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Preface 

This book attempts to take the reader on a con
ducted tour of the statistician's workshop. The 
reader is shown many tools and machines, given 
a quick explanation of their purpose and method 
of operation, and then encouraged, after watching 
the craftsman for a while, to try for himself. It 
does not claim to do everything. It does not claim 
to be exhaustive Oil what it does attempt. But it 
does aim at giving enough information to satisfy 
a man on a conducted tour and to let him see 
enough of the game as he goes around to really 
learn something. If the reader finishes up with a 
smattering of the workshop jargon, a rough idea 
of the jobs tackled and of the tools required to do 
them, I shall be more than satisfied. Moreover, I 
believe he will, too. 

There are many to whom a conducted tour of 
this sort should appeal: not only students, but 
those whose work calls for a general knowledge 
of the capabilities of this subject in the industrial 
and research world. They must be the judges of 
whether the book serves a useful purpose. And 
those critics whose excellent books I have not 
been able to write and whose pet theories I have 
not hesitated to ignore or make fun of will per
haps treat me lightly when they realize that I am 
not trying to do more than I have here said. 

M. J. M. 



Preface to . the Second Edition 

It is fair to .judge from the rapid sale and many 
.. kind · letters: trom readers that this little book 

·does ~rve · a useful purpose. I am particularly 
indebted to those who sent in details of errata, 
the elimination of which should increase the 
usefulness of the book. 

The contents remain almost unchanged, except 
for the latter part of Chapter IJ which J have 
revised to include a new approach to modified 
limit control charts. 

I am sorry still to remain persona non grata to 
the index number men and the fortune tellers, 
but there it is. I give way to none in my admiration 
for the theory (may its shadow never be less I), 
but when it comes to a great deal of the practice 
I simply cannot help chuckling. 

M. J . M. 



There is more than a germ of truth in the suggestion that, in a 
society where statisticians thrive, liberty and individuality are 
likely to be emasculated. Historically, Statistics is no more than 
State Arithmetic, a system of computation by which differences 
between individuals are eliminated by the taking of an average. It 
has been used - indeed, still is used - to enable rulers to know just 
how far they may safely go in picking the pockets of their sub
jects. A king going to war wishes to know what reserves of man
power and money he can call on. How many men need be put in 
the field to defeat the enemy? How many guns and shirts, how 
much food, will they need? How much will all this cost? Have the 
citizens the necessary money to pay for the king's war? Taxation 
and military service were the earliest fields for the use of Statistics. 
For this reason was Domesday Book compiled. 

We are reminded of the ancient statisticians every Christmas 
when we read that ~aesar Augustus decreed that the whole world 
should be enrolled, each man returning to his own city for regis
tration. Had it not been for the statisticians Christ would have 
been born in the modest comfort of a cottage in Nazareth instead 
of in a stable at Bethlehem. The story is a symbol of the blindness 
of the planners of all ages to the comforts of the individual. They 
just didn't think of the overcrowding there would be in a little 
place like Bethlehem. 

But Statistics suffers from other drawbacks in the public eye. 
No one who has lived through recent years can have failed to 
notice the uses to which statistics are put in times of economic 
desperation. John Citizen is assumed to develop a sudden and re
markable aptitude for contemplating thousands of millions of 
pounds. He is supposed to brush up his knowledge of index num
bers and respond with enthusiasm to the tables and charts flung at 
his head by benevolent authority. He is even expected to pay his 
sixpences to see exactly what his elected representatives are doing 
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with £3,778 million in the brief space of 52 weeks. The people who 
issue these things would get a shock if they knew the proportion 
of the adult population that does not even know its multiplication 
table. Having looked at the charts, John Citizen feels less able 
than ever to put his resentment into words. He feels a fool, blinded 
by science, and he resents the clever statisticians who have made 
him feel so inferior. 

Statistics has other claims to unpopularity. It lends itself only 
too easily to the pinchbeck taradiddle to which advertising is by 
nature prone. The public is told that' nine people out of ten' in a 
certain class for whom the reader will have the greatest admira
tion use a certain excellent product. No doubt this is plain truth. 
But we must be forgiven for suspecting that it is obviously artful. 
Were the ten people specially chosen so as to include one who was 
less wise than the nine knowing virgins who had the gumption to 
agree with the advertiser? There is undoubted cozenage in saying 
'nine out of ten ' in the confident hope that the reader will unsus
pectingly lend at least partial credence to the idea that' nine out 
of every ten' of the excellent people in question do what the 
reader is urged to do. 

What we have already said is amply sufficient to make clear the 
origin of the popular mistrust in statistics and to show that it bas 
very real justification. But the worst has not yet been said. There 
still remains the sorry spectacle of opposing factions in politics 
and medicine (to mention only two of the most obvious cases) 
who bolster up their respective cases by statistics in tbe confident 
hope that 'figures cannot lie' or, as they often hope, that 'you 
can't dispute the figures'. All this is very sad indeed, for these 
ardent computers are usually truly sincere in their convictions, 
even where they are rash with their statistical deductions. The 
cynic sums it up in the old tag: 'There are lies, damned lies, and 
statistics.' 

!fno more were to be said about Statistics, this book would end 
here. But it is just about to begin. It is true that it is extremely dif
ficult to interpret figures when they relate to some concrete prob
lem. It is equ!'lIy true that it is extremely easy to do arithmetic. 
Herein lies the real difficulty. Averages can be calculated to nine
teen places of decimals with astonishing ease. When the job is 
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done it looks very accurate. It is an easy and fatal step to think 
that the accuracy of our arithmetic is equivalent to the accuracy of 
our knowledge about the problem in hand. We suffer from' de
lusions of accuracy'. Once an enthusiast gets this disease, he and 
all who depend on his conclusions for their welfare are damned. 

For the most part, Statistics is a method of,investigation that is 
used when other methods are of no avail; it is often a last resort 
and a forlorn hope. A statistical analysis, properly conducted, is a 
delicate dissection of uncertainties, a surgery of suppositions. The 
surgeon must guard carefully against false incisions with his scal
pel. Very often he has to sew up the patient as inoperable. The 
public knows too little about the statistician as a conscientious 
and skilled servant of true science. In this small book it is hoped 
to give the reader some insight into the statistician's tools and 
some idea of the very wide range of problems to which these tools 
are applied. We shall try to see the scientist with no axe to grind 
other than the axe of truth and no product to advertise save the 
product of honest and careful enquiry. 
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The Laws of Chance 

• Quoth she : .. I've heard old cunning stagers 
Say fools for arguments use wagers. '" s . BUTLER (Hudlbras) 

There are certain notions which it is impossible to define ade
quately. Such notions are found to be those based on universal 
experience of nature. Probability is such a notion. The dictionary 
tells me that 'probable ' means 'likely ' . Further reference gives 
the not very helpful information that 'likely' means 'probable'. 
It is not always that we are so quickly made aware of circularity 
in our definitions. We might have had an extra step in our circle 
by bringing in the word 'chance', but, to judge from the heated 
arguments of philosophers, no extension of vocabulary or in
genuity in definition ever seems to clear away all the difficulties 
attached to this perfectly common notion of probability. 

In this chapter we shall try to get some idea of what the statis
tician has in mind when he speaks ofprobabiIity. His ideas are at 
bottom those of common sense, but he has them a little more 
carefully sorted out so that he can make numerical statements 
about his problems instead of vague general comments. It is always 
useful when we can measure things on a ruler instead of simply 
calling them 'big' or 'small '. 

THE PROBABILITY SCALE 

We measure probability by providing ourselves with a scale 
marked zero at one end and unity at the other. (In reading what 
follows, the reader will do well to keep Fig. 1 constantly before 
his attention.) The top end of the scale, marked unity or 1, repre
sents absolute certainty. Any proposition about which there is ab
solutely no doubt at all would find its place at this point on the 
scale. For example: The probability that I shall one day die is 
equal to unity. because it is absolutely certain that I shall die some. 
day.· The mathematician would here write p - I, the letter p stand
ing for probability. The bottom end of the scale, marked zero or 

• Quia pulvis es, et in pulverem reverteris (Gen. iii, 19). 
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0, represents absolute impossibility. For example: The probability 
that I should succeed in an attempt to swim the Atlantic is zero, 
because failure would be absolutely certain. The statistician would 
here write p - 0. 

If all the affairs of life were as clear-cut as this, statisticians 
would be out of a job, and scientific research would shoot ahead 
at an intolerable rate, losing most of its interest. Life and nature 
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Fig. 1. The Probability Scale 

may be simple enough to the Almighty who designed them and 
keeps them going, buf to the human mind there is presented an 
unending stream of problems that cannot be given a clear-cut 
answer of the type p - lor p =0. The doctor knows that penicillin 
is excellent for your particular disease, but he cannot absolutely 
guarantee that you will be cured by using it. At most he can be 
very sure. He may say that for all practical purposes he is pre
pared to put p ~ 1 for your recovery. But this is an approximation; 
we have already slipped from the realm of absolute certainty. In 
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fact, we may soppose, p=O·999. What the doctor then says is: 
'We may without noticeable error put p - 1.' Fig. 1 shows the 
sort of position occupied on the scale of probability by various 
common affairs. The thing to notice is that there is no greater cer
tainty than p ~ 1, and nothing less likely than p =0. 

So far, then, we have set up our scale on which the probability 
of events may be specified. How do we arrive at an actual measure 
of the probability of any real life event? There are two main ways, 
and we shall consider them in tum. 

A PRIORI PROBABILITIES 

These are probabilities which we feel certain we can specify in 
magnitude from consideration of the very nature of the event. For 
example: The probability that if! spin a penny it will come down 
heads is easily and sensibly guessed to be p = t . Intuitively, we 
feel that the probability of heads comes exactly halfway along the 
scale in Fig. 1. We may look at it from another commonsense 
point of view. There are two ways in which the spin may turn up: 
head or tail. Both these ways are equally likely. Now it is ab
solutely certain that the coin will finish up head or tail, i.e. for 
head or tail p = 1. The total probability p = 1 may be shared be
tween the two possible'l'eSults equally, givingp = t for a head, and 
p = t for a tail. 

In like manner, there are six equally likely results if we roll an 
unbiased die. Certainly the result is bound to be one of the six 
equally probable results. The probability of getting some number 
is p - 1. Dividing this total probability between the six possibili
ties, we say that there is a probability of p - ! for each of the pos
sible results. (We ignore in all cases the preposterous suggestion 
that the coin will land on its edge or the die stand up on one 
corner.) 

EMPIRICAL PROBABILITY 

The problem of probabilities in card and dice games may be 
tackled from another point of view. Say, having made a die, we 
roll it 600 times. We should expect that each face would have 
shown uppermost 100 times. What do we mean by 'expect'? We 
don't really expect anything of the sort. In fact, we should be 
rather surprised at the' coincidence' if any practical trial gave a 
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result in perfect agreement with our • expectation'. What we really 
expect is that each face would turn up roughly 100 times - not too 
roughly, of course, or we should suspect bias; nor too exactly, 
either, or we might suspect jiggery-pokery. This suggests to us 
another way of measuring the probability of an event: by count
ing the number of times the event occurs in a certain number of 
trials. We take it that a very long series will give a closer indica
tion of the probability than a short series. We believe from our 
experience of things that While short trials are easily upset by 
'chance' a long trial is protected by the mysterious laws of this 
very same ·chance'. We may express the empirical probability of 
an event as : 

P b b
'l' Total number of occurrences of the event 

ro a I Ity = Total number of trials . 

Thus, for example, if a surgeon performs a certain operation on 
200 people and 16 of them die, he may assume the probability of. 
death to be p ~ ib~ ... 0'08. This.empirical method of finding prob
abilities as the ratio of the number of occurrences to the total 
number of trials is the method that has to be used in mimy fields 
of research. 

Having seen how probabilities may be measured, we must now 
consider some of the laws of probability, so that we can analyse 
more complex situations. 

ADDITION LAW 

Consider the phrase • Heads I win; tails you lose'. This is the 
simplest possible iIlu"9tration of the Law of Addition. To calculate 
my total chance of winning, I have, according to this law, to add 
up the probabilities .of each of the several ways in which I may 
win. In the first place, I shall win if the coin turns up heads, and 
this has p '" t. In the second place I shall also win if the coin turns 
up tails, and this also has p =t. Adding the two probabilities to
gether, we see that the total probability of my winning is 
p ." t + t - I. That is, it is absolutely certain that I shall win. 

The probability that an event will occur in one of several possible 
ways is calculated as the sum of the probabilities of the occurrence 
of the several different possible ways. 

It is assumed that the occurrence of the event in one way 
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excludes the possibility of its occurrence in any of the other 
possible ways, on the occasion in question. 

As a simple example, let us suppose that 10 Englishmen, 8 Irish
men, 2 Scotsmen, and 5 Welshmen apply for a job to which only 
one man will be appointed. Altogether there are 25 applicants. 
Let us suppose that the interviewing board are completely unable 
to agree with each other on the respective merits of the applicants, 
and so decide to draw a name out of the hat. The probability of 
the job going to an Englishman will evidently be H; to a Scots
man, -h; to a Welshman, -iJ; and to an Irishman, /r. Then the 
Law of Addition gives us the following results: 

Probability of a Celt =-ls +-iJ +}.\ =H = 0-6. 
Probability of native of Gt. Britain =H +-h +-l! =H = 0 '68 
Probability of NOT a native of Gt. Britain = z\ = 0·32 

Other simple examples will be found at the end of this chapter for 
the reader to work for himself. 

