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Abstract Bertand’s paradox is a fundamental problem in probability that
casts doubt on the applicability of the indifference principle by showing that
it may yield contradictory results, depending on the meaning assigned to “ran-
domness”. Jaynes claimed that symmetry requirements (the principle of trans-
formation groups) solve the paradox by selecting a unique solution to the prob-
lem. I show that this is not the case and that every variant obtained from the
principle of indifference can also be obtained from Jaynes’ principle of trans-
formation groups. This is because the same symmetries can be mathematically
implemented in different ways, depending on the procedure of random selection
that one uses. I describe a simple experiment that supports a result from sym-
metry arguments, but the solution is different from Jaynes’. Jaynes’ method is
thus best seen as a tool to obtain probability distributions when the principle
of indifference is inconvenient, but it cannot resolve ambiguities inherent in
the use of that principle and still depends on explicitly defining the selection
procedure.
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1 Introduction

The application of probabilities in physics raises a host of difficult founda-
tional questions [1]. Among these is the problem of determining the correct
“counting” procedure for a given case, or equivalently, choosing which proba-
bility distribution to use for the relevant random variables. Perhaps the most
common approach is to use the principle of indifference (so named by Keynes,
and often known previously as the principle of insufficient cause):

Principle of Indifference: If there is no known reason for pred-
icating of our subject one rather than another of several alternatives,
then relatively to such knowledge the assertions of each of these alter-
natives have an equal probability. [2, p.42]

The principle of indifference, in some form or other, has been successfully
used in myriad applications, from coin flipping and gambling games to con-
figurations counting in statistical mechanics. Nevertheless, its philosophical
status and proper use are still widely debated. One of these debates originates
in the work of mathematician Joseph Louis François Bertrand (1822-1900),
who created a series of examples showing how the principle can lead to trou-
ble if applied uncritically. Later dubbed ‘paradoxes’, the most famous of these
is the chord problem, which has been discussed ever since ([4,5,6,7,8]).

Bertrand’s Problem: Consider a circle with an equilateral triangle in-
scribed in it. What is the probability that a chord selected at random will be
longer than the side of the triangle?

Bertrand showed that one obtains (at least) three different answers accord-
ing to the procedure used to select the chord.

B1. Draw the triangle from the point marking one of the ends of the chord.
The chord will be longer than the triangle’s side if it is inscribed inside the
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angle at the vertex. This represents a third of the possible range for the angles
between the chord and the tangent at the vertex, [0, π]. The probability is 1/3,
therefore.

B2. A chord is completely defined by its midpoint. If the midpoint lies
closer to the center than half a radius, the chord will be longer than the side
of the triangle. This yields a probability 1/2.

B3. All the midpoints of chords longer than the side of the triangle must
fall within a circular area around the center of the original circle, of width half
the original diameter. This area covers a quarter of the original circle and if
the midpoints are chosen at random in the area of the circle, the probability
of them falling in the relevant region is thus 1/4.

In each of these cases, we apply the principle of indifference, but obtain a
different prediction.

Approaches to Bertrand’s paradox vary. Some authors seek to deny that
the problem is truly a problem [for a recent example, see [9]; for a criticism
of this position see [10]]. Probably the most common attitude is to show that
the problem is not well-posed, i.e., that it conflates several different problems
because “random” is an imprecise term. Once the various problems are disen-
tangled and properly understood, the principle of indifference yields a unique
prescription for the probability. The classic presentation of this approach is
given by Marinoff [11]. Although this was apparently Bertrand’s own position,
there has been some debate whether this represents an actual resolution of the
paradox [12].

In contrast, another approach claims that Bertrand’s problem is actually
well-posed and that it does have a unique solution, the multiplicity of answers
being only apparent. The argument originates with Poincaré [13] but the main
proponent of this position is considered to be Jaynes [14]. His claim is that
one should extend “indifference” in the principle to every aspect that is left
unstipulated in the problem. Thus, the orientation, size and position of the
circle should not matter. Jaynes takes this to mean that the required probabil-
ity distribution function (PDF) of the chords should be invariant to changes
in these properties, i.e., invariant under a group of transformations that in-
cludes rotations, rescaling and translations of the circle. This is his principle
of transformations group.

Jaynes then performed an experiment in which he threw long straws at
a circle drawn on the floor. The distribution of the chords generated by the
intersections of the straws with the circle was then compared to the theoretical
prediction and found to be consistent with it. This combination of experimen-
tal verification and theoretical justification has held great appeal ever since,
particularly among physicists. The notion that there is a unique solution to
Bertrand’s problem that can be discovered experimentally has been revisited
and extended several times since [15,16,17,18,19].

It is widely accepted that Jaynes proved that there is a unique solution
that possesses rotational, scaling and translational invariance [7,19,20]. Even
authors who reject Jaynes’ approach nevertheless seem to agree that the sym-
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metry requirement does lead to a unique solution, although they may dispute
the validity of the requirement itself [11,8].

My aim here is to show that is not the case and that as with the princi-
ple of indifference, the application of the principle of transformation groups
depends upon the method of selection of chords. The implementation of the
symmetries turns out not to be unique, and leads to different mathematical
requirements depending on the underlying process by which one imagines the
random chords to be generated. In fact, contrary to Jaynes’ assertion, each
of the classical three solutions of Bertrand’s problem (and additional ones as
well!) can be derived by the principle of transformation groups, using the exact
same symmetries, namely rotational, scaling and translational invariance.

I begin by slightly rephrasing Bertrand’s problem in section 2 in order to
eliminate some criticisms of the standard formulation. This regularized version
is used throughout the rest of the paper. I review Jaynes’ application of his
principle of transformation groups in section 3. In sections 4 and 5, I then show
that Jaynes’ principle can also yield Bertrand’s two other solutions. Section 6
presents a variation on the first solution and describes an empirical verification
of the result. Section 7 then discusses the implications of these facts for physical
applications of the principle of indifference and what Jaynes’ principle actually
contributes to the problem.

2 Regularized Bertrand’s Problem

Bertrand’s original formulation has been the subject of several criticisms, and
the validity of his solutions has been debated, on the grounds that the sug-
gested procedures either do not select a chord from the set of all possible
chords [21], or else that they fail to select a unique chord [12]. Shackel, in par-
ticular, eliminates Bertrand’s proposed solution B3, randomly selecting the
midpoint in the area of the circle, because if the midpoint happens to be the
center of the circle, it does not define a unique chord. Any diameter, no mat-
ter its orientation, is a possible chord. Shackel argues that this disqualifies the
procedure1.

