisher/Methods/index.htm
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to be gaining in yield on the second one. Is this apparent gain significant?
In other words, we want to test the null hypothesis that the slope b of the
regression line is 0 versus the alternative that it is positive.

The harvest years are taken as the xi values and the corresponding differ-
ences in yields as the yi values (Table 8.1). Thus, we are using the regression
model of Equation 8.169 with prescribed nonrandom x values.

xi yi
1 −3.38
2 −4.53
3 −1.09
4 −1.38
5 −4.66
6 +4.90
7 −1.19
8 +7.56
9 +1.90
10 +5.28
11 +3.84
12 +2.59
13 +6.97
14 +8.62
15 + 10.75
16 +4.13
17 +12.13
18 +11.63
19 +13.06
20 −1.37
21 +3.87
22 +7.81
23 +21.00
24 +5.00
25 +4.69
26 −0.25
27 +9.31
28 −2.94
29 +7.07
30 +2.69

The difference of the yields of two plots vs. years. (Table 8.1)

Using the mathematical software Maple we find σ̂1 = 8.6554, σ̂2 =
5.8326, ρ̂ = 0.39592, and so b̂ = ρ̂ σ̂2

σ̂1
= 0.39592 · 5.8326

8.6554 = 0.266 80. Fur-

thermore, V ar
(
B̂
)

=
σ2
2(1−ρ̂2)
nσ̂2

1
=

5.83262(1−0.395 922)
30·8.65542 = 0.01276 and so

SD
(
B̂
)
=

√
0.01276 = 0.11296. We use the t-test with 28 degrees of free-

dom, since the variance was estimated from the sample with two means al-
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ready calculated. Hence, we standardize b̂ as t = (0.26679/0.11296)
√

28/30 =
2.282.Maple gives the P-value 1− TDist (2.282, 28) = 0.015145.

Let us remark that Fisher obtained the same t-value, but he concluded,
with the less accurate tables of his time, that P is between 0.02 and 0.05.
He inferred that “The result must be judged significant, though barely so;
in view of the data we cannot ignore the possibility that on this field, and
in conjunction with the other manures used, nitrate of soda has conserved
the fertility better than sulphate of ammonia ; these data do not, however,
demonstrate the point beyond possibility of doubt.” This conclusion can be
drawn from our P-value as well. �

Example 8.8.3. Exercise Capacity and Age.

M. Gulati & al.15 have studied the dependence of exercise capacity on
age for 5721 asymptomatic women and of 4471 symptomatic women. They
measured exercise capacity in MET (metabolic equivalent) units obtained
from treadmill stress tests. They found that the average exercise capacity
(y) for each age (x) depended linearly on age for each group. For the asymp-
tomatic group they calculated the parameter values x = 52.4, σ̂1 = 10.8, y =
8.0, σ̂2 = 2.7, and ρ̂ = −0.51 and obtained the regression equation

y = 14.7− 0.13x. (8.187)

Indeed with these parameter values our Equation 8.157 gives

y = μ̂2+ρ̂
σ̂2

σ̂1
(x− μ̂1) = 8−0.51

2.7

10.8
(x− 52.4) = 14.681−0.1275x, (8.188)

which can be rounded to Equation 8.187.
The authors then used the regression equation to show that the amount

of deviation from one’s age-predicted exercise capacity was correlated with
the risk of both death from any cause and death from cardiac causes. They
did this also for the symptomatic group and for some subgroups as well. (The
nomogram of the paper’s title is a graphic device for representing functions
of two variables, in this case the relative deviation of the observed exercise
capacity from the predicted average for that age as a function of age and the
observed exercise capacity.) �

15 M Gulati & al. The Prognostic Value of a Nomogram for Exercise Capacity in
Women. N Engl J Med 2005; 353:468-475
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Exercises

Exercise 8.8.1.

In our discussion, we found the equation of the least squares line in the
form y = â + b̂ (x− x) for the given points (xi, yi). Modify the formulas to

obtain it in the form y = ĉ+ b̂x and find the mean and the variance of Ĉ and
the covariance of B̂ and Ĉ. Why is this form less desirable?

Exercise 8.8.2.

Show that b̂ in Equation 8.162 can also be written as

b̂ =

∑
(xi − x) (yi − y)
∑

(xi − x)
2 .

Exercise 8.8.3.

Use the normal model of Equation 8.169 and the result of Exercise 8.8.1
to find the standard deviations of the coefficients of Equation 8.187.

Exercise 8.8.4.

Using the data in Exercise 6.4.11 and assuming an underlying bivariate
normal distribution, find an 80% confidence interval for the y-score of a hy-
pothetical student whose x-score was x0 = 100.

Exercise 8.8.5.

Using the data of Example 8.8, find the regression equation of X on Y,
and assuming the same underlying bivariate normal distribution, find a 90%
confidence interval for the x-score of a hypothetical student whose y-score
was y0 = 100. Why is there apparently no regression effect in this case?

Exercise 8.8.6.

Using the data of Example 8.8.4, find the regression equation of X on Y,
and assuming the same underlying bivariate normal distribution, find an 80%
confidence interval for the x-score of a hypothetical student whose y-score was
y0 = 100.
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Exercise 8.8.7.

Show that in the simple linear model, B̂ is not necessarily a consistent

estimator of b, that is, that limn→∞ P
(∣∣
∣B̂ − b

∣
∣
∣ < ε

)
can be less than 1. (Hint :

Choose xi = 0 for i = 1, 2, . . . , n− 1 and xn = 1. Compute V ar
(
B̂
)
and use

the fact that B̂ is normal to compute the limit.)

Exercise 8.8.8.

In the simple linear model, find a sequence of xi values such that B̂ is a

consistent estimator of b, that is, that limn→∞ P
(∣∣
∣B̂ − b

∣
∣
∣ < ε

)
= 1. (Hint :

Compute V ar
(
B̂
)
and use the fact that B̂ is normal to compute the limit.)
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Table 1. Standard normal d.f.

Φ(z) =

∫ z

−∞

1√
2π

e−u2/2du = P (Z ≤ z)

z 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.5040 0.5080 05120 05160 0.5199 0.5239 0.5279 05319 05359
0.1 0.5398 0.5438 0.5478 05517 05557 0.5596 0.5636 0.5675 05714 05753
0.2 0.5793 0.5832 0.5871 05910 05948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9

351© Springer International Publishing Switzerland 2016
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Table 2. Percentiles of the t distribution

df t.60 t.70 t.80 t.90 t.95 t.975 t.99 t.995
1 .325 .727 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925
3 .277 .584 .978 1.638 2.353 3.182 4.541 5.841
4 .271 .569 .941 1.533 2.132 2.776 3.747 4.604
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055
13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012
14 .258 .537 .868 1.345 1.761 2.145 2.624 2.977
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947

16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921
17 .257 .534 .863 1.333 1.740 2.110 2.567 2.898
18 .257 .534 .862 1.330 1.734 2.101 2.552 2.878
19 .257 .533 .861 1.328 1.729 2.093 2.539 2.861
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831
22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807
24 .256 .531 .857 1.318 1.711 2.064 2.492 2.797
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771
28 .256 .530 .855 1.313 1.701 2.048 2.467 2.763
29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750

40 .255 .529 .851 1.303 1.684 2.021 2.423 2.704
60 .254 .527 .848 1.296 1.671 2.000 2.390 2.660