MULTIPLICATION LAW 

We shall now prove, to the no little satisfaction of the fair sex, 
that every woman is a woman in a billion. It is hoped that men
folk will find salve for their consciences in this scientific proof of 
the age-old compliment. (,Statistics show, my dear, that you are 
one in a billion.') It will be obvious to the reader that the more 
exacting we are in our demands, the less likely we are to get them 
satisfied. Consider the case of a man who demands the simul
taneous occ)Jrrence of many virtues of an unrelated nature in his 
young lady. Let us suppose that he insists on a Grecian nose, 
platinum-blonde hair, eyes of odd colours, one blue and one 
brown, and, finally, a first-class knowledge of statistics. What is 
the probability that the first lady he meets in the street will put 
ideas of marriage into his head? To ariswer the question we must 
know the probabilities for the several different demands. We shall 
suppose them to be known as follows: 

Probability of lady with Grecian nose: 0'01 
Probability of lady with platinum-blonde hair: 0 ·01 
Probability of lady with odd eyes: 0'001 
Probability of lady with first-class knowledge of statistics: 

0'00001 
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In order to calculate the probability that all these desirable attri
butes will be found in one person, we use the Multiplication Law. 
Multiplying together the several probabilities, we find for our 
result that the probability of the first young lady he meets, or in
deed any lady chosen at random, coming up to his requirements 
is p = 0·000 000 000 001. or precisely one in an English billion. The 
point is that every individual is unique when he is carefully com
pared, point by point, with his fellows .· 

We have considered here the case of the simultaneous occurrence 
of events. The Multiplication Law is also used when we consider 
the probability of the occurrence of two or more events in suc
cession, even where the successive events are dependent. Consider 
the following example: A bag contains eight billiard balls, five 
being red and three white. If a man selects two balls at random 
from the bag, what is the probability that he will get one ball of 
each colour? The problem is solved as follows: 

The first ball chosen will be either red or white, and we have: 
Probability that first ball is red = i. If this happens, then there 

will be four red balls and three white balls in the bag for the 
second choice. 

Hence the probability of choosing a white after choosing a red 
will be t. 

The Multiplication Law tells us that the probability of choos
ing white after red is t xt = H. 

In like manner, the probability of the first ball out being white 
isi. 

This will leave two white balls in the bag for the second choice. 
Hence the probability of choosing a red ball after choosi1:~g a 
white one will be, by the Multiplication Law: t x;' - H. 

Now the man will have succeeded in getting one ball of each 
colour in either case. Applying the Addition Law, we find the 
probability of his success to beH+H = H=H - 0·535. 

• The different applications of the Laws of Addition and Multiplication 
of probabilities may be remembered in terms of betting on horse racing. If I 
bet on twO horses in the same race the probability of my winnmg is the sum 
of the probabilities for winning on each of the two horses separately. If I 
have an • accumulator bet', i.e. bet on one horse in the first race and direct 
that my winnings, if any, be placed on one horse in the second race, then my 
chance of winning the accumulator bet is theproducl of the probabilities that 
each of my chosen horses will win its own race. 
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The Addi'tion Law and the Multiplication Law are fundamental 
in Statistics. They are simple; but sufficient to carry us a long way, 
if we make good use of them. We shall meet them in full sail in 
Chapter 7. 

What we have discussed so far is known as the Direct Theory of 
probability. Basically, all the problems commonly met with in 
this branch of the subject turn on counting the number of ways in 
which events can occur. For example: if we ask ourselves what is 
the probability that three pennies on being tossed will all show 
heads, we can arrange all the possible results in a table as follows : 

Result 1st coin 2nd coin 3rd coin 

3 Heads H H H 

{ H H T 
2 Heads H T H 

T H H 

{ T T H 
2 Tails T H T 

H T T 

3 TaUs T T I T 

In the table, H represents head and T represents tail. If we 
assume all the possible results to be equally likely. then of the 
eight possible results, only one will be a success. Hence the prob
ability of all three coins showing heads is p - i. In like manner, 
the probability is again p - i that all the coins will show a tail. 
Hence, by the Addition Law, the probability of three heads or 
three tails will be p - i + i-i. 

,This is a suitable point to introduce some fallacious arguments 
for the reader to consider: 

Fallacious argument Number 1. There are two possible results: 
either all the coins show alike or they don't. Hence the prob
ability of all the coins showing'the same face is p - t. 
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Fallacious argument Number 2. There are four possible results: 
all heads, all tails, two heads and a tail, or two tails and a head. 
Two of these results would be satisfactory. Hence the probability 
of all the coins showing the same face will be p - t. 

These arguments are invalid because they assume events to be 
equiprobable which in fact are not so. Inspection of the table 
will show that there is only one way of getting the result three 
heads. There is similarly only one way of getting the result 
three tails. But the result two heads and a tail can occur in 
three different coin arrangements, as also can the result two tails 
and a head. 

It is a simple enough matter to write out all the possible arrange
ments where these are relatively few in number. The introduction 
of permutations in football pools recognized the difficulty of 
writing out complex cases by the punter and the enormous labour 
of checking them. It will be useful to spend a few moments on the 
idea of Permutations and Combinations. 

COMBINATIONS AND PERMUTATIONS 

Suppose a race were run by seven children and that we attempted 
to predict the first three children home. It is one t,hing to name the 
three children irrespective of their placing, and quite another to 
get not only the first three correct but also their placing. When a 
problem concerns groups without any reference to order within 
the group it is a problem in combinations .. Whe!) the problem asks 
us to take arrangements into account it is a problem in permuta
tions. Thus what is commonly called a combination lock is really 
a permutation lock, since order is vitally important. On the 
other hand, the football pools fan who enters six teams for the 
• four aways' and writes on his coupon' Perm. 4 from 6, making 1 S 
lines at 6d. Stake 7s. 6d:, is really talking about a combination, 
since there is no question of arranging the correct four teams in 
any way. It is sufficient to name them in any order whatsoever. 
The • penny points pool', on the other hand, is indeed a permuta
tion; it is not sufficient to get the correct number of wins ·away 

. and at home and the correct number of draws; correct arrange
ment within the column is essential. 

Permutations are more numerous than combinations, for each 
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combination can be permuted. As an example the group of letters 
ABC which make a single combination, whatever their order, gives 
rise to six permutations, viz. ABC, ACB, BCA, BAC, CAB, CBA. 

We shall now give some of the main results in the theory of per
mutations and combinations with simple illustrations of each 
type. Further examples will be found at the end of the chapter for 
the reader to work for himself. 

SIMPLE CASES OF CHOICES 

If there are m ways of performing one operation, n ways of per
forming a second operation, and p ways of performing a third 
operation, then there are N = m x n x p ways of performing the 
whole group of operations. 

Example. A man travelling from Dover to Calais and back has the 
choice often boats. In how many ways can he make the double 
journey, using a different boat in each direction? 

Going, he has the choice of all ten boats, i.e. the first operation 
(going) can be performed in m - 10 ways. Coming back, he will 
only have nine boats to choose from, Le. the second operation 
(returning) can be . performed in n=9 ways. Hence, there are 
N - m x n = 10 x 9-9().ways of making the double journey. 

Example. How many lines would be required for a full permuta-
. tion on a fourteen-match' penny points pool' ? 

Regarding the forecasting of each match as an operation, we 
have fourteen operations to perform. Each operation can be dealt 
with in three ways, viz. J, 2, or X. Hence the total number of ways 
of forecasting the result will be 

N - 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 =4,782,969, 

This number of entries at 1 d. per line would cost roughly £20,000. 
It is the author's considered opinion that the amount of skill one 
can bring to bear in forecasting is a relatively negligible quantity. 
In so far as this is true, no amount of permuting is likely to be of 
great assistance while the old lady with a pin is in the running. It 
would be salutary for readers of expert permutationists in the 
newspapers to remember that armies of gullible fans, sending in 
massive permutations week after week, are bound to produce 
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some successes for the expert to advertise. The real test is : how 
many weeks in the season does the columnist himself bring home 
a really substantial prize? 

Example. A factory call light system has four colours. The lights 
may be on one, two, three, or four at a time. If each signal com
bination can be made to serve for two people, being steady for 
one and flickering for the other, how many people can be ac
commodated on the system? 

This problem is very easily dealt with. Ignore for the moment 
the question of flickering. There are two ways of dealing with the 
first lamp - switch it on ('f leave it off. There is the same choice for 
each lamp. Evidently. then, the total number of ways in which the 
system may be set will be N = 2 x 2 x 2 x 2 = 16. But this would in
clude the case where all the lights were left off. We must leave this 
case out as being of no use as a signal. We are left with fifteen sig
nals. Each of these fifteen signals may be either steady or flicker
ing, so the system can accommodate thirty people. 

PERMUTA TlONS 

If all the things to be arranged are different, it is very simple to 
calculate the total number of permutations. 
Example. In how many ways can the letters of the word BREAD be 

arranged? 
In the first position we can have a choice offive letters. Having 

filled the first place, we shall be left with a choice of four letters 
for the second place. In turn, there will be a choice of three letters 
for the third place, two letters for the fourth place, and, finally, 
only one letter to go into the last place. Applying our previous 
rule we find the total number of ways of arranging the letters is 
N = 5 x 4 x 3 x 2 x I = J 20. 

Example. How many three-letter words can be made using the 
letters of the word BREAD? 
Similar reasoning to that used above yields the answer 

N=5x4x3 ~ 60 

The mathematician has a simple piece of shorthand for per
mutations. In our first example we were arranging five things in 
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every possible way, each thing appearing in each arrangement, i.e. 
we were arranging, or permuting, five things in groups of five at a 
time. The shorthand for this is 5P5. In the second problem we 
were arranging the five things in groups of three. The shorthand 
for this is 5P3. The letter P stands for 'the number of permuta
tions'. The number be/ore the P tells us how many things we have 
to choose from; and the number after the P tells us how many 
things are to be in each arrangement. Thus if we saw 43P7, we 
should know that there were forty-three things to be made up into 
every possible arrangement (order counting), there being seven 
things in each arrangement. 

It is convenient here to introduce one other piece of shorthand, 
which is easy to understand and which saves a great deal of time 
in writing things down. It will be remembered that the result for 
our first problem in permutations (arranging the letters of the 
word BREAD in every possible five-letter arrangement) was 
N - 5 x 4 x 3 x 2 x 1. Here we have multiplied together a string of 
numbers, starting with 5, each number being one less than the one 
before it, the last number in the sequence being 1. Such an ar
rangement is called a 'factorial'. One or two examples will make 
the meaning clear. 

Factorial 5 = 5 x 4 3 x 2 x 1 ~ 120 
Factorial 7 = 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040, and so on. 

The shorthand sign for the factorial of a number is made by 
writing an exclamation mark after the number. Thus factorial 7 is 
written 7! and factorial 93 is written 93! The use of this factorial 
sign will enable us to write down further results in the theory of 
permutations and combinations compactly. 

What happens if we have to make permutations of things that 
are not all different? Obviously we shall have to allow for the 
fact that the identical things can be interchanged without disturb
ing the permutation. 

If we have n things, p being alike of one kind, q alike of another 
kind, and r alike of another kind still, then the total number of 
ways in which all the n things can be arranged so that no arrange
ment is repeated is: 

N- nl 
plxqlxrl 
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Example. How many different permutations may be made each 
containing the ten letters of the word STATISTICS? Here we have 
the letter S three times, the letter T three times, the letter I 
twice, and the letters A and C once each. Applying our rule, we 
get: 

N- 10! _10.9.8.7.6.5.4.3.2.1_ 50400 
3 I x 3 I x 2 I 3.2.1 x 3.2.1 x 2.1 ' 

COMBINATIONS 

It remains for us now to consider the problem of calculating the 
number of combinations (i.e. irrespective of order) which can be 
made from a group of things. We have already seen that any com
bination can give rise to a set of permutations, the combination 
ABC yielding, for example, the six permutations ABC, ACB, 
BCA, BAC, CAB, CBA. Very little thought is required to see that 
a combination of n things can generate n! permutations. Thus in 
any problem, if we knew the number of combinations that could 
be made, and knew the number of permutations to which each 
combination could give rise, we should know that the total num
ber of permutations was equal to the number of combinations 
multiplied by the number of permutations within a combination. 
Number of Combinations x Number of permutations within a Com
bination - Total Number of Permutations. 

Just as, previously, we denoted the number of permutations of 
five things taken three at a time by the symbol 5P3, so now we 
shall denote the number of combinations of five things taken 
three at a time by the shorthand symbol 5C3. The letter C stands 
for' the number of combinations that can be made'. The number 
before the C tells US how many things we have to choose from, and 
the number after the C tells us how many things are to appear in 
each combination. The number of combinations of n things taken 
r at a time will thus be denoted by nCr and the number of per
mutations of n things taken r at a time will be denoted by nPr. 
Now we know that r things forming a combination can give us r! 
permutations, so we have our previous result in mathematical 
form as: 

nCrxrl-nPr 
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from which, dividing both sides by r!, we find that the number of 
combinations of r things at a time chosen from a group of n things 
is to be calculated as: 

nPr 
nCr =-, r . 

It is clear, too, that whenever we make a choice of items to 
include in a combination, we thereby automatically also make a 
choice of the remaining items to exclude from our combination. 
For example, if we are forming combinations of three things from 
five things, every time we choose a group of three (to includ~) we 
also choose a group of two, the remainder (to exclude). It follows 
that 

nCr = nC(n - r) 

This result is often useful in calculating, as a time saver. 
Example. From a group of seven men and four ladies a committee 

is to be formed. If there are to be six people on the committee, 
in how many ways can the committee be composed (a) if there 
are to be exactly two ladies serving, (b) if there are to be at 
least two ladies serving? 
Consider first the case where there are to be exactly two ladies. 

There are two distinct.operations to be performed : (i) choosing the 
ladies, (ii) choosing the men. The number of ways of choosing two 

ladies from four ladies is 4C2 = 4;!2 -~ : ~ ~ 6. The number of 

ways of choosing four men to make the committee up to six is 
7P4 7 x 6 x 5 x 4 . 

7C4 = 4f = 4 x 3 x 2 x 1 - 35. Hence there are SIX ways of per-

forming the first operation (choosing ladies) and thirty-five ways 
of performing the second operation (choosing men) . The total 
number of ways of selecting the committee is therefore 
N = 6 x 35 = 21O. 

Consider, .now, the second problem, where there are to be at 
least two ladies. In addition to the 210 ways of having exactly two 
ladies, we shall have the number of ways in which we can have 
three ladies and three men, or four ladies and two men (there are 
only four ladies available). Arguing exactly as before, we find the 
number of ways of having three ladies and three men is 
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4C3 x 7C3 - 140, and the number of ways of having four ladies 
and two men is 4C4 x 7C2 = 21. Adding up all these results, we 
find that the total number of ways of having at least two ladies on 
the committee is 210 + 140 + 21 = 371 . 

Permutations and combinations make nice brain-teasers. The 
arithmetic is dead easy, but it is essential to think very clearly. 