Rowbottom, on the other hand, criticizes Bertrand’s solutions as selecting
chords from proper subsets of all chords instead of the whole set of possibil-
ities [21]. In his view, this disqualifies all the purported solutions. He admits
that one can restate the problem to eliminate this issue, but argues that the

1 One must be historically fair to Bertrand, however. Although it has become standard to
seek the probability that a chord is longer than the side of the inscribed triangle, Bertrand’s
own version required the probability that it be shorter. This obviously eliminates diameters
from the sample space. Furthermore, it also proves that the standard solutions are all valid,
since one can calculate the probability that a chord is longer than the side as one minus the
probability that is it shorter. When applied to calculating the probability that a chord is
shorter than the side, the argument underlying B3 is obviously valid and gives 3/4, which
in turns yields indeed 1/4 for the probability that the chord is longer. This shows that the
solution is actually sound. Nevertheless, I adopt a different approach here in order to leave
no doubt about the matter.
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rephrased problem is much harder and that Bertrand’s solutions are not ade-
quate answers.

The historical intentions of Bertrand are of no concern here, and the criti-
cisms can be answered by slightly reformulating the question and the solutions.
The essentials remain unchanged in this regularized version of Bertrand’s para-
dox, Jaynes’ solution is practically identical and all the questions raised are
still present. Consequently, I will refer in this paper to the regularized problem
and its solutions as Bertrand’s paradox, without further specifications.

To get rid of the singularity at the center of the circle, let us rephrase the
question as:

Regularized Bertrand’s Problem: In a circle, select at random a chord
that is not a diameter. What is the probability that its length is greater than
the side of the equilateral triangle inscribed in the circle?

The regularized versions of Bertrand’s solutions are now as follows:

RB1. Select at random a point on the circumference of the circle. From
that point, select at random an angle for the direction of the chord, exclud-
ing the direction of the diameter. If we use the diameter passing through the
selected point on the circumference as the polar axis, we are selecting a ran-
dom angle from the set (−π/2, 0) ∪ (0, π/2), or equivalently from the range
(−π/2, π/2)− {0}, i.e., excluding the angle 0 corresponding to the diameter.
For a given point on the circumference, the range of angles yielding a chord
longer than the side of the triangle is (−π/6, 0) ∪ (0, π/6), yielding a prob-
ability of 1/3. Since all the points on the circumference are equivalent, the
probability of any chord which is not a diameter being longer than the side of
the triangle is also 1/3 (see also section 5 for a more formal discussion).

RB2. Randomly select a diameter. Consider the radius that is perpendic-
ular to the selected diameter. Select at random a point on this radius and
draw the chord that passes through it, which is also parallel to the selected
diameter. If the distance of the point from the center lies in the open range
(0, R/2), the corresponding chord will be longer than the side of the triangle.
Thus, for any given diameter, the probability of selecting such a chord is 1/2.
Since all the firstly selected diameters are equivalent, the probability of any
chord (which is necessarily parallel to some diameter) being longer than the
side of the triangle is also 1/2.

RB3. Select at random a point inside the circle, excluding its center. Any
such point selects a unique chord of which it is the midpoint. The chord will
be longer than the side of the triangle if the selected point falls inside a central
circle of radius R/2, excluding the center itself. The surface of this area is still
πR2/4, since the excluded central point has surface zero, and the corresponding
probability for the appropriate chord is thus 1/4.

All these methods select one single chord, from the set of all possible chords
that are not diameters, and they all require exactly two random variables to
fully specify the chord. Thus they all represent (at least a priori) equally
acceptable applications of the principle of indifference to the solution of the
regularized Bertrand’s problem.
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With respect to this regularized problem and solutions let us now consider
Jaynes’ arguments for the unique correctness of the value 1/2 as the solution
of the problem. As mentioned above, for the sake of conciseness I will continue
to speak of Bertrand’s problem and solutions when I mean the regularized
versions of these. For the same reason I will not mention every time that
diameters are excluded from our selection, unless it has direct implications for
the calculation at hand. I shall specify how Jaynes’ analysis has to be adapted
to the regularized problem, however. As we shall see, it requires practically no
change.

3 Jaynes’ Solution: Probability 1/2

Jaynes seeks the probability distribution of chords that satisfies certain sym-
metries of the problem. To do so, he needs to select mathematical parameters
that characterize completely a chord. As we shall see later, this proves to be
a crucial point. Jaynes chooses the polar coordinates of the chord’s midpoint,
(r, θ), relative to an origin located at the center of the circle. f(r, θ)dS is the
probability of having the midpoint in the infinitesimal area dS = rdrdθ.

Jaynes then applies his principle of transformation groups. In this instance,
it means that the required PDF must be identical for all observers that are not
explicitly distinguished in the formulation of the problem. Bertrand’s problem
contains no restrictions on the orientation, location or scale used by the ob-
servers, and therefore the required PDF should be symmetrical with respect
to rotations, scale changes and translations. Note that the transformations are
supposed to be applied to the observers (or rather to their coordinate systems),
not to the chords themselves.

3.1 Rotational Symmetry

Consider two observers and let the polar axis of observer B be rotated clock-
wise by an angle α with respect to observer A’s axis. Observer A describes the
system with a PDF f (r, θ), while observer B assigns to the problem a (poten-
tially) different PDF g (r, θ). Now, an angle assigned the value θ by observer A
corresponds to an angle θ−α in the system of B. The system itself is identical,
only its descriptions by the two observers differ. Hence, the two PDF’s must
be identical when referring to the same situation, which means that

f (r, θ) = g (r, θ − α) (1)

This equation merely expresses the arbitrariness of the axes used to de-
scribe the situation, whether the problem itself exhibit rotational invariance
or not.

Jaynes then argues that the Bertrand problem contains no restriction on
the orientation of the chords, which implies that the solution must be identical
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for observers that are merely rotated with respect to each other. This invari-
ance implies that f (r, θ) = g (r, θ), which in turn, implies, because of Eq.(1),
that f (r, θ) must be independent of θ. In other words, f (r, θ) = f(r).