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617
∞ .253 .524 .842 1.282 1.645 1.960 2.326 2.576
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Table 3. Percentiles of the x2 distribution

df χ2
.005 χ2

.01 χ2
.025 χ2

.05 χ2
.10 χ2

.90 χ2
.95 χ2

.975 χ2
.99 χ2

.995

1 .000039 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .1026 .2107 4.61 5.99 7.38 9.21 10.60
3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84
4 .207 .297 .484 .711 1.064 7.78 9.49 11.14 13.28 14.86
5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75
6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55
7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64
For large degrees of freedom,

χ2
P =

1

2
(zP +

√
2v − 1

2
) approximately,

where v = degrees of freedom and zp is given by Table 1.
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Table 4. One-sample Kolmogorov-Smirnov test (If calculated dn is greater than
the value shown, then reject the null hypothesis at the chosen level of significance)

Sample
Size n

Level of significance for dn
.20 .15 .10 .05 .01

1 .900 .925 .950 .975 .995
2 .684 .726 .776 .842 .929
3 .565 .597 .642 .708 .828
4 .494 .525 .564 .624 .733
5 .446 .474 .510 .565 .669
6 .410 .436 .470 .521 .618
7 .381 .405 .438 .486 .577
8 .358 .381 .411 .457 .543
9 .339 .360 .388 .432 .514
10 .322 .342 .368 .410 .490
11 .307 .326 .352 .391 .468
12 .295 .313 .338 .375 .450
13 .284 .302 .325 .361 .433
14 .274 292 .314 .349 .418
15 .266 283 .304 .338 .404
16 .258 274 .295 .328 .392
17 .250 266 .286 .318 .381
18 .244 259 .278 .309 .371
19 .237 252 .272 .301 .363
20 .231 246 .264 294 .356
25 .210 220 .240 270 .320
30 .190 200 .220 240 .290
35 .180 .190 .210 230 .270

Over35 1.07√
n

1.14√
n

1.22√
n

1.36√
n

1.63√
n



Appendix 1: Tables 355

Table 5. Critical values for the two-sample Kolmogorov-Smirnov statistic
S
a
m
p
le

si
ze

n
2

Sample size n1

1 2 3 4 5 6 7 8 9 10 12 15

1
* * * * * * * * * * * *
* * * * * * * * * * * *

2
* * * * * * 7/8 16/18 9/10 11/12 26/30
* * * * * * * * * * *

3
* * 12/15 5/6 18/21 18/24 7/9 24/30 9/12 11/15
* * * * * * 8/9 27/30 11/12 13/15

4
3/4 16/20 9/12 21/28 6/8 27/36 14/20 8/12 41/60
* * 10/12 24/28 7/8 32/36 16/20 10/12 48/60

5
4/5 20/30 25/35 27/40 31/45 7/10 40/60 10/15
4/5 25/30 30/35 32/40 36/45 8/10 48/60 11/15

6
4/6 29/42 16/24 12/18 19/30 7/12 18/30
5/6 35/42 18/24 14/18 22/30 9/12 22/30

7
5/7 35/56 40/63 43/70 51/84 61/105
5/7 42/56 47/63 53/70 58/84 70/105

8
5/8 45/72 23/40 14/24 66/120
6/8 54/72 28/40 16/24 80/120

9
5/9 52/90 20/36 24/45
6/9 62/90 24/36 29/45

10
6/10 32/60 15/30
7/10 39/60 19/30

12
6/12 30/60
7/12 35/60

15
7/15
8/15

Notes: 1. Reject H0 at the 5% or 1% level if d = sup |Fn2(x) − Fn1(x)| equals or
exceeds the tabulated value. The upper value corresponds to α = .05 and the lower
to α = .01.
2. Where ∗ appears, do not reject H0 at the given level.
3. For large values of n1 and n2, the following approximate formulas may be used:

α = .05 : 1.36
√

n1+n2
n1n2

.

α = .01 : 1.63
√

n1+n2
n1n2

.



Appendix 2: Answers and Hints to Selected
Odd-Numbered Exercises

2.1.1.

a) The sample points are HH,HT, TH, TT, and the elementary events are
{HH} , {HT} , {TH} , {TT}.
2.1.3.

a) Two possible sample spaces to describe three tosses of a coin are:
S1 = {an even # of H’s, an odd # of H’s},
S2 = {HHHH,HHHT,HHTH,HHTT,HTHH,HTHT,HTTH,
HTTT, THHH,THHT, THTH, THTT, TTHH, TTHT, TTTH,
TTTT}, where the fourth letter is to be ignored in each sample point.

c) It is not possible to find an event corresponding to the statement p =
“at most one tail is obtained in three tosses” in every conceivable sample
space for the tossing of three coins, because some sample spaces are too
coarse, that is, the sample points that contain this outcome also contain
opposite outcomes. For instance, in S1 above, the sample point “an even
# of H’s” contains the outcomes HHT,HTH, THH for which our p is
true, and it also contains the outcome TTT, for which it is not true.
Thus, p has no truth set in S1.

2.1.5.
In the 52-element sample space for the drawing of a card:

a) The event corresponding to the statement p = “an Ace or a red King is
drawn” is P = {AS,AH,AD,AC,KH,KD}.

b) A statement corresponding to the event U = {AH,KH,QH, JH} is u =
“the Ace of hearts or a heart face card is drawn.”

2.1.7.
One possible sample space is S = {January, February,. . . , December}.
2.2.1.

a) {1, 3, 5, 7, 9} or {k : k = 2n+ 1, n = 0, 1, 2, 3, 4}.

G. Schay, Introduction to Probability with Statistical Applications,
DOI 10.1007/978-3-319-30620-9

357© Springer International Publishing Switzerland 2016
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2.2.5.
A ∩B ∩ C = {1} , (A ∩B) ∩ C = {1, 4} ∩ {1, 2, 3, 7} = {1} , etc.
2.2.7.

a) A ∩ (B ∪ C) = {1, 3, 4, 5} ∩ {1, 2, 3, 4, 6, 7} = {1, 3, 4} ,
but (A ∩B) ∪ C = {1, 4} ∪ {1, 2, 3, 7} = {1, 2, 3, 4, 7}.
2.2.9.
Draw a Venn diagram with non-overlapping sets A and B and number

the three regions.

2.2.11.

1. First, assume that A ∪ B = B, that is, that {x : x ∈ A or x ∈ B} = B.
Hence, if x ∈ A, then x must also belong to B, which means that A ⊂ B.
Alternatively, by the definition of unions, A ⊂ A∪B, and so, if A∪B = B,
then substituting B for A ∪ B in the previous relation, we obtain that
A ∪B = B implies A ⊂ B.

2. Conversely, assume that A ⊂ B, and proceed similarly as above.

2.2.13.

a) (A−B) − C = {3, 5} − {1, 2, 3, 7} = {5} and (A− C) − (B − C) =
{4, 5} − {4, 6} = {5}.
2.3.1.

a) The event R corresponding to r = “b is 4 or 5” is the region consisting of
the fourth and fifth columns in Figure 2.4, that is, R = {(b, w) : b = 4, 5
and w = 1, 2, . . . , 6}.
2.3.3.
P4 = {2, 3, 4} = ABC ∪ABC ∪ABC.

2.3.7.
(A�B)� C = {1, 5, 6, 7}.
3.1.1.
Let A = set of drinkers and B = set of smokers. Then n(AB) = 23.