NOW SEE HOW MUCH YOU HAV E LEARNT 

1. Two dice are thrown simultaneously. What is the probability that 
the total score will be five? H will be a good help if you layout the 
calculation in the form of a table, as follows : 

First die 
Second die 
Probability 

4 
2 
3 

3 
2 

4 
1 

2. A group of four cards is drawn from a pack. What is the prob
ability that it will contain the four aces? 

3. An entry in the' Four Aways' section of a football pool has seven 
teams marked with the instruction' Perm, 4 from 7' (it is a combination, 
actually). Find the cost of the entry at sixpence per line. 

4. In an Analysis of Variance investigation (Analysis of Variance is 
dealt with in Chapter 19, but you don't need to know anything about 
it to answer this question) five different factors, A, B, C, D and E, are 
considered. To investigate what are known as 'Interaction Effects' the 
factors are considered in combinations. How many interactions of the 
type AB, CE, etc. are there? How many of the type ABC, BCE, etc.? 

S. Six men each spin a penny, the results being recorded against the 
men's names. How many possible different results are there? 

6. A school governor sends the headmistress six books from which 
the senior prefect is to choose four as a prize. One of the six books is 
entitled No Orchids for Miss Blandish, the headmistress quickly notices. 
In how many ways can the senior prefect choose her four books if the 
headmistress forbids her to have No Orchids? In how many ways may 
the senior prefect choose her four books if the headmistress, being 
more advanced, insists that the famous book be included in the selec
tion? How many ways are there if the headmistress lets the girl pick 
freely from the six books? Write your answers down symbolicaJly and 
the relation between them. Do you think this is a general rule, or does 
it only apply to this particular example? 

7. Find the value of the following: (a) 8C3, (b) 7C6. (c)SP2. (d) lOP). 
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9, How many different permutations, each containing all the lettera 
of the following wOrds, may be used? 

(a) STA.TESMEN (b) PROCRASTINA.TOR 

How many can be made Crom all the letters of the two words combined? 
10. In how many different ways can ten draughtsmen appear simul

taneously on the board during a game of draughts ? 
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The Magic Lantern Technique 

'Ultra proprium videre Demo libenter ducitur.' THOMAS A 
ICEMPIS 

Very few people can look at a balance sheet and get a quick idea 
of what it is all about - yet a good· balance sheet is laid out in 
nice orderly fashion to make it as comprehensible as possible. A 
balance sheet is a summary drawn up to show the overall state of 
affair!! brought about by a large number of transactions. Most 
people look at a balance sheet, note in amazement that it does 

WHERE O UR 

WHEAT AND FLOUR 

COME FROM 

WHE"£ Ouft 

FATS ANO BUTTER· 

COME FROM 

Fill. 2. Information that is easy to ar&Sp. (From Suryey '49, by permission 
of H.M.S.a..) 

balance, and iook for the balance in hand. Beyond that they do 
not ven~ure. Yet the balance sheet tells a story, if only we have the 
skill to bring it to life. An income tax officer, looking at a balance 
sheet, sees it, not as a list of figures which must be accepted as 
they stand, but as a story whose verisimilitude it is his duty to 
assess. He sees just how the various items of expense are related to 
each other. He asks himself whether this is a reasonable story, and 

• Most readcra will be aware that skill i. not infrequently used to hide the 
moral truth in balance sheets while obeyinl to the letter the laws of accoun· · 
taney. 
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whether the various items have a likely-looking magnitude, both 
absolutely and in relation to the other items in the statement. He 
seizes on doubtful-looking points and asks for explanations. He 
looks at the balance sheet from many points of view - always ask
ing the question : 'Does this make sense?'. While it is true that 
there is a certain amount of gift about it, it is also true that skill 
can be acquired by practice. 

Cold figures are uninspiring to most people. Diagrams help us 
to see the pattern and shape of any complex situation. Just as a 
map gives us a bird's-eye view of a wide stretch of country, so 
diagrams help us to visualize the whole meaning of a numerical 
complex at a single glance. Give me an undigested heap of figures 

MORE IMPORTS FOR STERLING
lESS FOR DOLLARS 

19)1 '''7 '948 1949 

-~~ Weltern Hemtsphe,. tzZ2'ZZl Sterlin, Ar •• 1IDIIID 
'E.Il.'. Countrl., t:=3 Other Count'''' t:=:l 

THE 
INVESTM ENT 
PROGRAMME 

T,ln,po" and 011 Reflnerln 
ComT8'o/c:CltIOn, 15% 

Fil. 3. Examples of pie chart presentation. (From Survt'y '49, by permission 
of H.M.S.O.) 

and I cannot see the wood for the trees. Give me a diagram and I 
am positively encouraged to forget detail until I have a real grasp 
of the overall picture. Diagrams register a meaningful impression 
almost before we think. 

A very common device is the presenting of an actual picture 
to the reader. Effective examples of this type frequently occur 
in ' government pamphlets and advertisements addressed to the 
general public. Some examples are shown in Fig. 2, based on Sur
vey '49, published by the Stationery Office. A similar device 
(capable of more accurate representation) is the Pie Chart. Here a 
'pie ' is cut into slices corresponding in size with various quan
tities to be compared. Fig. 3 gives an example of this type of chart. 
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Another effective method of pictorial representation is the ideo
graph, examples of which are shown in Fig. 4. The ideograph de
pends on the idea of giving each item to be compared a group of 

IMPORTS TO KEEP THE FACTORIES GOING 

White (rom W~5tern Heml~phere - Shaded rrom Ren or World 

(1948 Flgur •• ) 
Metal, 
except IroR 
and Steel 

Timber 

Raw Cotton 

Hide, and 
Skin, 

111 
3 are on 
Foetorle, 
Hlne, 
R.llways 
Farms etc. 

(a) 

10 HEN WENT .TO BUILD 

1111 " .~~ ~, nnn 
.. are on 3 are on 
Houses School. 
and about 2 of tMm Hospitals 
orr on repairs Offices 
and mointen:mce Shops 

Churches etc. 

(b) 

Fig. 4. Examples of Ideograph method of presenting information. (From 
Survey '49, by permission of H.M.S.O.) 

the pictorial units, all the units being o/the same size. This should 
be compared with the idea shown in Fig. 5, where each item has 
only one of the pictorial units and the comparison is made via the 
size of the unit. In this latter case, trouble in interpretation arises. 
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Is it the heights of the cheeses, or their areas on the printed page, or 
their volumes that are intended to illustrate the comparison? This 
is a serious matter, for if the heights are in the ratio of three to one, 
the areas will be in the ratio of nine to one and the volumes in the 
ratio of twellty-seven to one (assuming the cheeses to be of similar 
shape). 

The methods so far mentioned are typical of the ideas used in 
advertising. For this purpose they are excellent enough. For more 
accurate work, however, they lack either in accuracy or con
venience. For this reason, the statistician makes use of pictorial 
methods somewhat less artistic which, while retaining the benefits 

WHERE YOUR CHEESE COMES FROM 

@ @ ® 
STERLINC AREA WESTERN HOME REST 

HEMISPHERE OF 

WORLD 

Fig. S. A misleading diagram, proportions being based on heights, but the 
reader is more likely to base hi. impressions on volumes 

of totality of representation, have the further merit of accuracy 
and simplicity. 

The bar chart or histogram is a very effective example which is 
easily understood (see Fig. 6). It is important to remember tbat it 
is the areas, of the rectangular blocks which are to represent the 
relati_ve frequencies in the various classes. In the case where the 
width of the rectangles is constant, of course, the heights are pro
portional to the areas and so to the frequencies. Diagrams of this 
type should be arranged, wherever possible, so that the rectangles 
do have equal widths. In this way confusion is avoided. A similar 
idea is the horizontal or vertical line chart of the type shown in 
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Fig. 7. The length of the line is made proportional to the fre
quency in each class. Yet another device is the!requency polygoll 
shown in Fig. 8. This is akin to the ordinary graph, though, of 
course, it is not sensible to read off at intermediate points as is 
made clear in the figure. 

END OF 1949 EXPORT TARGETS (Monthly Rue) 
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Fig. 6. Bar Charts 

(a) From Survq '49, by permission ofH.M.S.O. 
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RESECTION MORTALITY 
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Fig. 7. Example of a Horizontal Line Charf. Lowest reported resection 
mortality percentages taken from a lirst-class statistical report by Living
ston and Pack: Elld Results ill thr Treotmrnt of Gastric Cancer (Paul B. 
Hoeber Inc., New York) 
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Fig. S. E'lample of a Frequency Polygon. Suicides of women in eight 
German states in fourteen years. Von Bortkiewicz (1898) quoted by M. G. 
Kendall, Adl'ollc",'d Sttllistit's, Vol. I. (Note: II would be silly to • read off' 
from the graph that in nine years there were S! suicides per year) 
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Very frequently it is desired to show in diagrammatic form, not 
the relative frequency of occurrence in the various intervals, but 
the cumulative frequency above or below a given value. For ex
ample, we may wish to be able to read off from our chart the num
ber or proportion of people whose height does not exceed any 
stated value, or the proportion of people whose income is not less 
than any given amount. Charts of this type are known variously 
as cumulative frequency diagrams, ogives, 'more than curves', or 
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Fig. 9. Ogives or Cumulative Frequency Curves. Distribution of intelli
gence quotient in children, based on material in Terman, The Measure
ment of Intelligence (see also Fig. 16) 

'less than curves'. Typically they look like a somewhat straggling 
letter S. Study of Fig. 9 will make their nature clear to the reader. 

There is scope for the extension of the basic ideas in each case. 
For example, one frequently sees compound bar charts of the type 
illustrated in Fig. to. Some people have a strange predilection for 
making. charts of this type which are so compound that they be
come utterly incomprehensible. One might say that confusion is 
worse compounded. It is useless to expend great ingenuity in 

2 
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inaking a diagmm perplexing, when the whole purpose of a dia
gmm is to render the meaning as plain as a pikestaff. 

Quite frequently, use is made of gmphs. It is as well to point out 
that there are rules to be obeyed if the graph is not to lose in 
value. Not infrequently one sees graphs in advertisements where 
the basic rules have delibemtely been broken so as to create a more 
attmctive impression. This may be good advertising but it cer
tainly is Dot honest. 

WHO PAYS INCOME TAX. AND HOW MUCH 

Each column ,hOWl the tottl 
of Incomes In thlt rana:e In 1947 

The upper part Is whit WI. 

taken lway In tax , 

DaB~ 
'",om.. 17.900.000 1,.850.000 145

•
000 1 165.000 1'0'000 vnder peopl. with f"Opie with ~ople with ~ple with IMOple with 

l150 Incomci from Intom .. (rom Incomes rrom Income. from ,ncom .. oyer 
, ... aC1 nu",II" aso to £SOO to £1 ,000 to 0,000 10 {.IO.ooa 
",,,knO""") lSOO £1.000 0 ,000 £10.000 

Fig. 10 (b). Another good example of a Compound Bar Chart (source as 
Fig. 10 (a». The reader will notice that these charts have been drawn \\ith 
heights in strict proportion to the total Incomes within the stated ranges. 
This diagram may be compared with Fig. 18 which shows the numbers 0/ 
people in the same ranges 

It pays to keep wide awake in studying any graph. The thing 
looks so simple, so frank. and so appealing that the careless are 
easily fooled. Some examples are shown in the figures of bad 
manners in gmph dmwing. Fig. 11 shows how misleading the 
suppression of the zero line can be, especially with a change of 
scale. In cases where the zero and full scale cannot sensibly be 
shown, good manners will call attention to the fact. A nice way of 
doing this is to show the zero and then break the axis. It is a good 
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Fig. 11 (b). But this is the modest progress actually made. (With apologies 
and grateful thanks to 'Beachcomber' for the excellently facetious trade 
name ' Snibbo ') 
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Fig. 12. The Advertiser's Graph - devoid of scales. After consumplion of 
alcohol, your 'Inter Pocula Index' rises to what may prove a dangerous 
level, with serious risk of muscular atony. In such cases the taking of a 
therapeutic nostrum has untold effect as a sedative and restorative. There 
is no finer nostrum than' Snibbo' 
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Fia. 13. When a tre·nd line is drawn on a graph the original points should 
Dot be erased 
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thing to emphasize the zero and, in the case of percentage charts, 
the 100% line. Data and formulae should be given along with the 
graph, so that the interested reader may look at the details if he 
wishes. Advertisers have been known to draw graphs for the 
general public to • profit' from in which no scale at,all is shown, 
deliberately ignoring the fact that a graph without a scale on each 
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Fig. 14. Overconfident Extrapolation - Example (from an author who shall 
be anonymous) of reasoning based on overconfidenl extrapolation, It was 
claimed that, in absence of immunization, the death·rate would have 
continued falling to Q. in fact it only reached p, Some point such as R 
would have been necessary to show any benefit from immunization. 
Butifto Q. why not to QI in the next decade, with e 'Resurrection of 
the Dead '1 (negative death rate) 

axis means next to nothing except in the fairy land of a profession 
whose job is sometimes thought to lie in persuading the gullible 
that the moon is made of a certain brand of cheese. A piece of 
self·deception - often dear to the heart of apprentice scientists - is 
the drawing of a 'smooth curve' (how attractive it sounds!) 
through a set of points which have about as much trend as the 
currants in plum duff. Once this is done, the mind, looking for 
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order amidst chaos, follows the Jack·o··lantern line with scant at· 
tention to the protesting shouts of the actual points. Nor,let it be 
whispered, is it unknown for people who should know better to 
rub off the offending points and publish the trend line which their 
foolish imagination has introduced on the flimsiest of evidence. 
Allied to this sin is that of overconfident extrapolation, i.e. extend. 
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ing the graph by guesswork beyond the range of factual informa. 
tion. Whenever extrapolation is attempted it should be carefully 
distinguished from the rest of the graph, e.g. by sbowing the 
extrapolation as a dotted line in contrast to the Cull line of the rest 
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of the graph. The writer recently heard of a mathematician of un
doubted skill who drew a graph through a single point, explaining 
that 'that is the way it must go'! No doubt he was quite correct, 
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Fig. 16. The og;\les of Fig. 9 presented as a straight line by using probability 
paper. Note how scale is crowded at the centre - just as I.Q. itself tends 
(0 bunch around the average value 

but he must have had a lot of information to help him in addition 
to the small amount contained in the s.ingle point in hi.s graph. 
Extrapolation always calls for justification,' sooner or later. Until 
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this justification is forthcoming, it remains a provisional estimate, 
based on guesswork. Economists and politicians have been great 
offenders against us all in this matter of extrapolation. The 
economic crisis after the last war brought forth a spate of prog
nostication as to when slumps would come, when loans would run 
out and the rest, for which, as it proved in the event, there was 
usually little or no justification. 