3.2 Scale Invariance

Consider two observers using different scales so that observer A measures a
circle of radius R, while observer B measures a circle of smaller radius aR, with
a ≤ 1 being the scale factor. The two circles are concentric, scale being the
only difference. Again, let observer A describe the system with a PDF f(r),
while observer B uses a PDF h (r). If the midpoint of the chord falls inside
the small circle, it simultaneously defines a chord on the smaller circle and
on the larger circle. This means that for r ≤ aR, the two distributions f(r)
and h (r) must be proportional to each other. They are not equal because they
differ in their normalization, since f(r) also accounts for chords where r > aR,
which are excluded from h (r). Thus, h (r) can be thought of as conditional
probability, i.e.,

h(r) =
f(r)

Prob(midpoint falls inside smaller circle)
(2)

which can now be rewritten (taking into account rotational invariance) as:

h(r) =
f(r)

∫ aR

0
f(r)2πrdr

(3)

This relation holds whether the system is scale invariant or not. It merely
represents the transformation of one probability density function into the other
when we change scale. Note that in this and every subsequent integral over
distances, the single point r = 0 is excluded from the range of the integral.
But since all the integrands involved are regular, this single point makes no
difference to the value of the integral itself. Thus, Jaynes’ argument and its
result apply equally to the regularized Bertrand’s problem as well as to the
original version.

Jaynes now invokes again epistemic indifference. Since the size of the circle
is left indeterminate in the problem, the solution ought to be independent of
it. This means that if an observer rescales all his distances by a factor a (i.e.,
r −→ ar), the resulting distribution ought to remain as before, so that

h(ar)(ar)d(ar)dθ = f(r)rdrdθ −→ a2h(ar) = f(r) (4)

Replacing r by ar in Eq.(3) and substituting the relation Eq.(4) yields the
integral equation

a2f(ar) = 2πf(r)

∫ aR

0

f(u)udu (5)

where again I will mention for the last time that the point u = 0 is excluded
from the range.
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By differentiating with respect to a, one can transform this into a differen-
tial equation. Its solution is:

f(r) =
qrq−2

2πRq
(6)

where q is an arbitrary constant. This distribution is consistent with two of
the three Bertrand solutions. Solution RB2 (as well as B2) corresponds to q
= 1 and solution RB3 to q = 2. Solution RB1 (or B1) is therefore eliminated
at this stage.

3.3 Translational Invariance

To determine the value of the parameter q, Jaynes invokes translational in-
variance. Since the position of the circle’s center is not one of the random
variables in the PDF, imposing this symmetry requires some interpretation
and this is precisely where Jaynes’ analysis must rely on a specific method
of chord selection. Jaynes always thinks of chord selection through his ex-
perimental implementation of throwing long straws at a circle inscribed on
the ground. Translational invariance then takes a very specific meaning. The
straw’s throw is unrelated to the position of the circle. Provided the straw is
infinitely long, it defines a line along which the chord lies. The chord and its
midpoint (r, θ) are determined through the intersection with the circle, and if
the circle is translated, the chord and its midpoint are also translated to new
values (r′, θ′). The situation is illustrated in Fig. 1, where a single line inter-
sects two circles, C and C’, the second being displaced by a distance b with
respect to the fist. That intersection generates two different chords, one for
each circle, and the midpoints of these chords are different points. Let r and
r′ be the distances of the chords’ midpoints to their respective circle centers
and θ and θ′ the directions of these midpoints. Then we have that

r′ = |r − bcosθ|

θ′ =

{

θ r > bcosθ
θ + π r < bcosθ

(7)

As we throw more straws, the midpoints of the chords generated in the
original circle may vary over an area Γ . These same lines then generate chords
in the translated circles, whose midpoints vary over a different area, Γ ′, which
need not be identical to Γ . In fact, the infinitesimal surface element dS = rdrdθ
is itself different from the surface element dS′ = r′dr′dθ.

Jaynes then argues that translational symmetry implies that the probabil-
ity of the midpoints of chords in the original circle lying in the area Γ must be
identical to that of the midpoints of chords in the translated circle, which lie in
the area Γ ′. In other words, the mathematical implementation of translation
invariance is

∫

Γ

f(r)rdrdθ =

∫

Γ ′

f(r′)r′dr′dθ′ (8)
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Fig. 1 Translational invariance in Jaynes’ straw throwing procedure. A single straw may
intersect two circles, translated by a distance b, thus generating two chords. The midpoints
of the chords are then also translated with respect to each other and lie at different distances
from the centers of their respective circles

Substituting now the result Eq.(6) for the form of f(r), and using the
definitions of r′ and θ′, Eq.(7), to transform the right hand side term, we
obtain

∫

Γ

rq−1drdθ =

∫

Γ

|r − bcosθ|q−1drdθ (9)

where we used the fact that the jacobian of the transformation from (r, θ) to
(r′, θ′) is unity.

This relation implies that q = 1, and the resulting PDF f(r) yields the value
0.5 for the probability of a chord being longer than the side of the inscribed
triangle. This value is consistent with the solution RB2 (and B2), though it is
unclear at first sight that it does indeed represent an implementation of this
solution. RB2 selects the midpoint of the chord directly, but although Jaynes’
procedure uses the midpoint as a characterization of the chord, it does not
seem to contain a physical selection of the midpoint itself. It might be the
case, therefore, that it represents a different procedure from all of Bertrand’s
classical solutions, which only coincidentally yields the same numerical value
as RB2. Indeed, Chiu and Larson found that several different methods of chord
selection may yield the same Bertrand probability [22]. In this case, however,
even though Jaynes’ procedure is not a direct implementation of RB2, there is
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reason to believe that the numerical agreement is not coincidental. Tissier gives
a geometric argument that suggests why the two procedures agree (although
he does not prove the agreement formally) [6]. The argument is based on the
fact that since the PDF f(r) only depends on the distance r, one can rotate
all the lines as long as r remains constant, and redraw them all as parallel
lines. This maps Jaynes’ procedure onto a different procedure in which all the
chords are selected from a set of parallel lines, which is precisely the procedure
underlying RB2.

It would seem now that we have proved that Bertrand’s problem was well-
posed after all. Using the symmetries implicit in the formulation of the prob-
lem, we have obtained a single solution. Moreover, this formulation fits an
experimental method of selection of chords and the results of Jaynes’ analysis
are thus empirically confirmed. What more could we want?