3.1.5.
n(A) + n(B) + n(C)− n(A ∩B)− n(A ∩ C)− n(B ∩ C) + n(A ∩B ∩ C)
= n(1, 3, 4, 5) + n(1, 2, 4, 6) + n(1, 2, 3, 7) − n(1, 4) − n(1, 3) − n(1, 2) +

n(1), etc.

3.1.7.

1. By the definition of indicators, IAB (s) = 1 ⇔ s ∈ AB. By the definition
of intersection, s ∈ AB ⇔ (s ∈ A and s ∈ B), and, by the definition
of indicators, (s ∈ A and s ∈ B) ⇔ (IA (s) = 1 and IB (s) = 1). Since
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1 · 1 = 1 and 1 · 0 = 0 · 0 = 0, clearly, (IA (s) = 1 and IB (s) = 1) ⇔
IA (s) IB (s) = 1. Now, by the transitivity of equivalence relations,
IAB (s) = 1 ⇔ IA (s) IB (s) = 1, which is equivalent to IAB = IAIB .

3.2.1.

a) S = {ASAH,ASAD,ASAC,AHAS,AHAD,AHAC,ADAS,ADAH,
ADAC, ACAS,ACAH,ACAD}.

3.2.5.
a) 24360, b) 27000.

3.2.7.
a) 14, b) 30.

3.3.1.
20, 120, 8, 1, 1.

3.3.5.
{ABC ACB BAC BCA CAB CBA}, etc.
3.3.7.
360.

3.3.9.

a) 24, b) 12.

3.3.11.

a) 1666,
b) 1249,
c) 416,
d) 2500.

3.4.1.
The tenth row is
1 10 45 120 210 252 210 120 45 10 1.

3.4.5.
45.

3.4.7.

a) 5n

3.4.9.

a) 2n − 1− n,
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3.5.1.

a) 64,
b) 15,
c) 60,
d) 240.

3.5.3.

a) 420,
b) 60,
c) 300,
d) 240.

3.5.5.

a) 210,
b) −22, 680.

3.5.7.

a) 66,
b) 36.

4.1.1.

g) P(B ∩ C) = 0,
h) P(B ∪ C) = 48

52 .

4.1.3.
A = AB ∪ AB and AB ∩ AB = ∅. Thus, by Axiom 3, P(A) = P

(
AB

)
+

P(AB). Similarly, P(B) = P(AB)+ P(AB). Add, use Axiom 3 again, and
rearrange.

4.1.5.
The given relation is true if and only if P(AB) = 0.
4.1.7.

a) This result follows at once from Theorem 4.1.2 because we are subtracting
the (by Axiom 1) nonnegative quantity P(AB) from P(A)+ P(B) on the
right of Equation 4.1 to get P(A ∪B).

c) Use induction.

4.2.1.

b) P(A and K) = 8
12 = 2

3 .
d) Here, each unordered pair corresponds to two ordered pairs, and therefore

each one has probability 2 · 1
12 = 1

6 . In Example 4.2.2, some unordered
pairs correspond to two ordered pairs and some to one.



Appendix 2: Answers and Hints to Selected... 361

4.2.3.
We did not get P(at least one six) = 1, in spite of the fact that on each

throw the probability of getting a six is 1
6 , and six times 1

6 is 1, for two
reasons: First, we would be justified in taking the 1

6 six times here only if the
events of getting a six on the different throws were mutually exclusive; then
the probability of getting a six on one of the throws could be computed by
Axiom 3 as 6 · 1

6 , but these are not mutually exclusive events. Second, the
event of getting at least one six is not the same as the event of getting a six
on the first throw, on the second, etc.

4.2.5.
5
9 .

4.2.7.
m!n!

(m+n−1)! .

4.2.9.
P(jackpot) = 1

5,245,786 ≈ 2 · 10−7 and P(match 5) = 108
2,622, 893 ≈ 4 · 10−5.

4.2.11.

a) 3
8 ,

b) 0.441,
c) 0.189.

4.2.15.
P(all different) ≈ 0.507. (Note that we have included “straights” and

“flushes” in the count, that is, cards with five consecutive denominations or
five cards of the same suit, which are very valuable hands, while the other
cases of different denominations are poor hands.)

4.2.17.
P(full house in poker) ≈ 0.0014.

4.2.19.
P(full house in poker dice) ≈ 0.0386.

4.3.1.
Let E = “even” and O = “odd,” and consider the sample space S =

{EEE,EEO,EOE,
EOO,OEE,OEO,OOE,OOO} for throwing three dice. Compute P(A) ,

P(B), and P(AB).

4.3.5.

a) Let A and B be independent. Then P
(
AB

)
= P(A)− P(AB) = P(A)−

P(A)P(B) = P(A) [1− P (B)] = P(A)P
(
B
)
.
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4.3.7.
p (0) =

(
1
2

)5
, p (1) = 5 · ( 12

)5
, p (2) = 10 · ( 12

)5
, etc.

4.3.9.
P(two of each color) ≈ 0.123.

4.3.11.
Expand both sides of P(A (B ∪ C)) = P(AB ∪AC).

4.4.3.
If A = {K or 2} and B = {J,Q,K}, then P(A|B) = 1

3 .

4.4.5.
Apply Theorem 4.4.1, part 3.

4.4.7.
P(two girls and one boy | one child is a girl) = 1

2 .

4.4.9.
Thus, P(two Kings | two face cards) = 1

11 .

4.4.11.
P(exactly one King |
4.4.13.

a)

P (A|B) =

(
26
8

)

(
39
8

) =
575

22 644
≈ 0.02539.

b)

P
(
A|B) = 1−

(
26
8

)

(
39
8

) ≈ 0.9746.

4.5.1.

c) 17
40 .

4.5.3.

a) 1
33 ,

b) 5
101 ,

c) 1
17 ,

d) 1
2 .
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4.5.5.
Equation 4.52 becomes P(Am) = P(Am+1)·p+ P(Am−1)·q for 0 < m < n,

where q = 1−p and Am denotes the event that the gambler with initial capital
m is ruined. Try to find constants λ such that P(Am) = λm for 0 < m <
n, just as in the analogous, but more familiar, case of linear homogeneous
differential equations with constant coefficients. Solve the resulting quadratic
equation pλ2−λ+q = 0. The general solution of the difference equation is then

of the form P(Am) = aλm
1 + bλm

2 = a+ b
(

q
p

)m

. As in Example 4.5.5, use the

boundary conditions P(A0) = 1 and P(An) = 0 to determine the constants a

and b. Thus, the probability of the gambler’s ruin is P(Am) = (q/p)m−(q/p)n

1−(q/p)n ,

if he starts with m dollars and stops if he reaches n dollars. If q < p, that is,
the game is favorable for our gambler, then limm→∞ (q/p)

n
= 0, and so the

gambler may play forever without getting ruined, and the probability that

he does not get ruined is 1−
(

q
p

)m

.

4.5.7.
5
17 .

4.5.9.

P(GG|G)

=
P(G|GG)P(GG)

P(G|GG)P(GG) + P(G|BG)P(BG) + P(G|GB)P(GB) + P(G|BB)P(BB)

=
1

2
.