Special types of paper are often used by experts, e.g. logarithmic 
and probability papers. These are extremely useful to the expert 
(ifhe goes carefully) but are next to useless for the layman, as they 
are invariably misleading to the uninitiated. Figs. 15 and 16 show 
examples of special papers commonly in use. 

YOU SHOULD NOW BE ABLE TO DO THE 
FOLLOWING: 

Annual Number of 
wage £ 

0- 99 
100-199 
200-299 
300-399 
400-499 
500-599 
600-799 
700-899 

employees 
10 
S4 

184 
264 
146 
40 

I. Draw a horizontal line chart, histogram, 
frequency polygon, ascending and descending 
ogives for the data in the table showing the 
number ' of employees earning different salaries 
in a certain company. 

Display the data in ideograph fonn using the 

symbol ~ to represent 10 employees. 

2. Convert Fig. 4 (b) to Pie Chart form. 
3. Convert Fig. 6 (a) to Pie Chart form. 
4. Put Fig 4 (b) in the form of Fig. 10 (a). 
5. Convert Fig. 6 (b) to an ogive in 'less than' form. 
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On the Average 

'The figure of 2·2 children per adult female was felt to be in 
some respects absurd, and a Royal Commission suggested that 
the middle classes be paid money to increase the average to a 
rounder and more convenient number.' (Punch) 

In former times, when the hazards of sea voyages were much more 
serious ,than they are today, when ships buffeted by stonns threw 
a portion of their cargo overboard, it was recognized that those 
whose goods were sacrificed had a claim in equity to indemnifica
tion at the expense of those whose goods were safely delivered. 
The value of the lost goods was paid for by agreement between all 
those whose merchandise had been in the same ship. This sea 
damage to cargo in transit was known as 'havaria' and the word 
came naturally to be applied to the compensation money which 
each individual was called upon to pay. From this Latin word 
derives our modem word average. Thus the idea of an average has 
its roots in primitive insurance. Quite naturally, with the growth 
of shipping, insurance was put on a firmer footing whereby the 
risk was shared, not simply by those whose goods were at risk on 
a particular voyage, but by large groups of traders. Eventually the 
carrying of such risks developed into a separate skilled and profit
making profession. This entailed the payment to the underwriter 
of a sum of money which bore a recognizable relation to the risk 
involved. 

The idea of an average is common property. However scanty 
our knowledge of arithmetic, we are all at home with the idea of 
goal averages, batting and bowling averages, and the like. We 
realize that the purpose of an average is to represent a group of 
individual values in a simple and concise manner so that the mind 
can get a quick understanding of the general size of the individuals 
in the group, undistracted by fortuitous and irrelevant variations. 
It is of the utmost importance to appreciate this fact that the 
average is to act as a representative. It follows that it is the acme 
of nonsense to go through all the rigmarole of the arithmetic to 
calculate the average of a set of figures which do not in some real 
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sense constitute a single family. Suppose a prosperous medical 
man earning £3,000 a year had a wife and two children none of 
whom were gainfully employed and that the doctor had in his 
household a maid to whom he paid £150 a year and that there was 
a jobbing gardener who received £40 a year. We can go through 
all the processes of calculating the average income for this little 
group. Six people between them earn £3,190 in the year. Dividing 
the total earnings by the number of people we may determine the 
average earnings of the group to be £531 13s. 4d. But this figure is 
no more than an impostor in the robes of an average. It represents 
not a single person in the group. It gives the reader II totally mean
ingless figure, because he cannot make one single reliable deduc
tion from it. This is an extreme example, but mock averages are 
calculated with great abandon. Few people ask themselves: What 
conclusions will be drawn from this average that I am about to 
calculate? Will it create a false impression? 

The idea of an average is so handy that it is not surprising that 
several kinds of average have been invented so that as wide a field 
as possible may be covered with the minimum of misrepresenta
tion. We have a choice of averages; and we pick out the one which 
is appropriate both to our data and our purpose. We should not 
let ourselves fall into the error that because the idea of an average 
is easy to grasp there is no more to be said on the subject. Averages 
can be very misleading. 

The simplest average is that which will be well known to every 
reader. This common or garden average is also called the mea1l, a 
word meaning' centre'. (AU averages are known to statisticians as 
'measures of central tendency', for they tell us the point about 
which the several different values cluster.) The arithmetic mean or 
average of a set of numbers is calculated by totalling the items in 
the set and dividing the total by the number of individuals in the 
set. No more need be said on this point, save that the items to be 
averaged must be of the same genus. We cannot, tor example, 
average the wages of a polygamist with the'tlumber of his wives. 

A second kind of average is the harmonic mean, which is the 
reciprocal· of the arithmetic mean of the reciprocals of the values 

• The reciprocal of a number is found by dividing that number into 
unity. e.g. tbe reciprocal of 4- i - O·2S. 
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we wish to average. The harmonic mean is the appropriate average 
to use when we are dealing with rates and prices. Consider the 
well-known academic example of the aeroplane which flies round 
a square whose side is 100 miles long, taking the first side at 100 
m.p.h., the second side at 200 m.p.h., the third side at 300 m.p.h., 
and the fourth side at 400 m.p.h. What is the average speed of the 
plane in its flight around the square? If we average the speeds 
using the arithmetic average in the ordinary way, we get : 

100 + 200 + 300 + 400 
Average speed = 4 = 250 m.p.h. 

But this is not the correct result, as may easily be seen as follows: 

Time to travel along the first side = I hour 
Time to travel along the second side = 30 minutes 
Time to travel along the third side = 20 minutes 
Time to travel along the fourth side = 15 minutes 
Hence total time to travel 400 miles = 2 hours 5 minut.:s 

-H hours 

From this it appears that the average velocity is ~ .;- H = 192 
m.p.h. 

The ordinary arithmetic average, then, gives us the wrong result. 
A clue as to the reason for this will be found in the fact that the 
different speeds are not all maintained for the same time - only 
for the same distance. The correct average to employ in such a 
case is the harmonic mean. 

In order to give the formula for this we shall here introduce a 
little more mathematical notation which 'will be of great benefit to 
us later in this book. In calculating averages we have to add up a 
string of items which make up the set whose average is required. 
The mathematician uses a shorthand sign to tell us when to add 
up. He calls adding up 'summing' and uses the Greek letter S 
which is written 1: and called • sigma ' to indicate when terms are 
to be added. (This is actually the capital sigma. Later we shall 
have a lot to say about the small letter sigma which is written 0'.) 
Each of the nwnbers which have to be taken into account in our 
calculation is denoted by the letter x. If we wish to differentiate 
between the various quantities we can nwnber them thus: XIo X2, 

Xl, X". etc., the labelling numbers being written as subscripts so 
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that they will not be confused with actual numbers entering into 
the calculation. (This may sound as confusing to the novice as it 
wiu be boring to the learned. Let the learned tum over the pages 
till they find something more interesting, while we explain this 
simple and useful shorthand to the novice.) Let us take as an ex
ample the calculation of the arithmetic average of the five num
bers 5, 6, 8, 7, 6. We could, if there were any reason for keeping 
track of these, label them as follows: 

xl = 6 

Now the advantage of using algebraic notation (i.e. letters to 
stand for any numbers we care to substitute for them according to 
the problem in hand) is that we can write down in a very compact 
way the rules for performing the calculation which will give us the 
correct answer to the type of problem we are dealing with. In fact, 
a formula is nothing else than the answer 10 every problem of the 
type to which it applies. We solve the problem once and for all 
when we work out a formula. The formula is the answer. All we 
have to do is to substitute for the letters the actual quantities they 
stand for in the given problem. Suppose, now, we denote the 
number of quantities which are to be averaged in our problem by 
the letter n (in our case here, n = 5). To calculate the arithmetic 
average we have to add up all the five quantities thus : 5 + 6 + 8 + 
7 + 6 = 32. This adding part of the calculation would appear in 
algebraic form as X l + Xl +X) +X4 + x s. The next step would be to 
divide the total by the number of items to be averaged, viz. 5, 
giving the result 6·4 for the average. In algebraic notation this 
would appear as 

A 
Xl +Xl + X3 +X4 +Xs 

verage = n 

This method of writing the formula would be very inconvenient if 
there were a large number of items to be averaged ; moreover, 
there is no need to keep the individual items labelled, for in an 
average the identity of the individuals is deliberately thrown away 
as irrelevant. So we introduce the summation sign, E, and write 
our formula in the very compact form: 

Ex 
Average = 

n 
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The formula thus tells us that to get the average we • add up all the 
x values and divide their total by the number of items, n'. 

In similar fashion, now, the harmonic mean, which we have said 
is the average to be used in averaging speeds and so on and which 
is defined as the reciprocal (the reciprocal of a number x is equal 

to ~) of the arithmetic mean of the reciprocals of the values, x, 

which we wish to average, has the formula: 

~armonic mean - L(D 
To illustrate the use of this formula let us use it on our aero

plane problem. The four speeds, which were each maintained over 
the same distance, were 100,200,300, and 400 m.p.h. These are 
our x values. Since there are four of them the value of n in our for
mula is 4, and we get: 

H
. · n 4 4 

armoDlcmean - .L(~) - (rh+m+m+m)~(dao) 

4 x 1200 ""::---zs- = 192 m.p.h. 

which we know to be the correct answer. 
The reader should note carefully that the harmonic mean is here 

appropriate because the times were variable, with the distances 
constant. Had it been that times were constant and distances 
variable. the ordinary arithmetic average would have been the cor
rect one to use. The type of average which is appropriate always 
depends on the terms of the problem in hand. Formulae should 
never be applied indiscriminately. 

Yet a third type of average is the geometric mean. This is the 
appropriate average to use when we wish to average quantities 
which are drawn from a situation in which they follow what 
W. W. Sawyer in Mathematician's Delight calls the' gangster law 
of growth', i.e. a geometric progression or the exponential law. 
Many quantities follow this type of law. For example, the popula
tion of a city, given a stable birth-rate and death-rate with no 
migration, will increase at a rate proportional to the number of 
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people in the city. Suppose that in the year 1940 a certain city bad 
a population of 250,000 and that in the year ]950 its population 
were 490,000. If we wished to estimate the population in the year 
1945 (estimating populations at various times between successive 
censuses is an important matter in public health statistics) then we 
might, as a rough approximation, take the average of the popula
tions at the two known dates, thus: 

. 250000 + 490,000 
Population at 1945 "'" ' 2 - 370,000 

This would only be a sensible method if we were able to assume 
that the population increased by the same number every year. 
This is not likely, however, for, as the city grows in size, so the 
number of citizens is likely to 'grow at an ever increasing rate (see 
Fig. 17). A better estimate is likely to be obtained, in normal cir
cumstances, by calculating the geometric mean of the population 
at the two known dates. To calculate the geometric mean, we 
multiply together all the quantities which it is desired to average. 
Then, if there are n such quantities, we find the nth root of the 
product. Denoting our n quantities by Xl, XZ, X3, " • X., we may 
write the formula for the geometric mean as follows: 

Geometric mean - ~ Xl x Xz x X3 x ••• x. 

Applying this to the problem given above where we wish to esti
mate the population of a city in 1945, given that in 1940 the 
population was 250,000 and in 1950 was 490,000, we have n - 2 
items to average, and we find: 

Geometric mean - ~250,000 x 490,000 - 350,000 

as our estimate for the population of 1945. This result, it will be 
noted, is appreciably lower than we obtained using the arithmetic 
average (370,000).lf the reader considers FiB. 17 he will see that it 
is the more likely estimate. 

Collecting together, at this point, our three different averages, 
we have: 

A.rithmetic Mean (usually denoted as Jl and caned x-bar) 

Jl_Xx 
. n 
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Harmonic Mean (usually denoted by H) 

n 

H=2:(1) 
Geometric Mean (usually denoted by G) 

G = ~ XI x X2 x X3 x • . • X. 

Each of these measures of central tendency has its own special 
applications. All of them are obtained by simple arithmetical pro-
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Fig. 17. Comparison of Interpolation by Arithmetic Mean and Geometric 
Mean. The population of a city often grows according to the exponential 
law. This would certainly be true with stable birth-rate and death-rate and 
in absence of migration. Under these conditions. the geometric average 
would be more appropriate than the arithmetic average to interpolate the 
population at a given date between two dates at which the population was 
known 

cesses which take into account the magnitude of every individual 
item. 

We emphasized the important idea of any average or measure 
of central tendency as the representative of a homogeneous group 
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in which the members are recognizably similar. Now many dis
tributions, while being undoubtedly homogeneous in the sense 
that there is continuity between the various members of the group, 
nevertheless are such that very great differences exist between the 
largest and smallest members, and, moreover, exhibit a marked 
lack of symmetry, the family tending to cluster much nearer to one 
extreme than the other. Fig. 18 is a typical example. It shows the 
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TO TO TO £10,000 
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Fig. 18. Numbers of people in different income ranges forming a positively 
skew distribution. Compare with Fig. 10 (b) with regard to shape of 
distribution, noticing (a) the larae combined income of the vanishina1y 
amalt numbers in the top rangea and (b) the effect of taxation 
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way in which annual income is distributed. There is certainly con
tinuity, but small incomes are the nonn. The reader will appre
ciate at once that to calculate averages for distributions of tbis 
type using the arithmetic mean would be very misleading. The 
relatively few people with extremely high incomes would pull up 
the average appreciably, so that it could not be taken as truly 
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Fig. 19. Distribution of number of children per family is also positively 
skewed 

representative of the population in general. Fig. 19, which shows 
the relative frequency of different sizes of family. presents the 
same difficulty. Some families are very well off for children and 
the catculation of an arithmetic average might well be misleading 
- particularly if our purpose is purely descriptive. 

It is evident that what we need in such cases is a measure of cen
tral tendency which is unaffected by the relatively few extreme 
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values in the' tail' of the distribution. Two ideas suggest them
selv.es. The first is that if we were to take all our families and set 
them down in a long column starting with the smallest and work
ing up to the largest, we could then use the size of that family 
which came halfway down the column as our measure of central 
tendency. This measure is called the median (meaning 'middle 
item '). Half of all families would have a size not less than that of 
the median family and half not more than that of the median 
family. Notice that in this way we do not take account at all of the 
actual numbers of children except for ranking purposes. It is evi
dent that the number of children in the largest family could be 
increased to 50,000 without in any way disturbing our measure of 
central tendency, which would still be the middle item. 