But precisely the experimental “confirmation” of the analysis proves to be
its undoing. We have the logical order of things backwards. The straw throw-
ing experiment is not the empirical confirmation of an independent abstract
analysis. Instead, the analysis is a mathematization of the straw throwing
procedure. This means that the experimental procedure logically precedes the
analysis. It is on the basis of this procedure that the mathematical relations
expressing the symmetries are derived. Far from being a confirmation that the
principle of transformation groups yields indeed a unique solution, it is the
choice of a specific experimental procedure that determines how the symme-
tries of the problem are mathematically implemented. As we shall now see, if
we had thought of a different experimental procedure in the first place, the
principle of transformation groups would have yielded a different result. The
principle does not determine that a unique method of chord selection is correct,
therefore, but rather the choice of chord selection procedure determines how
the principle is applied. I shall now show how, contrary to Jaynes’s opinion,
the principle of transformation groups does yield Bertrand’s other solutions.

4 Throwing darts: Probability 1/4

The implementation of translational invariance in Jaynes’s solution differs fun-
damentally from that of the previous symmetries. In both rotational and scale
invariance, the center of the chord remains unchanged and is represented by
the same point for the original circle as for the rotated or scaled circle. This
is consistent with Jaynes’ initial definitions. Note that Jaynes begins his anal-
ysis by seeking the distribution function for the midpoints of chords, defined
by their position (r, θ). That distribution function, f(r, θ), must satisfy some
mathematical constraints because different observers attribute different values
of r and θ to the same point, according to the axes and units that they use.
Indeed, in sections 1 and 2 of his paper, Jaynes specifically refers to differences
in observers as underlying the invariance properties. Thus, two observers may
use different axes to represent a single situation, and their descriptions must
be consistent with each other.
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But the translational invariance imposed by Jaynes is of a completely dif-
ferent nature. The transformation equation does not arise from a difference in
the observers, but rather from a requirement of invariance under the physical

translation of the circle.
Now such ambiguity was already present in the scale invariance argument.

There as well, Jaynes considered two different circles, rather than two ob-
servers. But one could claim that it made no difference. To any change of units
by the observer there corresponds a physical change of scale of the system that
yields the same situation. That argument depends, however, on the fact that
both observers agree on the point that represents the chord’s midpoint.

The translation argument is different, because after the translation of the
circle, the chord’s midpoint is a physically different point. r and r′ are not two
different characterizations of the chord’s midpoint; they represent the distances
to two altogether different points (the two circles’ centers). If Jaynes’ procedure
were a naively faithful representation of his choice of random variables, we
should expect the chord’s midpoint to be directly selected, so that whatever
point we chose must be the chord’s midpoint by definition. That is not the
case. The circle’s translation results in a mapping of the chord’s midpoints
from one area to another. As a result, the areas Γ and Γ ′ are different. This is
the reason that Jayne’s condition implies that rf(r, θ) is a constant function,
rather than, for example, f(r, θ) itself.

There is of course nothing wrong with stipulating, as Jaynes does, a specific
process by which the coordinates of the chord’s midpoint are selected even if
the selection is only indirect. And it is perfectly possible and valid that a
change in the conditions of the selection, such as a translation of the circle,
should result in a different midpoint being selected. But neither is it natural or
inevitable. It is no more than a particular characteristic of a specific process.

Indeed, one can implement the very same symmetry, translational invari-
ance, in a different way, if one assumes the midpoint selection to be determined
by another process. Specifically, imagine that we wish to directly select a point
that is defined to be the chord’s midpoint. One such selection process (perhaps
not the most “natural” one) could be for example to have straws impaled on
darts, so that the dart serves as an axis around which the straws can rotate
freely. We then throw such darts at a circle. Provided the dart hits the inside of
the circle (excluding its center), it is defined to be the midpoint of a chord. The
straw is then rotated around the dart until the chord it generates is centered
on the dart. There is only one such chord, so the selection is well-defined. In
this procedure, unlike Jaynes’, the midpoint is selected first and the chord is
determined by it, rather than the other way around. When one throws straws,
in other words, one selects a chord and the midpoint is determined from the
chord. When one throws darts, one selects a midpoint and the chord is de-
termined from that. Note that in neither this nor Jaynes’ procedure can we
directly select both the chords and the coordinates of their midpoints.

Now consider the situation depicted in Fig. 2, in which we compare again
two circles, C and C′, whose centers are translated by a distance b. Assume the
dart hits the point O, a distance r from the center of the circle C and a distance
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Fig. 2 Translational invariance in the impaled straw procedure. The selected point (where
the dart lands) is defined to be the midpoint of the chord. If two circles are translated by a
distance b, the same midpoint will belong to two different chords.

r′ from the center of the circle C′. In the circle C, this generates the chord
AB, centered around O. In the circle C′, however, O is at a different distance
from the center, and the chord whose midpoint is O is A′B′, which differs from
AB. This is the exact counterpart of Jaynes’ procedure, in which one single
line generates the chord in both circles and the midpoints are different. Here,
the midpoint remains constant and the chords are different.

Just as before, invariance under translation requires that
∫

Γ

f(r, θ)dS =

∫

Γ ′

f(r′, θ′)dS′ (10)

The difference between this case and Jaynes’ is that under the dart-throwing
procedure, the areas Γ and Γ ′ are identical, because we select the midpoints
directly. As a matter of fact, dS and dS′ themselves are identical, since the
points that occupy them are identical. As a result, the condition of transla-
tional invariance now requires that

f(r, θ) = f(r′, θ′) =⇒ rq−2 = (r′)
q−2

(11)

where r′ is given by the relation

r′ =
√

r2 + b2 − 2rbcos(θ) (12)
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Eq.(11) then implies immediately that q = 2 and that f(r, θ) =
1

πR2
, a con-

stant. The probability of a chord’s midpoint lying in an area S is then pro-

portional to that area, and the Bertrand probability is
1

4
, confirming RB3.