4.5.11.
P(WB|BW ∪WB) = 2/11.

4.5.13.
Let A = “the witness says the hit-and-run taxi was blue,” B1 = “the hit-

and-run taxi was blue,” and B2 = “the hit-and-run taxi was black.” Then
P(B1|A) ≈ 0.41. Thus, the evidence against the blue taxi company is very
weak.

4.5.15.

1. P(car is behind 2|3 is opened) = 1/2.
2 P(car is behind 2|3 is opened) = 1/ (p+ 1)

5.1.1.
The p.f. of X is given by f(x) =

(
13
x

)(
39
5−x

) /(
52
5

)
for x = 0, 1, . . . , 5,

and the d.f. of X is given by



364 Appendix 2: Answers and Hints to Selected...

F (x) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0
.222 if 0 ≤ x < 1
.633 if 1 ≤ x < 2
.907 if 2 ≤ x < 3
.989 if 3 ≤ x < 4
.999 if 4 ≤ x < 5
1 if x ≥ 5.

5.1.3.
The possible values of x are 0,±2, and ± 4 and f (0) = 6

16 , f (±2) = 4
16 ,

and f (4) = 1
16 . The histogram is

0

0.1

0.2

0.3

0.4

422-4-                     x

5.1.5.
The possible values of x are 3, 4, and 5 and f (3) = 5

8 , f (4) = 5
16 , and

f (5) = 1
16 .

5.1.7.
The p.f. is given by f (2) = P(X = 2) = p2 + q2, f (3) = pq2 +

qp2 = pq (q + p) = pq, f (4) = pq
(
p2 + q2

)
, and f (5) = p2q3 + q2p3 =

(pq)
2
(q + p) = (pq)

2
. Thus, in general, f (2n) = (pq)

n−1 (
p2 + q2

)
and

f (2n+ 1) = (pq)
n
for n = 1, 2, 3, . . ..

5.1.9.
The d.f is

F (x) =

⎧
⎨

⎩

0 if x < 1
�x /6 if 1 ≤ x < 6

1 if x ≥ 6.

5.1.11.
First, we display the possible values of X in a table as a function of the

outcomes on the two dice:
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w\b 1 2 3 4 5 6

1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 0 1 2
5 4 3 2 1 0 1
6 5 4 3 2 1 0

Since each box has probability 1/36, from here we can read off the values
of the p.f. as

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6/36 if x = 0
10/36 if x = 1
8/36 if x = 2
6/36 if x = 3
4/36 if x = 4
2/36 if x = 5

5.1.13.
Since A1, A2, . . . is a nondecreasing sequence of events, A = A1 ∪

[∪∞
k=2(Ak − Ak−1)] and the terms of the union are disjoint, Axiom 2 gives

P(A) = P(A1) +
∑∞

k=2P(Ak −Ak−1). By the definition of infinite sums, the
expression on the right is the limit of the partial sums, that is, P(A) =
limn→∞ [P (A1) +

∑n
k=2 P (Ak −Ak−1)]. Apply Axiom 2 again.

5.1.15.
Let 〈xn〉 be a sequence of real numbers decreasing to −∞, and let An =

{s : X (s) ≤ xn} for every n. Then F (xn) = P(An) and An ⊃ An+1 for
n = 1, 2, . . .. Furthermore, A = ∩∞

k=1Ak = ∅, because there is no s ∈ S
for which the real number X (s) can be ≤ xn for every n, considering that
xn → −∞. Apply the result of Exercise 5.1.14 and the theorem from real
analysis quoted in the hint.

5.2.1.

1. C = 1
8 .

4. P(X < 1) = 1
16 ,

5. P(2 < X) = 3
4 .

5.2.3.

1. C = 1.
4. P(X < 2) = 1

2 .
5. P(2 < |X|) = 1

2 .
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5.2.5.

1. Roll a die. If the number six comes up, then also spin a needle that can
point with uniform probability density to any point on a scale from 0 to
1, and let X be the number the needle points to. If the die shows 1, then
let X = 1, and if the die shows any number other than 1 or 6, then let
X = 2.

2. P(X < 1/2) = 1
12 ,

3. P(X < 3/2) = 1
3 ,

4. P(1/2 < X < 2) = 1
4 ,

5. P(X = 1) = 1
6 ,

6. P(X > 1) = 2
3 ,

7. P(X = 2) = 2
3 .

5.2.7.

2. P(X < 1/2) = 1
10 .

3. P(X < 3/2) = 3
5 .

4. P(1/2 < X < 2) = 7
10 .

5. P(X = 1) = 1
5 .

6. P(X > 1) = 3
5 .

7. P(X = 2) = 1
5 .

5.3.1.
First, make a table whose first row contains the possible values of x, the

second row the corresponding values of fX(x), and the third row the values
of y = x2 − 3x. From this table extract a new table for the p.f. of Y .

5.3.3.

fY (y) =

{
1/2 if y = 0
1/2 if y = π/4.

5.3.5.

FY (y) =

{
ey if y < 0
1 if y ≥ 0

.

5.3.7.

FY (y) =

{
0 if y < 0∫ y

−y
fX (x) dx if y ≥ 0

.

5.3.9.

FY (y) =P(Y ≤ y) =

⎧
⎨

⎩

0 if y < −r
1
2 + 1

π arcsin y
r if −r ≤ y < r

1 if r ≤ y.

5.4.1.
First, make a 6 × 6 table with the possible values of X and Y on the

margins and the corresponding values of U = X + Y and V = X − Y in the
body of the table. Next, make an 11 × 11 table with the possible values of
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U and V on the margins and the corresponding values of fU,V (u, v) in the
body of the table, which are obtained from the first table, considering that
each box there has probability 1/36.

5.4.3.

1. 5
324 ,

2. 5
3888 .

5.4.5.

FZ(z) =

⎧
⎨

⎩

0 if z < 0
z2 if 0 ≤ z < 1
1 if 1 ≤ z.

5.4.7.

1. C = 10.
2. fX(x) = 10

(
x− x4

)
/3 if 0 ≤ x ≤ 1, and fX(x) = 0 otherwise. Similarly,

fY (y) = 5y4 for 0 ≤ y ≤ 1, and fY (y) = 0 otherwise.
3. If (x, y) ∈ D, then F (x, y) = 5

3y
3x2 − 2

3x
5. If 0 < x < 1 and y ≥ 1,

then F (x, y) = F (x, 1) = 5
3x

2 − 2
3x

5. If 0 < y < 1 and x ≥ y, then
F (x, y) = F (y, y) = y5. If x ≥ 1 and y ≥ 1, then F (x, y) = 1, and
F (x, y) = 0 otherwise.

4. P
(
X > Y 2

)
= 2/7

5.4.9.
In the xy-plane, draw the four points (x1, y1), (x1, y2), (x2, y1), and

(x2, y2) and the quarter planes to the left and below each of these points.
Number the regions. The probabilities of the quarter planes are the values of
F in the given points. Use this fact and the additivity axiom for the numbered
regions to prove the formula.

5.4.11.

1. In the discrete case,

fZ (z) =
∑

x−y=z

f(x, y) =
∞∑

x=−∞
f(x, x− z) =

∞∑

y=−∞
f(y + z, y).

2. In the discrete case,

fZ (z) =
∑

2x−y=z

f(x, y) =

∞∑

x=−∞
f(x, 2x− z) =

∞∑

y=−∞
f

(
y + z

2
, y

)
.