A second method of getting a measure of central tendency 
which is not upset by extreme values in the distribution is to use 
the most commonly occurring value. This is the fashionable value, 
the value Ii la mode, so to say. It is called the mode or modal value. 
For example, in Fig. 19 the modal value for the size of family is 
seen to be two children. This is really a typical value and seems real 
to us compared with the arithmetic average which in this case 
works out to 2·96. It is difficult to imagine 2·96 children. Notice 
that the arithmetic mean is markedly affected by the relatively few 
very large families. Which is correct? Neither and both. Both 
averages serve a purpose. The mode would form a very poor basis 
for any further calculations of an arithmetical nature, for it has 
deliberately excluded arithmetical precision in the interests of pre
senting a typical result. The arithmetic average, on the other hand, 
excellent as it is for numerical purposes, has sacrificed its desire 
to be typical in favour of numerical accuracy. In such a case it 
is often desirable to quote both measures of central tendency. 
Better still, go further and present a histogram of the distribution 
as in Fig. 19. 

A problem which not infrequently arises is to make an estimate 
of the median value of a distribution when we do not have the 
actual values of each individual item given, but only the numbers 
of items in specified ranges. We shall deal with this matter in Chap
ter 6 where the question of class limits and boundaries will be 
considered. 
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We shall now say a few words about frequency distributions. If 
we have a large group of items each of which has connected with 
it some numerical value indicative of its magnitude, which varies 
as between one member of the group and another (as, for ex
ample, when we consider the heights of men or the amount of in
come tax paid by them), and if we draw up a table or graph 
showing the relative frequency with which members of the group 
have the various possible values of the variable quantity (e.g. pro
portion of men at each different height, or proportions of the 
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Fig. 20. Distribution for the bursting strength of samples of vinyl eoated 
nylon exhibiting symmetry 

population falling into various income tax groups), then we have 
what is called a frequency distribution for the variable quantity in 
question. This is usually called simply the distribution. Thus we 
have distributions for height, weight, chest size, income, living 
rooms per person, and so on. Similarly we have distributions for 
the number of deaths according to age for different diseases, num
ber of local government areas with specified birthrates and death
rates, and so on. The quantity which varies (height, birthrate, 
income, and so on) is called the variate. Some variates are con
tinuous, i.e. they can assume any value at all within a certain 
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FiB. 22. Example of a Bimodal (double peaked) Distribution. The peak in 
the first years of life reflects the serious loss of potential life due to the 
infantile mortality rate. (From the Registrar General's Report, Years 
1930-32, quoted by M. O. Kendall in Advanced Statistics) 
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range. Income, height, birth-rate, and similar variates are con
tinuous. Other variates are said to be discontinuous because they 
can only assume isolated values. For example, the number of 
children in a family can only be a whole number, fractions being 
impossible. Families grow in distinct jumps. An addition to the 
family is an event. Goals scored in football matches, articles lost 
in buses, the number of petals on a flower - all such variable 
quantities are discontinuous. 

When we collect together information for the purposes of statis
tical analysis it is rare that we have information about all the 
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Fig. 23. Abortion in women. Data given by T. V. Pearce (1930) and quoted 
by M. G . Kendall, Advanct!d Slalislics. The reader may care to speculate 
about possible periodicity in these data. Is there reasonable suagestion of 
a cycle whose duration is roughly one month 1 What other conclusion 
can you draw? 

individuals in a group. Census data are perhaps the nearest to 
perfection in this sense ; but even in this case the information is al
ready getting out of date as it is collected. We may say that the 
census count in a certain country taken on a certain day came to 
43,574,205, but it would be nothing short of silly to keep quoting 
the last little figure 5 for the next ten years - or even the next ten 
minutes. Such accuracy would be spurious. In general it is not 
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possible to investigate the whole of a population. We have to be 
content with a sample. We take a sample with the idea of making 
inferences from it about the population from which it was drawn, 
believing, for example, that the average of a good sample is closely 
related to the average of the whole population. We shall say more 
about samples in Chapter 10. The word population is used in 
statistics to refer not simply to groups of people, but, by a natural 
extension, to groups of measurements associated with any collec
tion of inanimate objects. By drawing a sufficiently large sample 
of measurements, we may arrive at a frequency distribution for 
any population. Figs. 20-24 give examples of various types of dis
tribution. 
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Fig. 24. Peculiar distribution of cloudiness at Greenwich. Based on data 
given by Gertrude Pearse (1928) for month of July 1890-1904 (excluding 
1901) and Quoted by M. G. Kendall. Advanced Statistics. Vol. 1. Note 
tendency for sky to be either very clear or very cloudy 

Some distributions, as will be seen from the diagrams, are sym
metrical about their central value. ,Other distributions have 
marked asymmetry and are said to be skew. Skew distributions 
arc divided into two types. If the • tail' of the distribution reaches 
out into the larger values of the variate, the distribution is said to 
show positive skewness; if the tail extends towards the smaller 
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values of the variate, the distribution is called negatively skew. In 
the next chapter we shall take up the question of the concentration 
of the members of the distribution about their central value, for 
it is clearly a matter of the greatest importance to be able to 
measure the degree to which the various members of a popula
tion may differ from each other. 

Fig. 25 illustrates an interesting relationship which is found to 
hold approximately between the median, mode, and mean of 
moderately skew distributions. Figs. 26 and 27 illustrate geo
metrical interpretations of the three measures of central tendency. 

We shall close this chapter with an elementary account of Index 
Numbers, which are really nothing more than a special kind of 

Fig. 25. Mean. Median and Mode in moderately skew cases. For moder
ately skew distributions we have the simple approximate relation: 
Mean - Mode = 3 (Mean - Median). For a perfectly symmetrical distribu
tion they all coincide 

average. The best known index number is the Cost of Living 
Index, which, as readers will know, is a rough measure of the 
average price of the basic necessities of life. In many industries, 
the Cost of Living Index is a strong chain which keeps a man's 
reward tied strictly to his necessity rather than to his ambition. 
But index numbers are a widespread disease of modem life, or, we 
!]light better say. a sympt0pl of the modern disease of constantly 
trying to keep a close check on everything. We have index num
bers for exports. for imports, for wage changes. and for consump
tion. We have others for wholesale and retail prices. The Board of 
Trade has an index. The Ministry of Labour has an index. The 



ON THB AVBRAGB 49 

Economist has another. It is .scarcely possible to be respectable 
nowadays unless one owns at least one index number. It is a cor
porate way of • keeping up with the Joneses' - the private in
dividual having been forced by taxation to give up this inspiring 
aim long ago. 

,.. .. 
~ 
;) 
,.. 
u 
z 
w 
;;) 

8 
~ 0 x 

Pig. 26. Geometrical interpretation of Mode and Median. The vertical IiDe 
at the median value divides the area under the frequency curve into halve. 
(area is proportional to frequency). The vertical line at the modal value 
passes through the peak of the curve, i.e. it is the value at whieh the 
frequency density is a maximum 

Fig. 27. Geometrical interpretation of the Mean. The vertical line at the 
mean will pass through the centr.e of gravity of a sheet of uniform thjck
ness and density cut to the shape of the distribution. The mean i. the 
abscissa of the centre of gravity G 

It is really questionable - though bordering on heresy to put the 
question - whether we would be any the worse off if the whole bag 
of tricks were scrapped. So many of these index numbers are so 
ancient and so out of date, so out of touch with reality, so com
pletely devoid of practical value w)1en they have been computed, 
that their regular calculation must be regarded as a widespread , 



SO FACTS FROM FIGURBS 

compulsion neurosis. Only lunatics and public servants with no 
other choice go on doing silly things and liking it. Yet, since we 
become more and more the servants of our servants, and since 
they persist in tying us down to this lugubrious system whereby 
the housewife, the business man, and the most excellent groups of 
the citizenry have all their difficulties compressed into the brevity 
of an index number, we reluctantly ask the reader to bear with us 
while we explain, briefly, this academic tomfoolery of telling us in 
cryptic form what we knew already from hard experience: namely. 
that the cost of living has risen in the last couple of months, suffi
ciently for us to be able to submit a humble claim for higher wages 
to offset part of our increased burden. 

Consider the question of the changes which take place in retail 
prices. As every housewife knows, the price we are asked to pay 
bears only the faintest resemblance in many cases to the worth of 
the article. She knows. too, that for many commodities it is more 
accurate to speak of prices rather than price. Tomatoes in one 
shop may be 6d. per pound; the same tomatoes in an('ther shop 
may be 10d. or 1 s. Some people are well enough off to be able to 
shop by price. They like lots of service and servility and are will
ing to pay for it. Yet, even if these sections of the community are 
excluded. there still remains a fair variation between one district 
and another for the same article, things like fish and fruit being 
notorious in this respect. In addition to this variation in the price 
of the articles, we have to recognize that different families have 
different spending patterns. If cheese were made as dear as gold it · 
would not matter one iota to the family that hates cheese like 
poison. Conscientious vegetarians would probably regard it as an 
excellent thing if the price of meat rose to prohibitive levels. Total 
abstainers positively loathe the idea of beer and spirits being 
cheap. Nou-smokers love to see the Chancellor raise the money 
by piling the tax on • non-essentials 'like tobacco. It is evident that 
we shall get nowhere if all this individuality is to run riot. It is far 
too inconvenient for the statistician. 

We get over the difficulty by shutting our eyes to it. All we have 
to do is to invent a 'standard family'.- We might, for example, 

• Composed of one underpaid male, ODe overworked female, aDd 2·2 
underfed children. 
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choose the standard urban working-class family. We then do a 
sample survey, to find out what quantities of the various articles 
we are considering they consume in a week under normal con
ditions, and draw up a table as follows: 

EXPENDITURE OF THE STANDARD WORKING-CLASS FAMILY 

Bread and Flour 
Meat 
Potatoes 
Tea 
Sugar 
Butter 
Margarine 
Eggs 

(1949) 
Quantity Price 
39 lb. 4d./lb. 
7 lb. 24d./lb. 

35 lb. 2d./lb. 
1 lb. 36d./lb. 
2 lb. Sd./lb. 
I. lb. 18d./lb. 
I lb. 12d./lb. 
I doz. 3Od./doz. 

Total 

Expenditure 
IS6d. 
I 68d. 
7Od. 
36d. 
IOd. 
18d. 
12d. 

3Od. 

SOOd. 

Weight 
31·2 
33·6 
14·0 
7-2 
2·0 
3-6 
N 
6·0 

100·0 

Now, it is a relatively simple matter to keep track of the changes 
in prices as time goes on. It would be very much more trouble
some to keep a check on whether the spending pattern, as in
dicated by the amounts of the various items bought by the stan
dard family, was tending to change. One line of approach would 
be to assume that our standard family will not change its demands 
from year to year. Suppose for the year 19·50 the prices were as in 
the following table. 

EXPENDITURE OF THE STANDARD WORKING-CLASS FAMILY 
. (1950) 

Bread and Flour 
Meat 
Potatoes 
Tea 
Sugar 
Butter 
Margarine 
Eggs 

Quantity Price 
39 lb. Sd./lb. 
7 lb. 3Od./lb. 

35 lb. 3d./lb. 
I lb. 36d./lb. 
2 lb. 6d./lb. 
1 lb. 27d./lb. 
I lb. ISd./lb. 
I doz. 4Sd./doz. 

Expenditure 
19Sd. 
21Od. 
10Sd. 
36d. 
12d. 
27d. 
ISd. 
4Sd. 

Weiaht 
30·1 
32'6 

.16·3 
H 
1·9 
4·2 
B 
7·0 

Total 64Sd. 100·0 
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The reader should ignore, for the moment, the last column, 
headed' Weight', in each table. The obvious thing, at once, is that 
to buy the same quantities of the same articles, and therefore to 
get the same' satisfaction', as the economists have it, <::ost the stan
dard family 645d. in 1950 as against 500d. in 1949, i.e. the cost in 
1950 as compared with 1949 was m x 100= 128'8%. We could 
then say that the index of retail prices, as represented by this 
group of items, stood at 129 in 1950 (1949 - 100). 

We could get a similar indication of the rise in retail prices as 
follows. Consider, first, the amount of money our standard family 
spent on the various items in our' base year, 1949'. These can be 
reduced to percentages of the total expenditure (on the group of 
items considered in the index). For instance, out of a total expen
diture of 500d., bread and flour claimed 156d. or 31 ·2 %. Similarly. 
meat took 33'6% of the total expenditure, potatoes 14'0%, and so 
on. These figures are entered in the column headed 'Weight' since 
they tell us the relative importance of the different items in the 
household budget. Meat is a very heavy item, sugar a relatively 
small one. These weights give us a pattern of expenditure as it 
actually appeared to the standard housewife in the base year. They 
take account of both quantity and price. The first thing that is 
obvious from this pattern of weights is that, while a 50 % increase 
in the cost of sugar is not a matter of great importance to the 
housewife. even a 10 % increase in the price of meat would be a 
serious extra burden to carry in the standard family where income 
is usually closely matched to expenditure. We must remember that 
our standard family is a standardized family. Its wants are not 
supposed to change. It is supposed to be devoid of ambition. It 
only gets a rise in salary when such a rise is absolutely necessary. 

Now while it is true (in the absence of subsidies and purchase 
tax or price fixing by combines) that all commodities tend to rise 
in price together, nevertheless, superimposed on this general' ten
dency, there will be a certain irregularity. Comparing the price of 
bread and flour in our two years we find that the' price relative', 
as it is called, of this item is ! x 100 = 125 % in 1950 as com
pared with the base year, 1949. 

The following table shows the 'prices relative' for the several 
items, together with the weights corresponding to the base year. 
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The weights have been quoted to the first decimal place, 
further places being condemned as coming under the heading 
• delusions of accuracy' . 