This result was obtained through Jaynes’ principle of transformations group,
just like Jaynes’ original result was, yet the two results are different. Obviously,
and contrary to Jaynes’ claim, the principle does not select a unique solution
for the probability distribution function. The reason is that the mathematical
implementation of the symmetries is not unique. Translation, for example, is
not a uniquely defined set of transformations under which the probabilities
must be invariant. As it turns out, there are several possible mathematical
expressions of the fact of invariance under translation, and these depend on
the experimental procedure selected to generate the PDF. Thus, Jaynes’ prin-
ciple will yield either Bertrand’s solution RB2 or the solution RB3, depending
on which equations we set up to express the fact of translational invariance.
Throwing straws to select chords suggests a particular mathematical imple-
mentation of translational invariance. Throwing darts to select chords’ mid-
points suggests a different one. Neither is more intrinsically correct than the
other. Each represents the conditions of the chosen experimental procedure.

In fact, however, the multiplicity of solutions is even wider, for solution
RG1 is also derivable from Jaynes’ principle, using precisely the same sym-
metries namely, rotation, scale and translation invariance. This seems odd at
first, because Jaynes seemingly proved that this solution violates scale invari-
ance. This turns out to be misleading, however. The reason is that right at
the start, Jaynes arbitrarily decided to describe the chord through the coor-
dinates of its midpoint. But this characterization is not unique and one could
equally well describe a chord using a different set of variables. Applying the
principle of transformation groups to those variables generates a different set
of mathematical conditions, which in turn yield a different solution for the
PDF.

5 Following spinners: Probability 1/3

Jaynes’ application of transformation groups rejected Bertrand’s solution RG1
because it violates scale invariance. Yet the textual description of procedure
RG1 includes no obvious scale-dependent element, and it thus seems mysteri-
ous that it should be eliminated on these grounds. As I shall show now, this is
nothing more than an artefact of Jaynes’ own choice of the procedure of chord
generation, and a different choice can make this solution viable.

The regularized procedure RB1 contains two steps and can be implemented
empirically by way of a spinner, such as a needle mounted on a vertical axis
so that it is free to rotate in the horizontal plane. The experimenter starts at
the center of the circle and spins the needle. He then proceeds in the direc-
tion in which the needle points after coming to rest, until he intersects the
circle. This selects a random point on the circumference. From that point, the
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experimenter spins his needle again and draws a line along the direction it
indicates. Now in half the cases, the needle will point away from the circle. To
overcome this problem, let us decree that the experimenter draws the line in
both directions from his position, so that one such extension is certain to fall
inside the circle and define a chord.

Formally, we identify the two directions determined by the spinner by two
angles α (the direction of the radius-vector to the chosen end-point on the
perimeter) and β (the direction of the chord from that point). We also specify
a sign convention for both angles, such as their being positive if measured
counterclockwise. We are now seeking the PDF of these angles, f1 (α, β), as
determined by an appropriate group of transformations (always excluding di-
ameters).

One should note that our procedure does not map a chord to a single pair of
angles, but rather to four such pairs. Indeed, since a chord has two end-points,
there are two possible values of α for every single chord (denoted, e.g., α1 and
α2), each corresponding to one of the end-points. Moreover, our procedure
dictates that the angles β and β + π correspond to the same chord, one of
these angles pointing into the circle and the other pointing outwards. Since we
decided to extend our line in both directions, both these angle generate the
same line in the plane, and thus the same chord.

The mathematical relations between the four sets of angles corresponding
to a single chord depend on the direction with respect to which α and β
are measured. For example, if β is measured as the angle between the chord
and the radius-vector to the endpoint, then the chord determined by (α, β)
is identical to that determined by the pairs (α, β + π), (π + α− 2β,−β) and
(π + α− 2β, π − β). Other definitions generate different expression for the four
sets of corresponding angles. The freedom to determine the directions with
respect to which α and β are determined turns out to be crucial to the problem
at hand, as we shall shortly see.

Although this 1:4 correspondence might be a problem in some formaliza-
tions, it is actually of no import as far as probabilities are concerned. This is
because f1 (α, β) counts every chord exactly four times2, and it is normalized
with respect to the total number of choices corresponding to all possible val-
ues of α and β, which is also exactly four times the total number of chords in
the circle, excluding diameters3. Therefore, the factor 4 cancels out and the
probabilities are identical whether we count every chord once or four times.

The change in procedure implies a change in the application of the rel-
evant transformation groups. Since the PDF f1 (α, β) contains only angular
variables, it is automatically scale invariant, so this symmetry adds no new
information (note that this was the symmetry that eliminated this solution in
Jaynes’ original analysis).

2 This is because we exclude the diameters, which correspond to β = 0, so that β and −β

always correspond to different angles.
3 I use the term “number” informally here, for brevity’s sake. One can easily transfer this

to the language of measures.
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Translations are also of little help because the angles are only meaningful
with respect to a determined, though arbitrary, center. Another way of saying
this is to consider the pragmatics of the experimental procedure. In Jaynes’
method, one throw straws onto the ground and this operation can be per-
formed without reference to the circle (provided that the straws are effectively
infinite). In other words, the experimenter need not know where the circle is
located in order to perform the procedure. Not so in the present case. The
first spin determines the direction in which the experimenter moves from the
circle’s center. Without knowing the position of this center, no chord can be
selected. This does not contradict Jaynes’ argument that the position of the
circle should not matter. It does not matter here as well. The circle’s center
can be translated at will. But the procedure only starts after that position
has been fixed. Thus, although the circle’s location is arbitrary (as required in
Jaynes’ analysis), it must be determined before the chord is selected.

Translations have no import for the form of the PDF we seek, therefore,
because this form is not altered if the circle is translated previous to the
selection of α and β, and the procedure itself forbids any such translation
after the selection of the angles. Thus, although the scale and location of the
circle are as arbitrary here as they were in Jaynes’ procedure, they have no
influence on the form of the PDF and thus yield no information with regards
to it.