5.5.1.
Compute some joint and marginal probabilities, and test whether the

product rule for independence holds.
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For instance, f(0, 1) = P(X = 0, Y = 1) =
(130 )(

13
1 )(

26
1 )

(522 )
= 13

51 .

5.5.3.
Compare to Examples 5.4.5 and 5.5.2.

5.5.5.

1. By the definition of indicators, IAB (s) = 1 ⇔ s ∈ AB. By the definition
of intersection, s ∈ AB ⇔ (s ∈ A and s ∈ B), and, by the definition
of indicators, (s ∈ A and s ∈ B) ⇔ (IA (s) = 1 and IB (s) = 1). Since
1 · 1 = 1 and 1 · 0 = 0 · 0 = 0, clearly, (IA (s) = 1 and IB (s) = 1) ⇔
IA (s) IB (s) = 1. Now, by the transitivity of equivalence relations,
IAB (s) = 1 ⇔ IA (s) IB (s) = 1, which is equivalent to IAB = IAIB .

5.5.7. 7
16 .

5.5.9. 23 −
√
3

2π .

5.5.11.

1. FZ (z) =
∫∞
0

fY (y)
[∫ z/y

0
fX(x)dx

]
dy, and fZ (z) =

∫∞
0

fY (y)fX( zy )
1
ydy.

2. FZ (z) =
∫∞
0

fY (y)
[∫ zy

0
fX(x)dx

]
dy, and fZ (z) =

∫∞
0

fY (y)fX(zy)ydy.
3. fZ (z) = − ln z if 0 ≤ z < 1, and fZ (z) = 0 otherwise.

5.5.13.

1. P(T > 200) ≈ 0.135.
2. P(T < 400) ≈ 0.330.
3. P(maxTi < 200) ≈ 2 · 10−9.
4. P(minTi < 40) ≈ 0.999985.

5.5.15.
Use Definition 5.2.3 and Corollary 5.5.1.

5.5.17.
Find the d.f. of X = −T2, and use the sum formula for Z = T1 − T2 =

X + T1, separately, for z < 0 and z ≥ 0.

5.5.19.

fZ (z) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if z < −1
z + 1 if −1 ≤ z < 0
1− z if 0 ≤ z < 1
0 if 1 ≤ z.

5.6.1.
The joint distribution of X and Y is trinomial (with the third possibil-

ity being that we get any number other than 1 or 6), and so fX,Y (i, j) =
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P(X = i, Y = j) =
(

4
i j k

) (
1
6

)i ( 1
6

)j ( 4
6

)k
for i, j, k = 0, 1, . . . , 4, i+j+k = 4.

Use this formula to compute the marginals and the conditional p.f., which is

given byfX|Y (i|j) = fX,Y (i,j)
fY (j) .

5.6.3.

By Example 5.5.4, P(A|X = x) =

{
P
(
1
2
< Y < x+ 1

2

)
= x if 0 ≤ x < 1

2
P
(
x− 1

2
< Y < 1

2

)
= 1− x if 1

2
< x < 1,

and P(A) = 1
4 , and, by Equation 5.141, fX|A (x) = P(A|X=x)fX(x)

P(A) . Sub-

stitute into the latter.

5.6.5.
First, compute the marginal densities. By definition, f(x, y) =

{
2 if (x, y) ∈ D

0 otherwise

and so fX(x) =

{ ∫ 1−x

0
2dy = 2 (1 − x) if 0 < x < 1

0 otherwise
and

fY (y) =

{∫ 1−y

0
2dx = 2 (1− y) if 0 < y < 1

0 otherwise.
Now use Equation 5.128 to

obtain the required conditional densities.

5.6.7.

1. First, compute P(Z ≤ z|X = x) = FZ|X (z|x) = P(x+ Y ≤ z) =

P(Y ≤ z − x). Next, find fZ|X (z|x) = ∂
∂zFZ|X (z|x). Then use Equa-

tion 5.144, to obtain fX|Z (x|z).

2. Draw a diagram to show that P (X ≤ x, Z ≤ 1) =

⎧⎨
⎩

0 if x < 0
1
2
− 1

2
(1− x)2 if 0 ≤ x ≤ 1

1
2

if x > 1

and so that FX|A (x) =
P(X≤x,Z≤1)

1/2
=

⎧⎨
⎩

0 if x < 0

1− (1− x)2 if 0 ≤ x < 1
1 if x ≥ 1.

Differentiate

to obtain fX|A (x).

6.1.1.
E (X) = 85

13 ≈ 6.54.

6.1.3.
E (T ) =

∫∞
0

t · λ2te−λtdt. Integrate by parts twice to obtain E (T ) = 2
λ .

6.1.7.
The distribution of a discrete X is symmetric about a number α if all

possible values of X are paired so that for each xi < α, there is a possible
value xj > α and vice versa, such that α−xi = xj−α and f (xi) = f (xj). For
such X, E (X) =

∑
all i xif (xi) =

∑
xi<α xif (xi)+αf (α)+

∑
xj>α xjf (xj).

(Here f (α) = 0, if α is not a possible value of X.) In the last term, apply
the symmetry conditions and simplify.

6.1.9.
Use Theorem 6.1.3 and the integral from the solution of Exercise 6.1.3.

6.1.11.
Use Theorem 6.1.3.
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6.1.13.
Example 5.3.1 gives, for continuous X and Y = aX + b, where

a 	= 0, fY (y) =
1
|a|fX

(
y−b
a

)
. Use this expression to compute E (aX + b) =

E(Y ), and in the integral change, the variable y to x = y−b
a separately when

a < 0 and when a > 0.

6.1.15.
In the expression for E (X), factor out np and then use the binomial

theorem.

6.1.17.
In this case, Theorem 6.1.6 does not apply, because X and Y are not

independent. Nevertheless, Equation 6.53 is still true, and you have to check
it directly.

6.1.19. E(Z) = 2
3 .

6.1.21.
Use the hint and the formula for the sum of a geometric series.

6.2.1.
For instance, ifX is a continuous r.v. with density f(x) =

{
2/x3 if 1 < x < ∞
0 otherwise

and Y = −X, then show that X and Y are as required.

6.2.3.
Prove V ar (aX + bY + c) = a2V ar (X) + b2V ar (Y ).

6.2.7.

1. E (X + 2Y ) = 3
λ , and V ar (X + 2Y ) = 5

λ2 .
2. E (X − 2Y ) = − 1

λ , and V ar (X − 2Y ) = 5
λ2 .

3. E (XY ) = 1
λ2 , and V ar (XY ) == 3

λ4 .
4. E

(
X2

)
= 2

λ2 , and V ar
(
X2

)
= 20

λ4 .

5. E
(
(X + Y )

2
)
= 6

λ2 , and V ar
(
(X + Y )

2
)
= 84

λ4 .

6.2.9.
No: E (X) = E (Y ) = np = n

2 and E (XY ) = n2−n
4 .

6.3.1.
Write X̂ = X − μX and Ŷ = Y − μY . Then evaluate m3 (X + Y ) =

E

((
X̂ + Ŷ

)3
)

using the independence of X and Y, from which the inde-

pendence of X̂ and Ŷ follows.

6.3.3.
ψY (t) = ψX (at) ebt.
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6.3.5.
ψX−μ (t) = E

(
et(X−μ)

)
, and so, by the result of Exercise 6.3.3, ψX−μ (t) =

ψX (t) e−μt = (pet + q)
n
e−npt = (peqt + qe−pt)

n
. Now, V ar (X) is the second

moment of X − μ. Use the expression above and Theorem 6.3.1 to compute
V ar (X) as ψ′′

X−μ (0).