Price Base year Price-reI. x 
relative weight weight 

Bread and Flour 125 31-2 3,900 
Meat 125 33 -6 4,200 
Potatoes · 150 14-0 2,100 
Tea 100 7-2 720 
Sugar 120 2-0 240 
Butter 150 3-6 540 
Margarine 125 2-4 300 
Eggs 150 6-0 900 

Total 100-0 12,900 

If, now, we divide the total of the ' prices relative x weight' by the 
total of the weights, we get the average price of the commodities 
in 1950, as compared with the base year, 1949, equals 129'00, 
which we certainly quote no more accurately than 129_ This 
would now be our index of retail prices. For every hundred pen
nies spent in 1949 we need to spend 129 in 1950 to get the same 
amount of • satisfaction'. Evidently, every succeeding year - or 
month, for that matter - can be compared with our base year . 

• The economists, of course, have great fun - and show remark
able skill - in inventing .more refined index numbers. Sometimes 
they use geometric averages instead of arithmetic averages (the 
advantage here being that the geometric average is less upset by 
extreme oscillations in individual items), sometimes they use the 
harmonic average. But these are all refinements of the basic idea 
of the index number which we have indicated in this chapter. 
Most business men seem to thrive without understanding this 
simple matter. Perhaps they half realize that it doesn't mean a lot, 
except in regard to wage negotiations between themselves and 
Trade Unions - and in such cases experts on both sides of the 
fence do all the statistics required. The employer and employee 
don't much mind how much of this arithmetic goes on, so long as 
the final agreement is reasonably fair to both sides. 
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The snags in this index number game will be apparent to the 
reader. First of all, if he will inspect the pattern of weights in the 
tables for 1949 and 1950, he will see that they are not identical. 
Over a reasonable period of years the pattern can change ap
preciably. Then, again, if we try to measure the cost of living of 
our standard family by including heating, lighting, rent, beer, 
cigarettes, football pools, and the rest, we soon get into deep 
water. For example, if we find that in the base year the standard 
family spends one-tenth of its income on football pools, are we to 
argue that since this is a heavy item of expenditure it shall be 
supported somehow in the cost of living calculations? Until very 
recently the cost of living index in this country took account of the 
cost of paraffin and candles for lighting purposes, and assumed 
that no working-class family had heard of electricity. Then there is 
the difficulty that the standard family tends to become a stan
dardized family in so far as its wages are tied to an index which is 
slow to recognize the right of its standard family to be anything 
but standard in its requirements from year to year. The reader 
should consider carefully the full implication of 'subsidies on 
essentials' (included in cost of living index) and' purchase tax on 
non-essentials' (not included in the index or only modestly repre
sented). The pernicious nature of tying wages to cost of living in
dexes while this jiggery-pokery is official policy will be apparent. 
The whole scheme is positively Machiavellian in its acceptance 
of deception as a necessity in politics. And does it really work so 
well, after all ? The truth is that it is too inefficient even to keep the 
worker standardized. As new items are available from manufac
turers, the public has to be given the power to purchase them, 
whether they are included in the cost of living index or not. Shall 
we ask the economists: What good do your indexes do - really? 

NOW HA VB A GO AT THE FOLLOWING: 

1. Find the arithmetic average of the numbers from 1 to 10. Now see 
if you can find a simple rule by getting the average of the numbers 
1 to 3; 1 to 5; 1 to 7 and so on. Does the rule also work for finding the 
average of an even number of terms, e.g. 1 to 6; 1 to 14, etc. ? 

2. A physics student, in finding the formula for the "ibration time 
of a pendulum, made the following repeat readings at one particular 
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length of the pendulum. How do you account for the variations 7 Use 
an assumed mean to find the arithmetic average of the readings. 

50'4,50'2,50'7,49.8,50'1,50'3,49'8,50'0,49'9, 50'3,49·6 
3. A man goes by car from town Xto town Yand back. Theoutward 

journey is uphill and he gets only 20 miles to the gallon of petrol. On 
the return journey he gets 30 miles to the gallon. Find the harmonic 
mean of his petrol consumption in miles per gallon. Then, by assuming 
that the distance from X to Y is 60 miles, verify that the harmonic 
mean is the correct average to calculate. Find the arithmetic average 
for comparison. 

4. Groups of boys and girls are tested for reading ability. The forty 
boys make an average score of 76%. The sixty girls have an average 
score of 37%. Calculate the arithmetic average for boys and girls 
combined. Have you any comments to make 7 

S. On March lst a baby weighed 14 lb. On May 1st it weighed 20 lb. 
Use the geometric mean to estimate its weight at April 1st. Talk to a 
mother or a doctor and see if your answer is a sensible one. If not, have 
you any suggestion? 
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Scatter 

'The words figure and fictitious both derive from the same 
Latin root, fingere. Beware!' M. 1 . M. 

We have discussed various ways of measuring the central ten
dency of distributions and have seen that such measures are 
characteristic of the distribution of any quantity, so that different 
populations are distinguished from each other by different values 
of these measures. For example, the average value for the height 
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Fig. 28(a). Ogive for heights for young men (I.Q.R.= interquartile range) . 
(Based on W. T. Martin, Physique o/Ihe Young Male, by permission of 
H.M.S.O.) . 

of women differs from the average height for men. Numerical 
characteristics of populations are called parameters. Having dealt 
with parameters of central tendency, we now tum to the no less 
impor~ant matter of parameters of dispersion. According to 
Memorandum No. 20 issued by the Medical Research Council 
(W. J . Martin: The Physique of the Young Male) the height of young 
males, aged between 20 and 21 years, has an average value of 5 



SCATTER 57 

feet 7t inches. This is information. But we should like to know 
more,· for it is evident that not all the young men were eJtactly of 
this height. The adjoining ogive (Fig. 28a) shows the percentages 
of men less than stated heights in a total of 91,163- who were 
measured. Fig. 28b shows the data displayed in histogram form. 
It is evident that very considerable variability exists, so that, whilst 
the great majority of men differ relatively little from the average 
height, very noticeable departures from it are not at all infrequent. 
How are we to get a measure of the variability about the mean 
value? 
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Fig. 28b. Histogram corresponding to the ogive of Fig. 28a 

The easiest way is to state the height of the tallest man seen and 
the shortest, thus. Tallest: 6 feet 9 inches. Average: 5 feet H 
inches, Shortest: 4 feet 0 inches. Alternatively, we might state the 
range, i.e. the difference between the tallest and the shortest, viz. 
6 feet 9 inches minus 4 feet 0 inches = 2 feet 9 inches. This is not a 
very good way. A moment's thought will make it clear that we 
might very easily not have met these two extreme heights. It might 
well have been that we should have found the shortest mao to be 

3 
• The author does not disappoint us in this desire . 
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4 feet 4 inches and the tallest 6 feet 6 inches. This would give us a 
range of 6 feet 6 inches minus 4 feet 4 inches - 2 feet 2 inches - a 
result which is appreciably different from the previous one. Again, 
it might have happened that among those examined in this group 
for military service were the giant and the dwarf from some ciT<;Us . 
Supposing the giant to be 9 feet 7 inches and the dwarf 3 feet 2 
inches, we should have obtained for our range the value 6 feet 5 
inches. It is obviously 'undesirable to have a measure which will 
depend entirely on the value of any freaks that may occur. It is 
impossible for a measure based on freaks to speak as the repre
se1ltative of the ordinary population. The range, then, although it 
is used in certain circumstances, is not ideal as a measure of dis
persion.· It would be bettcr to have a parameter less likely to be 
upset by extreme values. 

We may tackle this problem by devising a measure for disper
sion along the same line that we took for the median when we 
were discussing measures of central tendency. The median was the 
value above which 50 % of the population fell and below which 
the other 50% fell. Suppose, now, we divide the population, after 
it has been set out in 'order of size, info four equal groups. The 
value above which only 25 % of the population falls we call th~ 
upper quartile, and the value below which only 25 % of the popula
tion falls we call the lower quartile. Evidently, 50 % of the popula
tion falls between the upper and lower quartile values. The reader 
may care to check for himself that the upper and lower quartiles, 
for the table of heights we are using as an example, are roughly 
5 feet 9 inches and 5 feet 6 inches respectively. Thus, we may see 
at once that roughly 50 % of the population differ in height by 
amounts not exceeding three inches, despite the fact that the tal
lest man observed was no less than 2 feet 9 inches taller than the 
shortest man. This, of course, is a consequence of the way in 
which the large majority of heights cluster closely to the average. 
This is a very common effect. Intelligence Quotients behave in the 
same sort of way. Most people are little removed from average 
intelligence, but geniuses and morons tend to occur in splendid 
isolation. (We may recall here that the modal (' fashionable ') value 

• The range is very efficient when the samples contain very few items (see 
Chapter II for its llse). 
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tends to coincide with the arithmetic mean when the distribution 
is fairly symmetrical.) Thus the inlerqllartile range, i.e. the dif
ference between the upper and lower quartile values, makes a 
good measure of dispersion. It is immune from the disturbances 
occasioned by the incidence of extreme values. It is easy to cal
culate. It has a simple and meaningful significance in that it tells 
us the range of variability which is sufficient to contain 50 % of the 
population. The interquartile range is frequently used in economic 
and commercial statistics for another reason. Often. data are col
lected in such a way that there are indeterminate ranges at one or 
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Fig. 29. Showing numbers of firms with the stated number of employees in 
the food, drink, and tobacco trades of Great Britain. (Based on Census 
of Pro duel ion 1930, quoted by M. G. Kendall, AdvQnced Statistics, Vo1.l) 

both ends of the table. An example is shown in Fig. 29. The largest 
group is labelled '400 and over'. This is vague, and it would 
obviously be impossible to do a precise calculation for any 
measure depending on arithmetical processes involving the actual 
values in the unbounded upper class. (We shall show in the next 
chapter how the limited vagueness in the other hounded classes is 
dealt with.) The median and the interquartile range provide us 
with measures of central tendency and scatter respectively in such 
cases. 

Median and quartiJes are simply special cases of a quite general 
scheme for dividing up a distribution by qltontiles. Thus, we may 
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arrange our distribution in order of size and split it up into ten 
groups containing equal numbers of the items. The values of the 
variable at which the divisions occur are known then as the first, 
second, third, and so on, deciles. This idea is used by educational 
psychologists to divide pupils into' top 10 %, second 10 %, third 
10 %', and so on, with regard to inherent intelligence in so far as 
that characteristic may be measured by tests. 

Yet another measure of dispersion, which depends on all the 
measurements, is the mean deviation. In order to calculate this 
parameter, we first of all find the arithmetic mean of the quan
tities in the distribution. We then find the difference between each 
of the items and this average, calling all the differences positive. 
We then add up all the differences thus obtained and find the 
average difference by dividing by the number of differences. Thus 
the mean deviation is the average difference of the several items 
from their arithmetic mean. In mathematical form we have 

M D
" L'lx - xl 

ean eVlatlon =- -n 
where as before th~ symbol x stands for the arithmetic mean" of 
the various values of x. The sign Ix - xl indicates that we are to 
find the difference between ~ aDd the average of the x values, ig
noring sign. The sign L'means • add up all the terms like ' . 

Example. Find the arithmetic mean and mean deviation for the 
set of numbers : 11 , 8,6, 7, 8. 

Here we have n=5 items to be averaged. As previously shown, 
the average of the items is . 

x = L'x = 11 + 8 + 6 + 7 + 8 = 40 = 8 
" 5 5 

In order to get the mean difference, we calculate the several dif
ferences of the items from their average value of 8 and sum them, 
thus: 

111 - 81+18-81+16 - 81+17 - 81+18 - 81 
3 + 0 + - 2 + ,I + 0 ... 6 

We then calculate the mean deviation by dividing this total of the 
deviations by n - 5, and so find the mean deviation as t = 1 . 2. 
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The mean deviation is frequently met with in economic statis
tics. 

The measures so far suggested are often used in elementary 
work on account of their being easy to calculate and easy to under
stand. They are, however, of no use in more advanced work be
cause they are extremely difficult to deal with in sampling theory, 
on which so much of advanced work depends. The most impor
tant measure of dispersion is the standard deviation, which is a 
little more difficult to calculate and whose significance is less 
obvious at first sight. Calculation and interpretation, however, 
soon become easy with a little practice, and then the standard 
deviation is the most illuminating of all the parameters of dis
persion. The standard deviation will be familiar to electrical en
gineers and mathematicians as the root-mean-square deviation ." 
The general reader will do well to remember this phrase as it will 
help him to remember exactly how the standard deviation is cal
culated. We shall detail the steps for the calculation of the stan
dard deviation of a set of values thus: 

Step 1. Calculate the arithmetic average of the set of values. 
Step 2. Calculate the differences of the several values from their 

arithmetic average. 
Step 3. Calculate the squares of these differences (the square of 

a number is found by multiplying it by itself. Thus the square of 4 
is written 42 and has the value 4 x 4 ~ 16). 

Step 4. Calculate the sum of the squares of the differences to get 
a quantity known as the sample sum o/squares. 

Step s. Divide this' sample sum of squares' by the number of 
items, n, in the set of values. This gives a quantity known as the 
sample variance. 

Step 6. Take the square root of the variance and so obtain the 
standard deviation. (The square root of any number, x, is a num
ber such that when it is multiplied by itself it gives the number x. 
Thus, if the square root of x is equal to a number y then we shall 
havey2= y xy-x.) 

This sounds much mOJ;"e complicated than it really is. Let us 
work out an example, step by step. 

• It is strictly analogous to radius of gyration in the theory of moments of 
iDeni •. 
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Example. Find the standard deviation of the set of values II, 8, 6, 
7,8. 
• Step 1.. We calculated the arithmetic average previously as 
i =8. 

Step 2. The differences of the items from this average (sign 
may be ignored) are: 3,0,2,1, O. 

Step 3. The squares of these differences are: 
3 x 3 - 9 OxO == O 2 x 2 - 4 l x i - I Ox O- O 

Step 4. The sample sum of squares is: 9 + 0 + 4 + 1 + 0 ~ 14. 
Step 5. Dividing the sample sum of squares by the number of 

items, n = 5, we get the sample variance as .1'2 - 1/ - 2·8 (.1'2 is the 
accepted symbol for sample variance). 

Step 6. The standard deviation is found as the square root of 
the sample variance thus: s~ .y2·8 - 1'7. 
The formula for the standard deviation is: 

8- J£(X;X)2 

We shall meet later with the quantity called the variance. It 
is a very imrortant quantity used in the analysis of variation.· For 
the present it will suffice if the rcader will just make a mental note 
that the variance is simply the square of the standard deviation. It is 
calculated exactly like the standard deviation, except that the final 
step of taking the square root is omitted. 