Nevertheless, there is one element that remains undetermined in the proce-
dure, and this single symmetry fixes the PDF completely. Indeed, at no point
did we specify which way the experimenter was facing while spinning the nee-
dle and the result should therefore be independent of this information. This is
a type of rotational symmetry, which can be formalized in the following way.
The direction in which the experimenter is facing can be taken as the zero of
the needle’s angle, i.e., the direction of the polar axis with respect to which it
is measured. To say that Bertrand’s problem leaves this direction unspecified
is equivalent to saying that we are free to choose the direction of the polar axis
arbitrarily. But in our procedure the experimenter spins the needle twice and
there are no reasons to connect his orientation the first time with that which
he adopts the second time. In other words, there is no necessity to measure
both angles with respect to the same axis. As long as the two axes are known,
thus unequivocally determining the spatial directions, they can be chosen in-
dependently of each other. This is because we never compare α and β directly
or combine them during the chord selection4. Indeed, as noted above, β could
be defined as the angle between the chord and the radius-vector, whereas α
must obviously be defined with respect to some other axis. An observer B
can use axes rotated by angles θ (for the axis defining α) and φ (for the axis

4 The only exception to this is the relation between the four angles that we identify as
selecting the same chord. These are dependent on the axes chosen. However, this does not
influence the independence of the choice of angles and axes in the first place.
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defining β). The angles he uses are then

α′ = α− θ

β′ = β − φ (13)

The empirical situation is independent of the choice of axes, and the prob-
lem contains no restriction on this choice. Using Jaynes’ own argument, this
lack of restrictions implies that the solution must be identical for both ob-
servers. We must have that

f1 (α, β) dαdβ = f1(α
′, β′)dα′dβ′ (14)

or in other words,
f1(α, β) = f1(α − θ, β − φ) (15)

Since θ and φ are arbitrary, and considering the normalization condition, the
only solution to this relation is the constant function:

f1 (α, β) =
1

4π2
(16)

The corresponding answer to Bertrand’s problem is now:

P1 =

∫ 2π

0

∫ π/6

−π/6

f1(α, β)dαdβ +

∫ 2π

0

∫ 7π/6

5π/6

f1(α, β)dαdβ =
1

3
(17)

where we defined the angle β as the angle between the chord and the radius
vector. Thus we have obtained solution RB1 by using the exact same symme-
tries Jaynes used in his original analysis to justify RB2. This is because the
different selection procedure we defined yields different mathematical expres-
sions of the symmetries. Thus we see again that the principle of transformation
groups does not cut through the multiplicity of solutions suggested by the prin-
ciple of indifference. Instead, it has just as many various interpretations itself,
dependent on the chord generation procedure, because a “symmetry” does
not correspond to a unique mathematical prescription but rather to a general
recipe for generating such a prescription, based on the manner in which the
chords are selected. The end result of the recipe will depend on the details of
the chord selection just as an actual cake depends on the specific ingredients
and tools used to implement the generic names and procedures used in the
recipe.

6 Releasing sticks: Probability 1/3 again

One sometimes witnesses doubts whether the various physical realizations of
different chord selection method are equally valid. Wang, for example, claims
that only Jaynes’ method is applicable because

The fans of Bertrand’s paradox assume carelessly that ‘random
chords’ that generated by any “random” method will be uniformly or
homogeneously distributed in the circle. [18, p.3035]
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This puzzling criticism is clarified in the later work of Wang and Jackson, who
assert that

[E]veryone agrees on what Bertrand-chords [chords generated ran-
domly in a unit circle] are like - they are homogeneously or uniformly
distributed over the circle. [19, p. 76]

But of course, not everyone agrees on this. Tissier, for example, also notes
these facts but still admits that all procedures to select chords are equally valid,
logically [6]. It is, of course, precisely the point of Bertrand’s argument that
the term “random” fails to specify the properties of the distribution sufficiently
to determine it. Far from solving the paradox, to claim that “random” must
mean some specific particular mathematical property of the distribution is
merely strengthening Bertrand’s point that different meanings of “random”
will yield different distributions.

Wang and Jackson use the unspoken assumptions that people make, in
their opinions. Thus, they say

[W]hy do people think that this problem ought to have just one
solution? The reason can only be: Bertrand-chords are homogeneously
distributed in people’s minds. [19, p.77]

The claim relies on what seems “natural”, although neither I nor (I sus-
pect, quite a few) several others think that this problem ought to have just one
solution, nor that it must have uniformly distributed chords. Nevertheless, the
question of a “natural” method of selecting chords at random does seem to
arise here and there, even with those who recognize it is not sufficient grounds
to justify any specific procedure. Thus Tissier considers that only solution B2
- the one “proved” by Jaynes - actually selects random chords directly [6]. The
others select some other properties that then determine the chords indirectly.
Still, he recognizes that this does not invalidate the other procedures. Di Porto
et al. refine Jaynes’ throwing procedure to take into account the size of the
straws and conclude “we believe that our approach provides the natural solu-
tion to Bertrand’s paradox”, although the only justification for this seems to
be, if I read them correctly, that it is based on a physical experiment rather
than randomly drawing the chords [16]. Jaynes himself seems to hold a similar
position when he writes

It will be helpful to think of this in a more concrete way; presumably,
we do no violence to the problem (i.e., it is still just as “random”) if we
suppose that we are tossing straws onto the circle, without specifying
how they are tossed. [14, p. 477, emphasis added]

But of course, as already pointed out by Shackel [12], Jaynes is doing violence
to the problem by choosing a specific physical procedure to implement it. Yet
most subsequent authors (even those who ultimately reject Jaynes’ attitude)
accept that throwing straws is the physical implementation of the problem,
and that the principle of transformation groups thus ultimately does select
a unique physical solution to the problem (some reject the idea that this
represents a solution to Bertrand’s general query, however, e.g., [12]).
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Presumably, the reason why Jaynes’ procedure seems to be so readily ac-
cepted as the physical implementation has something to do with “naturalness”,
i.e., other selection methods seeming less directly a choice of actual chords.
Selecting points on the circumference or throwing darts to specify a midpoint
do not physically generate a chord, although they do logically select a unique
entity. After the physical selection, the chord must be drawn through the
selected points, or in the case of our impaled darts, the straw must be pur-
posefully adjusted so that the selected point is indeed the midpoint. There is
some artifice in these methods that may leave one doubtful as to their validity,
though logically we recognize that they are acceptable, because they seem not
to involve actual chords but something more abstract.

Jaynes’ procedure is not without faults of its own, particularly because it is
strictly valid only for infinite straws thrown form infinitely far away [11,16,17].
Additionally, one must take care to tweak them before the throw, lest there be a
preferred orientation along the line of the arm holding the straw. Nonetheless,
that Jaynes’ calculation is supported by an experiment apparently lends it
significant weight. The procedures described above can certainly be physically
implemented, but they still suffer from not being direct selections of lines
rather than points. In view of this possibly lingering doubt, I will now present
a different implementation of method RB1, in which the chords are directly
selected and which moreover only involves finite straws so that it is strictly
practical, not merely as a limiting process.