6.3.9.
Use the appropriate definitions and the binomial theorem.

6.3.11.
Let X1, X2, X3 denote the points showing on the three dice, respectively,

and let S = X1 + X2 + X3. Find GXi
(s) for any i, and then GS (s) =

G3
Xi

(s). The coefficients of sk here are the required probabilities, and so

p3 = 1
216 , p4 = 3

216 = 1
72 , and p5 = 6

216 = 1
36 .

6.4.1.
Write V ar(X + Y ) as an expectation in terms of X − μX and Y − μY ,

and simplify.

6.4.3.

1. Write Cov (U, V ) in terms of X̂ = X−μX and Ŷ = Y −μY , and simplify.
2. Compute, for instance, P(V = 0|U = 2) and P(V = 0) , and use Theo-

rem 5.6.3.

6.4.5.
Cov (X,Y ) =

∑m
i=1

∑n
j=1 pijxiyj −

∑m
i=1 pixi

∑n
j=1 pjyj .

6.4.7.
First show that Cov (U, V ) = acCov (X,Y ) , σU = |a|σX , and σV = |c|σY.

6.4.9.
Use the result of Exercise 6.4.1 and Theorem 6.2.2.

6.5.1.
Use Definition 6.5.1, for discreteX and Y, and Theorem 6.1.3 with g (Y ) =

EY (X).

6.5.3.
E (X) = 9

4 .

6.5.5.
Ey (X) = 1−y

2 if 0 < y < 1 and Ey (X) = 0 otherwise. Ex (Y ) = 1−x
2 if

0 < x < 1 and Ex (Y ) = 0 otherwise. E (X) = E (Y ) = 1
3 .

6.5.7.

Ez (X) =

{
z
2 if 0 < z < 2
0 otherwise

and Ex (Z) =

{
x+ 1

2 if 0 < x < 1
0 otherwise.

6.5.9.
Use Definition 6.5.1 and Theorem 6.1.4.
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6.5.11.
Use Theorem 6.5.1 and Definition 6.5.2.
6.5.13.
Show that for continuous (X,Y ) with density f (x, y) , E (V arY (X)) =∫∞

−∞
∫∞
−∞ [x− Ey (X)]

2

f (x, y) dxdy and V ar (X) =
∫∞
−∞

∫∞
−∞ [x− E (X)]

2
f (x, y) dxdy, and since

Ey (X) 	= E (X) in general, also V ar (X) 	= E (V arY (X)) in general.

6.6.1.

1. Let n = 2k + 1 for k = 1, 2, . . .. Then the median is m = xk+1.
2. Let n = 2k for k = 1, 2, . . .. Then any number m such that xk < m <

xk+1 is a median.

6.6.3.
The converse of Theorem 6.6.1 says: For m a median of a random variable

X, P(X < m) = 1
2 and P(X > m) = 1

2 imply P(X = m) = 0. Show that this
statement is true.

6.6.5.
Write E (|X − c|) as two integrals without absolute values, and differ-

entiate with respect to c using the fundamental theorem of calculus. Thus
show that E (|X − c|) has a critical point where 2F (c) − 1 = 0 or where
F (c) = 1

2 , that is, if c is a median m. Since we assumed that f is continu-
ous and f (x) > 0, m is unique. Use the second derivative test to show that
E (|X − c|) has a minimum at c = m.

6.6.7.
For general X the 50th percentile is defined as the number x.5 =

min {x : F (x) ≥ .5}. Show that this x.5 satisfies the two conditions in the
definition of the median.

6.6.9.
The quantile function is F−1 (p) = 2

√
p− 1 for p ∈ (0, 1).

6.6.11.
Invert p = x/4 and p = x/4+ 1/2 separately. The graph of F−1 (p) is the

reflection of the graph in Fig. 5.8 across the y = x line.

7.1.1.

1. P(X (1) > 1) ≈ 0.264.
2. P(X (2) > 2) ≈ 0.323.
3. P(X1 (1) > 1 and X2 (1) > 1) ≈ 0.0698.
4. P(X1 (1) = 2 and X2 (1) = 2|X (2) = 4) ≈ 0.375.
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7.1.3.

1. P(X (1) > 2) ≈ 0.323.
2. P(X (2) > 4) ≈ 0.371.
3. P(X (1) > 4) ≈ 0.053.
4. P(T1 > 1) ≈ 0.135.
5. P

(
T2 > 1

2

) ≈ 0.135.

7.1.5.
P(even)− P(odd) = e−2λt. Also, P(even)+ P(odd) = 1.

7.1.7.
Consider the instants s − Δs < s < t < t + Δt ≤ s′ − Δs′ < s′ < t′ <

t′ +Δt′, and let T1 and T2 denote two distinct interarrival times. Compute
fT1,T2

(t− s, t′ − s′) as a limit, and in the last step, use part 2 of Theo-
rem 7.1.7. If t = s′, the proof would be similar.

7.2.1.
Using the table, we obtain:

1. P(Z < 2) ≈ 0.9772
2. P(Z > 2) ≈ 0.0228
3. P(Z = 2) = 0
4. P(Z < −2) ≈ 0.0228
5. P(−2 < Z < 2) ≈ 0.9544
6. P(|Z| > 2) ≈ 0.045 6
7. P(−2 < Z < 1) ≈ 0.8185
8. z ≈ 1.6448
9. z ≈ 1.6448

10. z ≈ 1.2815

7.2.3.

1. Differentiate ϕ (z) = 1√
2π

e−z2/2 twice, and show that ϕ′′ (z) changes sign
at z2 = 1, that is, at z = ±1.

2. Differentiate f(x) = 1√
2πσ

e−(x−μ)2/2σ2

twice, and show that f ′′ (x)

changes sign at
(
x−μ
σ

)2
= 1, that is, at x−μ

σ = ±1.

7.2.7.
Compare ce−(x+2)2/24 with the general normal p.d.f. 1√

2πσ
e−(x−μ)2/2σ2

.

7.2.9.
P(|X1 −X2| > .5) ≈ 0.27.
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7.2.11.
Solve z = Φ−1(1 − p) for p, to get the area of the tail to the right of z

under the standard normal curve. Switch to the area of the corresponding
left tail and solve the resulting equation for z.

7.3.1.
With the binomial: P(X = 3) ≈ 0.238.
With the normal approximation: P(2.5 < X ≤ 3.5) ≈ 0.2312.

7.3.3.
A single random number X is a uniform random variable with μ = 1

2

and σ2 = 1
12 . By Corollary 7.3.2, the average X of n = 100 i.i.d. copies of

X is approximately normal with μX = 1
2 and σX =

√
1

1200 ≈ 0.029. Thus,

P
(
0.49 < X < 0.51

)
= P

(
0.49−0.5
0.029 < X−0.5

0.029 < 0.51−0.5
0.029

)

≈ P(−0.345 < Z < 0.345) = 2Φ (0.345)− 1 ≈ 0.27.

7.3.5.

1. n ≥ 144.
2. n ≥ 390.

7.4.1.
P(r successes before s failures) =

∑r+s−1
k=r

(
k−1
r−1

)
prqk−r.