We have seen how to calculate the standard deviation. What use 
is it to us in interpretation ? Actually it is very easy to visualize. If 
we are given any distribution which is reasonably symmetrical 
about its average and which is unimodal (i.e. has one single bump 
in the centre, as in the histogram shown in Fig. 28b) then we find 
that we make very little error in assuming that two-thirds of the 
distribution lies less than one standard deviation away from the 
mean, that 95 % of the' distribution lies less than two standard 
deviations away from the mean, and that less than 1 % of tbe dis
tribution lies more than three standard deviations away from the 
mean. This is a rough rule, of course, but it is one which is found 
to work very well in practice. Let us suppose, for example, that we 
were told no more than that the distri,bution of intelligence, as 

• See Chapter 19. 
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measured by Intelligence Quotients (a person's I.Q. is defined as 
Mental Age . 

Olro I . IA xlOO)hasanaveragevalue~-l00.Wlthstanno oglca ge 
dard deviation s-13. Then we might easily picture the distribu
tion as something like the rough sketch shown in Fig. 30. 

The reader may care to compare the rough picture thus formed 
from a simple knowledge of the two measures.t and s with the his
togram shown in Fig. 31 which is based on results obtained by 

1(=100 

s- I) 

60 100 

1 STD· I STD. 
OEV~ OEV~ 

) STD. OEVN~ ) STD. DEVN$ 

AVERAGE 
10 

140 

Fia. 30. Knowing only that we have a fairly symmetrical. unimodal distribu· 
tion whose mean value is I.Q. 100 units and whose standard deviation is 
I.Q. 13 units, we can at once picture in our minds that the distribution 
looks something as shown. Compare this with Fig. 31 

L. M. Terman and quoted by J. F. Kenney from his book The 
Measurement 0/ [Ilfelligence. This is typical of the use of measures 
of central tendency and dispersion in helping us to carry the 
broad picture of a whole distribution (provided it be reasonably 
symmetrical and unimodal) in the two values x and s. Such 
measures properly may be said to represent the distribution for 
which they were calculated. 
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The measures of dispersion which we have so Jar dealt with are 
all expressed in terms of the units in which the variable quantity 
is measured. It sometimes happens that we wish to ask ourselves 
whether one distribution is relatively more variable than another. 
Let us suppose, for example, that for the heights of men in the 
British Isles we find a mean value 67 inches with standard devia
tion 2·5 inches, and that for Spaniards the mean height is 64 inches 
with standard deviation 2·4 inches. It is evident that British men 
are taller than Spaniards and also slightly more variable in height. 
How are we to compare the relative v.ariability bearing in mind 

~ w .., 
0- Z 
Z .. 
w a: 
u 

'" w '" ... ... 
>- ... 
u u 
z 
w 0 ::> w 
0 0-
W ... 
'" 0-... '" 

CLASS 

X s JOO 
S · 13 

CLASS MID MARKS 10 

Fig. 31. Distribution of Intelligence Quotient (compare with Figs. 30 and 
32). Distribution of I.Q. witl;l .i= 100. s = 13 . Based on data by L. M. 
Terman and quoted by J . F. Kenney, MQt"~mQtics 0/ StQtiSlics, Vol. I 

that the Spaniards are shorter in height than the British'l Karl 
Pearson's coefficient of variation is the most commonly used 
measure in practice for such a case. 

It is defined as: v = 1 ~s 
If we calculate the coefficient of variation for our two cases, we 
get: 

British v_ lOO x 2'5 - 3'73% 
67 0 
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We conclude that, though the British are more variable in an 
absolute sense, the variability of the Spaniards, expressed as a per
centage of the mean height, is just slightly greater.· In Chapter 9, 
when we consider the' standard form' of the so-called Normal 
curve, we shall find that we have a further excellent way of com
paring two distributions with respect, not to their relative vari
ability, but to their skewness and other characteristics. 

We have now provided ourselves with all the necessary basic 
ideas with regard to measures of central tendency and dispersion. 
We have a good selection of measures at our disposal, each of 
them appropriate to some common type of problem in numerical 
representation. This knowledge, together with what we know 
about pictorial methods of representation, is sufficient to carry us 
through the greater part of what is known as descriptive statistics, 
i.e. the sort of statistics the layman is most likely to. meet with. 
With the previous chapters reasonably well understood, he will be 
able to follow intelligently and critically the major part of descrip
tive material. There is a vast mass of this type of statistics, and 
many an interesting story in it for those who are interested and 
able to read it. 

But the ideas so far presented for consideration would leave the 
reader in very poor shape fOf working up a mass of data from the 
raw on his own account. There is an awful lot of arithmetic to be 
done in most cases, and, if we were to try to do the necessary cal
culations in accordance with the simple definitions and procedures 
so far outlined, anything but the simplest collection of data would 
prove an insupportable burden. But the statistician makes his task 
very much lighter by the use of special short cuts in calculation 
such as we shaH meet with in the next chapter. 

HERE IS THE NEXT LOT TO TEST YOUR SKILL 

1. Find the arithmetic mean and standard deviation for the data of 
exercise 2 of Chapter 4. 

2. Find the mean deviation for the same data. 
3. Find the interquartile range for the same data. 
4. Find the coefficient of variation for the same data. 

• The question of the significance of difference betwccn sample results ia 
considered in Chapter 13. 
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Speeding lip Calculations 

'Rome wasn't built in a day? I wasn't in charge of that job.' 
ANON. 

There are certain short cuts in computation which suggest them-
. selves quite naturally. Suppose, for example, we had to calculate 

the arithmetic mean of the five values: 130, 120, 110, 130, 110: It 
is obvious that the answer is approximately 100. We may there
fore assume this value, provisionally, as the mean value, and then 
proceed to calculate a correction to it. The correction will ob
viously be one-fifth of the total 30 + 20 + 10 + 30 + 10, i.e. 20. This 
gives us for the correct value of the mean of the original data 
100 +20~ 120. Such a trick will often be of considerable value in 
c·omputing the average ofa large set of values, as we shall see later. 
We commonly refer to this device as taking an assumed mean. 

Another uSC;ful dodge is the one commonly made use of in the 
following type of case. Find the average of the values 4,000, 2,000, 
3,000, and 1,000. What we do in such a case is to work in 
thOusands, and find the average as 

4+2+3+1 
4 -2·5 (thousand) 

Average = 2,500 

We shall refer to this trick (for reasons which will appear later) as 
working in units of the cell interval, the cell or class interval in our 
example here being 1,000. There is no question of approximation 
in these tricks. The answer is absolutely accurate. 

Yet another handy idea is that of working with what are known 
as grouped frequencies. Suppose, for example, we wished to find 
the average of the following set of values: 4, 3, 2, 3, 5, 6, 3,4, 6, 7. 
9,2,2,9, 1,2.5,4,4, 1, we could sort them out in the following 
way: 

Val:e 2 3 4 5 6 7 8 9 
Frequency oloccurrence 2 4 3 4 2 2 1 0 2 
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Now, instead of finding the total of the items in the original1ist 
( = 82) and dividing this total by the number of items (n - 20) to 
get the average value - 4'1, we might proceed as follows: 

aX I~~x~+Ox~+~x~+ax~+ax~+nxn+~x Q+ax~ 
averalll'- 2+4+3+4+2+2+1+0+2 

_2+8+9+I6+IO+12+7+0+18_~_4.J 
20 20 

Thus, if we multiply each value by the number of times it occurs, 
find the total of these products, and then divide that total by the 
number of items we get the average. This is simple common sense, 
of course. Expressing this idea in mathematical form, we let x 
denote any value and/the frequency with which that value occurs. 
Then, evidently, the sum of the products/x will be the total of the 
values in the original list, and the total of the/values will be equal 
to the total number of items in the list. The formula for the average 
will thus be: 

Again there is no question of approximation. 
Suppose, now, that we were asked to find the average of the fol

lowing set of values obtained for tl!e Intelligence Quotients of 100 
children. 

LQ. OF 100 CHILDREN 

75 112 100 116 99 111 85 82 108 85 
94 91 118 103 102 133 98 106 92 )02 

115 109 100 0) 108 77 94 121 100 107 

104 67 III 88 87 97 102 98 101 88 
90 93 85 107 80 106 )20 91 101 103 

109 100 127 107, 112 98 83 98 89 106 
79 117 85 94 119 93 100 90 )02 87 

95 109 8 94 ' 93 72 98 105 122 104 

104 79 102 104 107 97 100 109 103 107 ' 
106 96 83 107 102 110 102 ' 76 98 88 , 
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This is by no means a long or difficult table to find the average 
of by the straightforward method of addition of the items and 
division by the number of entries in the table. Nevertheless 
the work involved would be heavy enough. How can the labour in 
this case be made more reasonable? Inspection of the table shows 
that the largest I.Q. recorded was 142 and the smallest 57. The fol
lowing is what is known as a grouped frequency table for the data : 

I.Q. FOR 100 CHILDREN 

Class Class Class Tally marks Fre-
marks boundaries mid-mark quency 

55- 64 54·5- 64·5 59 ·5 I 1 
65- 74 64·5- 74 'S 69 ·5 II 2 
75- 84 74·5- 84·5 79,5 mtllil 9 
85- 94 84 ·5- 94·5 89·5 tttHtlHltt ttH II 22 
95- 104 94 ·5- 104·5 99·5 · tltt ++IT 8HttI tt+t tHt III 33 

105- 114 104·5- 114'5 109 5 fttHttI itH tnt II 22 
115-124 114-5-124 -5 119·5 fflt III 8 
125-134 124-5-134'5 129-5 II 2 
135- 144 134,5-144-5 139 ·5 I 1 

Total number of values =Total frequency = 100 

Before proceeding further, there are certain things which the 
reader should observe. In the first place, he should distinguish 
carefully between the meanings of the terms 'class marks' and 
'class boundaries'. The values in this case were recorded to the 
nearest whole number in our table ofI.Q.'s so that a value recorded 
as 55 may, in fact, have been anywhere between 54,5 and 55 -5. 
Therefore the class that contains all the values recorded as be
tween 55 and 64 inclusive will contain all the values which in fact 
lay between 54-5 and 64-5. That is to say, the class marks 55-64 
imply class boundaries 54-5-64,5. Grouped frequency tables should 
always be drawn up with this distinction clearly in mind, so that 
the class boundaries cover the whole range of observed values 
without gap or overlap. It is erroneous (though not uncommon) 
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for tables to be drawn up in such a way that we should be in doubt 
which class to assign borderline values to. If the distinction be
tween class marks and boundaries is kept clearly in mind, and 
considered in conjunction with the accuracy to which the values 
are originally recorded, there is no need for such ambiguity. The 
reader will observe that the class mid-mark may be obtained either 
by taking the average of the class marks or by taking the average 
of the class boundaries. In general, the number of classes into 
which the whole range of the values is divided should be not less 
than ten (or serious error becomes possible in the succeeding cal
culations) nor more than about twenty-five (or the saving due to 
grouping is much less than it might be). In our case we break this 
rule by having only nine classes. Class marks are often referred to, 
for obvious reasons, as class end-marks. The classes themselves 
are frequently called cells. The width of a cell, i.e. the difference 
between its class boundaries, is known as the class interval or the 
cell interval and denoted usually by the letter c. Inspection of our 
grouped frequency table will show that the width of all cells is 
c = 1O. 

Having decided on our classes, the original values are trans
ferred to the group frequency table as tally marks in the appro
priate cell. It is convenient in practice to use every fifth tally mark 
in a given cell to cross out the previous four, thus making it easy 
to count up the tally marks in each cell in groups of five at a time. 
Finally, the total of the tally marks in each cell is entered in tbe 
frequency column, and the total of this column tells us the total 
number of values recorded in the original table. It is not essential, 
though often convenient, to have all the cells of the same width. It 
will be noticed that the tally marks draw for us a rough histogram 
of the distribution. In drawing a histogram proper for the data, 
the vertical blocks representing the frequencies in each subrange 
have to be properly located on the scale of values of the variable 
with reference to the class boundaries (see Fig. 31). 

If, now, we are prepared to make some small approximation in 
our calculation of the average of all the readings, we may 
without serious error regard each value in a given cell as having, 
not its true value, but the value of the class mid-mark. Sometimes 
the error will be positive and sometimes negative, so that in a 
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large number of values we can be reasonably confident that the 
errors will substantially cancel one another out. The calculation 
of the arithmetic average would then be as follows: 

Class Frequency Frequency x 

mid-mark mid-mark 
x I Ix 

59·5 I 59'5 
69·5 2 139'0 
79·5 9 715 '5 
89·5 22 1,969'0 
99'5 33 3,283'5 

109·5 22 2,409'0 
119·5 8 956·0 
129·5 2 259 '0 
139'5 I 139'5 

EI=IOO Elx =9,930'0 

Whence, the average value for LQ. is found as: 

x~E/x ~9930'0 =99'3 
E/ 100 

The true value is actually 99·28, so that our result is reasonably 
close to the true value, the error being of the' order of 0·02 % in 
this case (with rather a scanty number of cells). 