Instead of a straw, I use a pointed stick (it must be rigid), of length 2R
or slightly more. First, a random point is selected on the perimeter of a cir-
cle drawn on the floor (e.g., by using the stick as the needle of a spinner -
this stage is not important because of the rotational symmetry of the prob-
lem). Let the angular position of its radius vector be ψ. At the chosen point,
one then balances the pointed stick perpendicularly and releases it from rest.
About half the times, the stick will fall outside the circle, counting as a failure
(Jaynes’ procedure also has similar failures), but when it falls across the circle,
it thereby selects a chord. The second random variable, θ, is the angle at which
the stick falls, with respect, e.g., to the diameter passing through the point of
release. We seek the probability distribution function f2 (ψ, θ).

This procedure is clearly another way to implement RB1. The reason why
I describe it here is twofold. First, it lends itself very simply to experimental
verification. More importantly, however, is that when one applies the principle
of transformation groups, one discovers that the symmetries function quite dif-
ferently from the case described in section 5, even though they both represent
implementations of the same solution. I can think of no better way to show
that the application of symmetry conditions crucially depends on the details
of the selection procedure.

We are considering the same three symmetries: rotation, scaling and trans-
lation. By the exact same argument as before, rotational symmetry implies
that the PDF is independent of ψ. Note that the angle θ is unaffected by
rotations since it is defined with respect to a specific diameter that rotates



Failure and Uses of Jaynes’ Principle of Transformation Groups 19

together with the circle. Thus, rotational symmetry does give us information,
but not enough to fix the PDF, unlike in the case of spinners.

Scaling invariance, on the other hand, is again not expected to give us
information, since angles are scale independent. It is instructive, however, to
understand how scale invariance is to be applied in this case, because it nicely
exemplifies how the “same” symmetry takes on different aspects according to
the selection procedure that underlies it. Unlike the first two cases we saw,
scaling invariance here cannot rely on comparing two concentric circles. The
selection procedure assumes that we drop the stick from a point on the cir-
cumference, and concentric circles cannot touch. Instead, if we are to consider
circles of different radii, they must be tangent to each other at the point of
release of the stick. The situation is described in Fig. 3. It clearly shows, as
expected, that every stick that generates a chord in one circle also generates a
chord in the other, and that these two chords are either both longer than the
sides of the respective inscribed triangles or both shorter. The angle θ that
describes the orientation of the chord must be the same for both circles, and
thus the PDF is trivially invariant whatever its form, as we knew beforehand.
Nevertheless, it is worth noting, as mentioned, that the situation to which
this symmetry applies - two tangent circles - is completely different to that to
which it applied in Jaynes’ procedure - two concentric circles. Thus, although
the symmetry is “the same”, meaning it is still scaling invariance, the specific
form it takes depends on the chord selection procedure.

The same applies to translation, which determines the PDF here. If a single
stick is to create a chord in two circles, they must be tangent. Thus, not all
translations are possible. Only those that leave one point on the perimeter of
the circle in its place can be considered. The situation is described in Fig. 4,
which shows two circles whose centers are a distance b from each other, so that
they share the point of origin of the chord. The diameters of the two circles
that pass through that point form an angle φ, and the angle of the chord in
the translated circle, θ′, is given by

θ′ = θ − φ (18)

Since dθ′ = dθ, invariance of the probabilities to such translations must
mean now that

f2(θ) = f2(θ
′) = f2(θ − φ) (19)

Since this must hold for any φ, f2 must be the constant

f2(θ, ψ) =
1

2π2
(20)

The Bertrand probability is given by a calculation almost identical to that
of Eq.(17) and is similarly 1/3. Once again, this is the result of applying the
principle of transformations groups. It differs in its underlying realization from
the others cases we have considered, although it gives the same numerical an-
swer as the spinner solution. It represents a different physical implementation,
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Fig. 3 Scaling invariance in the stick release procedure. The point of release is defined to
be on the perimeter of the circle. A change of scale must imply that the smaller and larger
circle are tangent at that point

however, and the form of the symmetry relations it entails are consequently
also different.

To verify the result, I drew a circle on a piece of paper, which I then
dropped from a certain height, giving it a twist in the process. When the
paper landed on the floor, I placed a pencil inside it and twirled it. The point
on the circumference at which the pencil pointed after coming to rest was
chosen as one end of the chord. The aim of this procedure was to randomize
as much as possible both the position of the piece of paper and my own, in
order to counteract irregularities in the floor as well as any preferences my
muscles may have. I then stood a thin pointed stick on its end at the selected
point and released it from as perpendicular a position I could manage. Because
the procedure is obviously very sensitive to slight tilts in the positioning of
the stick, and thus to any systematic errors in setting it upright, I repeated
the experiment more times than Jaynes performed his.

Out of 700 attempts, 363 were successes (i.e., the stick fell over the circle),
a 0.518 probability. I used this number to estimate whether I had a significant
systematic error in positioning the stick. Although one might have expected
to be closer to the 0.5 expected figure, I consider the result to be fairly satis-
factory. Out of the successful releases, the chord was longer than the side of
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Fig. 4 Translational invariance in the stick release procedure. One may translate the circle
provided the point of release remains on the perimeter. This is equivalent to a rotation
around that point by an angle ψ. The stick then defines two chords in the two translated
circles, with different orientations

the inscribed triangle 123 times, or a proportion of 0.339, quite close to the
expected theoretical value 1/3.