7.4.5.
Use P(Xr = k,Xr+s = l) = P(Xr = k)P(Xs = l − k).

7.4.7.
Differentiate the gamma density from Definition 7.4.2.

7.4.9.

1. Modify the proof in Example 7.4.2.
2. Use part 1 and V ar (T ) = E

(
T 2

)− [E (T )]
2

3. Use the definition of ψ (t) and again modify the proof in Example 7.4.2.

7.4.11.
Use mathematical induction on k.

7.4.13.
Compute FU (u) first and then differentiate. U turns out to be exponential

with parameter λ = 1
2σ2 . In particular, the χ2

2 distribution is the same as the
exponential with parameter 1

2 .

7.4.15.
Use Theorem 5.5.8
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7.4.19.
Use Theorem 5.6.2 and Equation 5.142, but instead of evaluating the

integral in the denominator, determine the appropriate coefficient for the nu-
merator by noting that it being a power of p times a power of 1 − p, the
posterior density fP |X must be beta. Thus, fP |X is beta with parameters

k + r and n− k + s, and c = 1
B(k+r,n−k+s) .

7.5.1.
Clearly, Y1 and Y2, as linear combinations of normals, are normal. To show

that they are standard normal, compute their expectations and variances.

7.5.3.
Equate the coefficients of like powers in the exponents in Equation 7.148

and in the present problem.

7.5.5.
Use the result of Exercise 6.4.8 and Theorems 6.4.2, 7.5.1, and 7.5.4.

7.5.7.
First show that X2 under the condition X1 = 80 is normal with μ ≈ 77

and σ ≈ 8.57. Hence x.90 ≈ 88.

7.5.9.
If (X1, X2) is bivariate normal as given by Definition 7.5.1, then aX1+bX2

is a linear combination of the independent normals Z1 and Z2, plus a constant,
and so Theorems 7.2.4 and 7.2.6 show that it is normal.

To prove the converse, assume that all linear combinations of X1 and
X2 are normal, and choose two linear combinations, T1 = a1X1 + b1X2 and
T2 = a2X1 + b2X2, such that Cov (T1, T2) = 0. Such a choice is always
possible, since if Cov (X1, X2) = 0, then T1 = X1 and T2 = X2 will do, and
otherwise the rotation from Exercise 7.5.5 achieves it. Next, proceed as in
the proof of Theorem 7.5.1.

7.5.11.
μU1

= 0, μU2
= 5, σ1,2 = 4.8, σ2

U1
= 44.2, σ2

U2
= 5.8, σU1,U2

= −7, and
ρU1,U2

≈ −0.437.

8.1.5.

a) Differentiate ln (L (λ)) = n lnλ+ (λ− 1)
∑

lnxi.
b) Express λ as a function of E(X) and replace E(X) by xn.

8.1.7.
Use Theorem 5.5.8 to find fY (y) and the latter to compute E (Θ).

8.1.9.
p̂ ≈ 0.022 and the required approximate confidence intervals are

(53.4%, 60.6%) , (52.7%, 61.3%) , and (51.3%, 62.7%).
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8.2.1.
The P-value is about 0.294. This probability is high enough for us to

accept the null hypothesis, that is, that the low average of this class is due to
chance; these students may well come from a population with mean grade 66.

8.2.3.
Using a large-sample paired Z-test for the mean increase μ = μ2 − μ1 of

the weights, we find the approximate P-value to be 0.0002. Thus, we reject
the null hypothesis: the diet is very likely to be effective; however, the im-
provement is slight, and the decision might hinge on other factors, like the
price and availability of the new diet.

8.2.5.
For H0, μ = 28, the P-value is Φ (−11.4) ≈ 2 · 10−30, and for H0, μ = 24,

it is Φ (−4.7) ≈ 1.3 · 10−6.

8.2.7.
c = 0.2 · Φ−1 (0.975) ≈ 0.2 · 1.96 = 0.392.

8.3.1.

b) If μ = 6.5, then the drug has really reduced the duration of the cold
from 7 to 6.5 days, and the test will correctly show with probability 0.841
that the drug works.

8.3.3.
The rejection region is (−∞, 26.5]. The power function is given by π (μ) =

P
(
X ∈ C|μ) = P

(
X ≤ 26.5|μ) ≈ Φ

(
26.5−μ

24

)
.

8.3.5.
Let X denote the number of nondefective chips. The rejection region is

the set of integers C = {0, 1, 2, . . . , 10}. The operating characteristic function

is 1− π (p) = P
(
X ∈ C|p) = (

12
0

)
p12 (1− p)

0
+
(
12
1

)
p11 (1− p)

1
.

8.4.1.
862.26 < μ < 1035.74 and 41.8 ≤ σ < 201.4.

8.4.3.
The P-value is P(T ≥ 0.995) ≈ 0.2, and so we accept the null hypothesis,

the truth of the store’s claim.

8.4.5.
Use the limit formula limk→∞

(
1 + x

k

)k
= ex.

8.5.5.
Divide the interval into four equal parts (in order to have the expected

numbers be at least five) and compute χ̂2.

8.5.7.
Extend the given table to include the marginal frequencies. Hence, the

expected frequencies under the assumption of independence can be obtained
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by multiplying each row frequency with each column frequency and dividing
by 88. Compute χ̂2 and the number of degrees of freedom and use a χ2 table.

8.6.1.
The P-value is about 0.0026.

8.6.3.
By the definition of Fm,n and the independence of the chi-square variables

involved,

E (Fm,n) = E

(
nχ2

m

mχ2
n

)
=

n

m
E
(
χ2
m

)
E

(
1

χ2
n

)
.

Use the definition of the Γ function in the evaluation of E
(

1
χ2
n

)
.

8.7.1.
Use Equation 8.153.

8.7.5.
Use Equation 8.155.

8.8.1.

Cov
(
B̂, Ĉ

)
=

xσ2

nσ̂2
1

.

8.8.3.
SD

(
B̂
)
= 0.0028, SD

(
Ĉ
)
= 0.036.

8.8.5.
x0 = 101.3, σ̂ ≈ 35.6.
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– discrete uniform, 110
– exponential, 119
– Fisher’s F , 331
– gamma, 257
– Gaussian, 238
– geometric, 110
– hypergeometric, 63
– mixed type, 119
– multinomial, 135
– multivariate normal, 276
– negative binomial, 255
– normal, 238
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– of sample variance, 308
– Poisson, 229
– standard normal, 241
– Student’s T , 311
– uniform, 117
– uniform on diagonal, 138
– uniform on disc, 138
– uniform on regions, 137
– uniform on square, 137
Distribution function
– definition of, 106
– properties of, 111
Division principle, 39

Elementary event, 8
Empirical distribution, 334
Empirical distribution function, 334
Empty set, 12, 54
Error types, 292
Estimate, 280
Estimator, 280
Events, 7, 10
Exclusive or, 20
Expectation
– conditional, 214
– definition of, 174
– of a binomial r.v., 184
– of a function of a r.v., 179
– of a geometric r.v., 182
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– of a product, 185
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– of chi-square r.v., 261
– of discrete uniform r.v., 175
– of exponential r.v., 175
– of F r.v., 334
– of gamma r.v., 259
– of negative binomial r.v., 256

– of Poisson r.v., 231
– of symmetric distribution, 176
– of uniform r.v., 175
Expected value
– definition of, 174
Exponential distribution, 119
Exponential random variable, 119
Exponential waiting time, 118