Although more sensitive to systematic errors that Jaynes’, this procedure
likewise directly selects chords (rather than some abstract characteristic like
the midpoint) and is therefore equally “natural”. We have thus another ex-
perimental method of selecting chords, which yields a different result from
Jaynes’. This result confirms a theoretical calculation based on the very same
invariance properties Jaynes used, properly understood in the context of the
procedure, viz., rotational, scaling and translational symmetries. Thus, we see
again that the principle of transformation groups can generate a different so-
lution, and that this solution is equally verified experimentally. More methods
of directly generating chords are available and can be similarly empirically
verified. They yield still different values from the ones considered here and
represent additional solutions beyond the original three of Bertrand [23].
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7 Discussion

In his discussion of the principle of indifference as a heuristic tool in physics,
Gillies imagines the following scenario:

[C]onsider[...] again Jaynes’s analysis of the random chord case and
the confirming experiment he performed. The same conclusion could
have been reached by another scientist (Mr K say) following a different
route. Let us suppose that Mr K applies the Principle of Indifference
to the random chord case, but initially only the third approach [B3]
(which yields P(CLSE) = 1/4) occurs to his mind. He works out the
full distribution of chord lengths on this approach and then tests the
distribution using exactly the same experiment as Jaynes. In the case of
Mr K, however, the experiment disproves his hypothetical distribution.
In the face of this refutation, Mr K analyses the problem further. He
hits on the other two ways of applying the Principle of Indifference,
and he also thinks of the invariance requirements which suggest that
the first approach is the best of the three. In this way he explains the
result of his experiment successfully.

This is certainly a possible sequence of events, but it is not the only one,
and although I agree with Gillies’ last sentence, I have reservations about the
rest. As I read Gillies’ story, he imagines that Mr. K uses only the principle
of indifference in his initial calculations, but not symmetry arguments. He can
then derive the distribution of chord lengths from the assumption that the
midpoint of the chords is selected from a uniform distribution over the area of
the circle. So far so good, but why would Mr. K then use Jaynes’ experiment
to test his distribution? To be sure, it may be that this is the only option
that comes to his mind, but as we have seen, it is not the only one avail-
able. Contrary to an apparently received opinion, there are other methods of
experimentally selecting chords at random, and these yield different Bertrand
probabilities (I do mean selecting chords, rather than some characteristics that
can be used to later draw the chord). This means that when Mr K obtains
a discrepancy and analyzes the problem further, he may not necessarily hit
on the two other ways to apply the principle. Instead, he may hit on another
experimental method to test his distribution, and it may very well be that it
will confirm his calculation.

The most important point, however, is that supposing Mr K hits on the
other Bertrand solutions as well as on the idea of using invariance require-
ments, the result will not be what Gillies thinks. In fact, each of these so-
lutions can be supported by invariance requirements and even by the very
same requirements, in the sense that they will be all called rotation, scaling
and translation invariance. But the mathematical restrictions they impose on
the PDF’s differ because just like the principle of indifference, they can be
applied in different ways, depending on how one selects the random chords in
the circle.
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If the hypothetical Mr K is a scientist, as Gillies describes him, rather than
a philosopher, he will likely still be satisfied, for he will still be able to explain
the results of his experiments. He will realize that he has several available em-
pirical procedures, that each implies certain mathematical requirements that
follow from symmetry considerations, and that for each procedure, he can actu-
ally calculate theoretically the PDF and find that it describes the results of the
experiments. That the calculations all yield different values will not surprise
him, since he will expect that different procedures (with different implementa-
tions of the symmetries) should yield different results, both theoretically and
experimentally.

If Mr K is a philosopher, on the other hand, he may remain unsatisfied, but
he has made some progress nevertheless. True, he still has a choice among var-
ious positions. He can take Bertrand’s problem to be ill-posed but resolvable
into several well-posed problems once the selection procedure is set, follow-
ing Marinoff [11], or he can insist that there still must be a sense in which
“random” means something specific, even if only on the meta-level, like Aerts
and Sassoli de Bianchi [24], or he can also consider that the problem remains
an unsolved challenge, as does Shackel [12]. What he has gained, however, is
the definite understanding that the principle of transformation groups does
not make the problem well-posed, and that well-posing strategies that rely
on such symmetry considerations ought therefore to be rejected. Whatever he
believes of the principle of indifference should equally hold for the principle
of transformation groups. If he believes that the principle of indifference is
only applicable after the problem has been separated into well-posed alter-
natives, then so is the principle of transformation groups. If he believes that
the principle of indifference fails, then so does the principle of transformation
groups.

This is not to say that Jaynes’ principle doesn’t have its uses. It will not
let us obtain a definite answer where the principle of indifference leaves us
confused, but it can be a powerful heuristic and formal device to guide us to
the correct PDF once we have decided what the proper selection procedure is.
Consider Jaynes’ own procedure of throwing straws, and let us imagine that
the logical order of the questions is reversed. In other words, let us assume that
the question we ask is “given this selection procedure, what is the correct PDF
for the chord’s length?”. The principle of indifference is hard to apply here,
because the procedure does not directly select the midpoints of the chord,
although these are the parameters we use. Instead, it determines these coor-
dinates indirectly from the position of the straw. Thus, the random variables
we use are not directly selected and the principle of indifference should not be
applicable to them, as indeed it isn’t.

When facing such a problem, one can try two approaches. The first is to
transform the problem into something to which the principle of indifference is
directly applicable. This suggests that the order of Jaynes’ analysis is back-
wards. One starts with a specific experimental procedure, then seeks a more
abstract formulation. In this case, the argument of Tissier, already alluded to
above several times, would suggest that the problem is isomorphic to that of
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randomly selecting a chord from a set of parallel lines [6]. This in turn would
bring us to formulate Bertrand’s problem and the solution RB2 (or B2). To
this, the principle of indifference suggests a solution and a Bertrand probability
of 1/2.

The other approach would probably be considered more “physical”. It is
here that the principle of transformation groups shows its utility. Instead of
seeking the correct sample space on which to assume a uniform probability
distribution, we impose physical conditions on the problem in the form of
symmetry requirements. These are not abstract properties, however, but spe-
cific mathematical conditions derivable from the procedure we are considering.
For that particular procedure, the principle of transformation groups would
then yield the PDF on a basis that would not depend on analogies with more
abstract formulations. It is precisely the close link of these symmetries to the
details of the procedure that gives the argument strength. It is because it de-
pends on the physical details of the selection that we can trust the derivation.
Analogies and abstractions are vulnerable to the adequacy argument. We can
never be sure that in transforming our problem into something supposedly
equivalent we have not inadvertently changed some crucial aspect. For those
problems where the application of the principle of indifference is unclear or
the correct sample space not immediately apparent, the principle of trans-
formation groups offers an alternative grounded in the physical properties of
the selection procedure. It it to these practical problems that it should prove
useful, rather than to general philosophical discussions.
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