F distribution, 331
F random variable, 331
F -test, 332
Factorial, 37
Fair game, 177
Fermi-Dirac distribution, 66
Fisher’s F distribution, 331
Fisher, R. A., 345
Floor function, 28
Functions of random variables, 124

Gambler’s ruin problem, 96, 100,
203

Gamma function, 257
Gamma random variable, 257
Geometric random variable, 110
Goodness of fit, 319
Greatest integer function, 28

Half-life, 223
Hatcheck problem, 69
Heteroscedasticity, 269
Histogram, 106
Homogeneity
– chi-square test for, 324
Homoscedasticity, 269
Hypergeometric distribution, 63
Hypothesis testing, 290

i.i.d., 279
Inclusion-Exclusion for probabilities, 68
Inclusion-Exclusion for the probability

of k events, 70
Inclusion-Exclusion theorem for counts,

27
Independence
– chi-square test for, 322
– of events, 75, 88
– of random variables, 144, 170
– of sample mean and variance, 307
Indicator function, 28, 30, 161, 281
Indicator r.v., 161
Indistinguishable objects, 49
Interarrival time
– in Poisson processes, 235
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Intersection, 10
Interval estimates, 286

Joint density function, 136
Joint distribution function, 133
Joint probability function, 132

Kolmogorov-Smirnov distance, 335
Kolmogorov-Smirnov tests, 334

Laplace’s rule of succession, 97
Large-sample Z-test, 293
Law of large numbers, 196, 252
Least squares line, 210, 212, 268, 340
Level of significance, 292
Likelihood function, 280
Logical connectives, 20

Marginal density function, 136
Marginal probability function, 133
Markov’s inequality, 177
Matching problem, 69, 71
Maximum likelihood
– definition of, 280
– estimate of parameter of uniform

distribution, 284
– estimate of parameters of normal

distribution, 282
Maximum of random variables, 154
Maxwell-Boltzmann distribution, 66
Mean
– definition of, 174
Median, 221
Memoryless property, 235
Mendel, Gregor, 315
Method of moments for estimates, 285
Minimum of random variables, 154
Mixed random variable, 119
Mode, 264, 265
Moment generating function
– definition of, 198
– multiplicative property of, 201
– of a binomial r.v., 198
– of chi-square, 261
– of exponential r.v., 199
– of gamma, 264
– of geometric r.v., 199
– of negative binomial, 256
– of normal r.v., 243
– of Poisson r.v., 231
– of uniform r.v., 199
– uniqueness of, 201
Moments
– definiton of, 198

Montmort’s matching problem, 69, 71
Monty Hall problem, 58, 85
Multinomial coefficient, 48
Multinomial theorem, 48
Multiple regression, 342
Multiplication principle, 33
Multivariate density function, 136
Multivariate probability function, 133
Mutually exclusive events, 26

Negative binomial random variable, 255
Normal approximation
– to binomial, 248
Normal equations, 213
Normal random variable, 238
Null-distribution, 291

Observed significance level, 295
Operating characteristic function, 300

P-value, 295
Paired tests, 298, 315
Pascal’s triangle, 42
Pearson, Karl, 316
Percentile, 224
Permutation, 36
Permutations with repetitions, 47
Poisson distribution, 229
Poisson process, 234
Poisson random variable, 229
Poker, 67
Poker dice, 68
Power function, 300
Prediction, 218, 344
Probability
– classical definition of, 57
– conditional, 84
– distribution, 63, 105
– measure, 53
– of complements, 55
– of empty set, 54
– of events, 53
– of subsets, 55
– of unions, 54
– space, 54
Probability density, 115
– of a ratio, 310
– of a sum, 156
Probability function
– definition of, 106
Probability generating function
– definition of, 202
Product of two independent random

variables, 158
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Quantile, 224
Quartiles, 224
Quotient of two independent random

variables, 158

Random choice, 57
Random number generation, 127
Random process, 234
Random sample, 243, 279
Random variable
– Bernoulli, 107
– beta, 262
– binomial, 108
– bivariate normal, 266
– Cauchy, 186
– chi-square, 261
– definition of, 105
– discrete, 109
– discrete uniform, 110
– exponential, 119
– F , 331
– gamma, 257
– Gaussian, 238
– geometric, 110
– indicator, 161
– mixed type, 119
– multivariate normal, 276
– negative binomial, 255
– normal, 238
– Poisson, 229
– standard normal, 241
– T , 311
– uniform, 116
– uniform on circle, 130
– uniform on diagonal, 138
– uniform on disc, 138
– uniform on regions, 137
– uniform on square, 137
Random variables
– functions of, 124
– product of, 158
– quotient of, 158
– sum of, 142, 155
Ratio of Two Independent Random

Variables, 158
Reduced sample space, 87
Reflection principle, 64
Regression effect, 268
Regression fallacy, 269
Regression function, 342
Regression line, 210, 212, 268, 340
Regression to the mean, 268
Rejection region, 292

Relative frequency, 53
– conditional, 83
Roulette, 178

Saint Petersburg paradox, 178
Sample distribution, 334
Sample distribution function, 334
Sample mean, 243, 279, 307
Sample size, 253
Sample space, 5
Sample standard deviation, 283
Sample variance, 279, 283, 307
Sampling
– with replacement, 63
– without replacement, 62
Sampling distribution, 279
Scatter plot, 210
Schwarz inequality, 208
Set operations, 10, 20
Sets, 10
Significance level, 292
Simple linear regression, 342
Size
– of a sample, 253
– of a test, 302
– of type two error, 300
Small sample test, 313
Square-root law, 194
Standard deviation
– definition of, 188
– of a Bernoulli r.v., 194
– of a binomial r.v., 194
– of a discrete uniform r.v., 189
– of a linear function of a r.v., 191
– of a uniform r.v., 190
– of exponential r.v., 192
Standard error, 196
Standard normal distribution, 241
Standardization, 191
Statistic, 279
Statistical test, 292
Stochastic process, 234
Student’s T distribution, 311
Student’s T statistic, 310
Student’s t-test, 313
Subset, 10
Subtraction of sets, 11
Subtraction principle, 29
Sum of two independent random

variables, 155
Sum of two random variables, 142
Superset, 10
Symmetric difference, 20, 23, 60
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T distribution, 311
T random variable, 311
t-test, 313
– two-sample, 328
Theorem of total expectation, 215
Theorem of total probability, 93
– continuous versions, 168
Tree diagrams, 30
Trials, 79
Triangle
– constructibility of, 147
Truth-set, 7
Two dice, 20, 108, 134
Two-sample t-test, 328
Two-sample tests, 326
Two-sample Z-test, 326
Types of error, 292

Unbiased estimator, 281
Uniform distribution, 117
Uniform random variable, 116
Union, 11

Variance

– alternative formula for, 192
– conditional, 218
– definition of, 188
– of a Bernoulli r.v., 194
– of a binomial r.v., 194
– of a discrete uniform r.v., 189
– of a linear function of a r.v., 191
– of a sum, 193
– of a uniform r.v., 190
– of beta r.v., 263
– of chi-square r.v., 261
– of exponential r.v., 192
– of gamma r.v., 259
– of geometric r.v., 205
– of negative binomial r.v., 256
– of Poisson r.v., 231
– of T r.v., 315
Venn diagrams, 10

Waiting time
– in Poisson processes, 235

Z-test, 295
– two-sample, 326
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