The arithmetic may be consid~rably simplified, however, if we 
introduce the ideas of working with an assumed mean and in units 
o/the cell interval. The cell interval in our grouped frequency table 
is c - 10. Inspection of the table suggests at once that we should 
not be far out in assuming the mean to be the class mid-mark 99· 5. 
It is essential in this method to take as our assumed mean a class 
mid-mark and essential, also, to have all cells of the same width. 
It does not matter at all which class mean we assume, though the 
better our assumption the simpler the subsequent arithmetic. The 
assumed mean is denoted by the symbol Xo. The deviation of each 
class from the assumed mean, measured in units of the cell in-
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terval, is denoted by t. The class which contains our assumed mean 
is given the value t ==0. Classes whose mid-marks are smaller than 
the assumed mean are given negative values of I, and classes whose 
mid-marks are larger than the assumed mean are given positive 
values of t. Thus the f value measures how many classes a given 
class is away from the assumed mean, and the sign of t tells us 
whether the members of the class in question have values smaller 
or larger than the assumed mean. If the reacler will follow this ex
planation with the following table in front of him, the meaning 
should be quite clear. The reader will appreciate that what we have 
done is this: (a) chosen an assumed mean, (b) measured our 
values in units of t instead of in the original units - much as we 
might measure a length in feet instead of inches. The mathemati-

cian would say that we had' made the substitution t = x -c xo·. We 

now calculate in our f units the correction to be applied to the 
assumed mean in order to get the correct mean, this correction 
being derived from the average value of t calculated from our 
table. Thus we get: 

Qass mid-mark Frequency Frequency x 
mid-mark 

x I I It 

59·5 -4 1 - 4 
69·5 -3 2 - 6 
79·5 -2 · 9 -18 
89·5 -1 22 -22 

Assumed 
99·5 0 33 0 

Mean 
109·5 +1 22 +22 
119·5 +2 8 +16 
129·5 

, .... +3 2 + 6 
139·5 +4 1 + 4 
-- - --

xo=99·5 .Ef=l00 .EII = - 2 
c = IO 
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The correct value of the average would then be calculated as 
Eff 

x-xo+cEf 

= 99'5 + 10[;~] =99'5 -0,2=99,3 

a result which agrees with our previous one. Notice that this 
method is subject to exactly the same grouping error as our pre
vious method - no more, no less. The arithmetical labour is, how
ever, now reduced to the barest minimum, involving us in no more 
than multiplication by very small whole numbers. Both labour 
and the risk of computational error are as small as it is possible to 
make them. But the full benefit of this method is not even faintly 
approached until we come to more elaborate calculations, such as 
the computation of standard deviations. 

It will be recalled that the standard deviation is to be cal
culated as 

s = JE(x~x)2 

It is a simple matter to show (the proof is given at the end of this 

chapter) that the standard deviation may also be expressed as: 

s = JE
;2 - (X)2 

As a numerical check on this alternative formula, we shall cal

culate the standard deviation of the numbers 14, 10, 8, 11, 12. 

Ex 55 
We know x="'"iI=S =11 

We may then say 

JE(x - X)2 J32 +12+32+ 02 +12 J20 ./-
s~ n - 5 = S = v4 - 2 

Or, alternatively, we may use our new formula and say 

JEx2 J142 + 102 + 82 + 112+ 122 
s- n -(x)2= · 5 -1J2 

= J196+ HYJ+~+121 + 144 -121 - J6~5 -121 

-v12S - 121 =V4 ~ 2 
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which is the same result as before. The numbers entering into the 
computation often get very large by this method, but this is no 
disadvantage given a machine to do the work. 

Neither of these methods is much use for the man wh~ has to 
do his calculations for himself. In such cases, nse is usually made 
of the grouped frequency table method, and it may be shown that 
when we use this method the formula for the standard deviation 
may be expressed in the form 

$ - c' .J1;/12 _ (1;/1)2 
1;/ 1;/ 

The proof of this formula is given at the end of this chapter. 
We shall now proceed to illustrate the use of this formula by 

applying it to the computation of the standard deviation for our 
distribution of I.Q. ·s. 

Class mid-mark Frequency 

x I I It It2 

59'5 - 4 I - 4 16 
69 '5 -3 2 - 6 18 
79 '5 - 2 9 -18 36 
89 '5 - I 22 -22 22 

Assumed 
99 ·5 0 33 0 0 

Mean 
109·5 + 1 22 +22 22 
119·5 + 2 8 +16 32 
129·5 +3 2 + 6 18 
139·5 + 4 I + 4 16 
- - - -- -

xo =99 ·5 EI= IOO Eft = - 2 EI/2 = 180 
c = IO 

The values in the/12 column are obtained by multiplying together 
the terms in the /1 column and the t column, thus - 4 x - 4 = 16. 
-6 x - 3 -18. etc. The/t2 terms are necessarily all positive. 
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The calculation of average and standard deviation would then 
appear as follows: 

• .f "XO+~-99'5+10[;~] -~ 
s _ cjEft2 _ (Eft) 2 - 10)180 _ (~)2 

Ef zy ]00 100 

- 10v'1.80 - 0'0004 - 10v'1'80 ",, 13.41 
As a rough check on the accuracy of these calculations, we may 
remember that in a unimodal (single humped) distribution sub
stantially all the values should be within three standard deviations 
of the average value. provided the distribution is reasonably sym
metrical. Applying this to our distribution we have average value · 
99 with three standard deviations equal to 40 (in round figures). 
We expect the smallest value in the distribution, therefore, to be 
in the neighbourhood of 99 -40 = 59, and the largest value in our 
distribution to be in the neighbourhood of 99 + 40 - 139. It will 
be seen thaI this check works very well. The reader may care to 
remember this as the three standard deviations check. 

There is a very simple and useful check on the accuracy of the 
arithmetic in the body of the ta'ble, known as Charlier's Check. It 
depends on the fact that 

Ef(t + 1)2 - Eft2 + 2Eft +Ef 
We already have all the terms on the right-hand side of this equa
tion calculated in our grouped frequency table. All that remains 
in order to be able to use the check is to add a further column on 
the right of the table, whose terms are calculated as follows for 
each cell. 

To the value of t for the cell add I. Square the result and then 
multiply it by f Thus, in the first cell, at the top of our table, we 
have t - - 4. Adding I gives us - 3. Squaring this gives us 9, and 
finally, multiplying the 9 by the value off for this cell gives us 
1 x 9 = 9. This value is entered in thef(t+ 1)2 column .on the right 
of the table, as shown below. Similarly, for the class whose mid
mark is 79·5 we get t = - 2. Adding 1 gives - 1. Squaring gives 1. 
Multiplying by the cell frequency gives 9 for the value off(t + 1)2. 

We now give the full table for the calculation of mean and stan
dard deviation, including Charlier's check, calculation of mean 
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and standard deviation and the three standard deviation check on 
the final result, in the form in which it should be laid out. It will 
be observed that we have interchanged the position of the.!and t 
columns, as in practice this is a more convenient layout fo' com
puting theft2 column from theft column and the t column. 

Mid-mark Frequency 
x I t It ft 2 

59 '5 1 - 4 - 4 16 
69 '5 2 - 3 - 6 18 
79 '5 9 -2 - 18 36 
89 '5 22 -1 -22 22 
99'5 33 0 0 0 

109'5 22 +1 +22 22 · 
119'5 8 +2 +16 32 
129·5 2 + 3 + 6 18 
139 '5 1 + 4 + 4 16 
- - -- -

Xo =99·5 100 - 2 180 
c= lO EI Eft Eft 2 

Charlier's Check 
E/(t + 1)2 =Eft2+ 2Eft +Ef 

276 ... 180 +2( - 2) + 100 

I(t + 1)2 

9 
8 
9 
0 

33 
88 
72 
32 
25 

-
276 

EI (t + 1)2 

Charlier's check on tabular calculations O.K. 

Computation of Arithmetic Average 
_ cEft 

x =xo+ Ef 

- 99,5 + 1O[~] - 99·3 
100 -

Computation of Standard Deviation 

s - cJll'!_! _ (Eft)2 
Ef Ef 

- 10J18O _(-2)2_13 ,41 
100 100 -
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Three Standard Deviations Check on Final Calculations 

Expected minimum value =x - 3s = 99 - 40 ~ 59}roughly 
~pected maximum value = x + 3s = 99 + 40 = 139 

Three standard deviations check agrees well with the end values 
in the table. 

R esult Mean x =99·3 
Standard deviation s = 13 ·41 

We should mention that Charlier's check is not an absolute 
guarantee. It is possible - though very unlikely - for compensating 
errors to occur in the computation of the tabular values which 
would not be detected by Charlier's check. 

Some idea of the time saved can be got if we remember that to 
calculate the standard deviation by the formula first given we 
should have to find the difference between the mean value 99'3 
and everyone of the hundred items in the original table. These 
differences would then have to be squared, and totalled to give the 
sum of squares. The standard deviation would then be found by 
dividing this total by n = 100 and finally taking the square root. 
Moreover, arithmetical mistakes in this lengthy bit of work would 
not be unlikely. The·grouped frequency table method is quite ac
curate enough for most purposes, having a small amount of error 
given sufficient cells (the number in our worked example was pur
posely chosen on the small side). Moreover, we have two checks 
to our working. The arithmetic is reduced to the manipulations of 
small whole numbers, so that errors are at once unlikely and easy 
to trace if they should occur. 

LINEAR INTERPOLA TlON OF THE MEDIAN 

We shall now explain how the median value may be estimated by 
linear interpolation from a grouped frequency table, using our 
grouped frequency table for I.Q. 's as an example. (The reader will 
r~1I that the median is a measure of central tendency, being the 
va1ue which is less than the value observed in 50 % of cases and 
greater than the value observed in 50 % of cases.) The number of 
the item which falls in the centre of our list we shall refer to as the 
median cumulative frequency, or simply the median frequency . 
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Having this clear in our minds, we can now proceed to calculate 
the value of l.Q. which corresponds to the median frequency, and 
this will, of course, be the median we are looking for. 

If the reader will imagine the class boundaries of Fig. 3' to be 
milestones along a road, and that he is driving along that road, 
making a note at each milestone of the TOT A L number of people 
he has seen in the distribution of l.Q. as he travels from the mile
stone labelled l.Q. = 54,5 to the milestone labelled 144'5, the 
result will be as shown in Fig. 32. In statistical terminology, the 
reader will be constructing a cumulative frequency table, which is 
usually laid out as shown below. 

Class 
boundary 

54·5 
64'5 
74·5 
84 '5 
94 ·5 

104·5 
114·5 
124·5 
134·5 
144'5 

Cum. 
f 

0 
I 
3 

12 
34 
67 
89 
97 
99 

100 

The column headed Cum. f shows the 
cumulative freque{lcy at any class boun
dary. We have, in fact, found the necessary 
figures fill' drawing the ogive or cumu
lative frequency chart mentioned in Chap
ter 3. Now, since there are in this case 100 
values recorded in the data, it is evident 
that the median frequency will be Cum.! = 

.L¥ = 50 and this value of the Cum. f 
occurs somewhere in the class whose 
boundaries are 94 ·5 and 104 '5. Evidently, 
then, the median value for I.Q. lies be-

, tween these limits. 
How is the linear interpolation carried but? We apply the for

mula: 

Upper boundary - Lower boundary 
Upper boundary - Median value 

Cum.fat upper Qoundary - Cum.fat lower boundary 
= Cum.fat upper boundary-Median frequency 

If we put this in symbolic form, writing: 

Upper boundary value X 
Lower boundary value x 
Median value M 
Frequency at upper boundary F 
Frequency at lower boundary f 
Median frequency p 
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then our formula becomes: 
X-x F-f 
X-M - F-p 

In ou( example we have to determine M, given that X ~ 104'5, 
x=94'5, F~ 67.J= 34, andp - 50. 
Substituting these values in our formula, we get: 

which leads' to 

104'5 - 94·5 67 - 34 
104'5 - M - 67 - 50 

170 - 3448·5 -33M 
33M - 3278·5 

M =99'3 

NUMBERS BETWEEN MILESTONES 

~ 
(:Ft:fDrf0Q@Q@Q@r"':-'{~)c:'fDQ<Dn 
D~dLJL::.J~Lj~~LJ 
Oil 4 12 H 1.7 8'1 '17 qq 100 

.DIRECTION O F TRAVEL 'Y 
TOTALS PASSED 
AT SUCCEEDING 
MILESTONES 

Fig. 32. Cumulative Frequency (compare with Fig. 31) 

We have thus estimated the median value. Since, in this case, the 
distribution is so very symmetrical, we are not surprised that the 
median agrees with the arithmetic average, which we calculated as 
x - 99'3. Fig. 33 shows the actual ratio assumed in order to inter .. 
polate the median. 

In the example used in this chapter, the total number of values 
in our data was n - 100. This, of course, would not normally be 
the case. The calculations are exactly the same whatever the num .. 
ber of values, n. Often, however, the actual numbers in each class 
are reduced to percentages before the calculations are com .. 
menced. In such cases the actual number of values on which the 
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CUMULATIVE 

MEOIIIN_1<2._ -1 _________ . ______ J_ _~~~)--M--'_ MEDIAN 

67jfR10UENtCY ~ flo t 104 · S 

HEOUENCY A B ' 

34 '14 · ! 

~ _ § &7 - 34 104 ! - '14 ,! 
o b - 67-~O - 104·!-M 

HENCE M - 99 ' 3 

Fig. 33. Linear Interpolation of Median Value 

results are based should al,ways be quoted, since results based on 
large numbers are more trustworthy, in general, than results based 
on small samples and the person studying statistical data is always 
entitled to know how much reliance he may properly place on the 
results quoted. 

MATHEMATICAL PROOFS 

The general reader may skip this short section in which formulae 
given in the body of the chapter are considered mathematically. 

Grouped Frequency Formulafor the Mean 

Ifwe write 
x-xo 
-- "", t 

c 
we have x - xo+ct 
i.e. fx =fxo+cft 
whence, summing and dividing through by Ef, we get: 

Efx Efxo Eeft 
Ef - Ef + Ef 

But Xo and c are constants and may therefore be taken outside the 

summations. Moreover, ~ is, by definition, the mean, i. 

So wehave 
Eft _ 

~ -xo +c.zy=xo +ct 

which is the relation used in computing. 
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Alternative Formula/or Standard Deviation 
(The variance is simply the standard deviation squared.) 

We have, by definition, 

E(x - x)Z Exz 2XEx Ex2 
sZ _ -- ---+-n n n n 

Ex d' h But - =x, an X IS constant, so we ave 
n 

i.e. J~ JEx2 (Ex)Z s - 11 - x2 or n - n 
The same alternative formula, using the grouped frequency nota
tion, may be proved by starting with the definition of the variance 
in the form 

E/(X -X)2 
S2= E/ 

which leads to the form 
--~--

JE/x2 _(q~)2 
s= _E/ E/ 

or JE/x2 
_-2 

E/ x 

Grouped Frequency Formulae/or Variance and Standard Deviation 

We have already shown that the variance may be written as 

E/x2 

s2 _ E/ -x2 

This is identical with 

S2 - (Ef;2 -x2) + (2x~ - 2x~) + (xo2 - xo2) 

Rearranging, we get 

S2 ... (Ef;2 -2xoi + X02) - (x2 - 2x~ + xo2) 

(
E/x2 2xoE/x xo2E_[\ 

... E/ - ET + If J - (.f - xo)2 

_ E/(x - XO)2 _ (x _ xo)2 
E/ 



SPEEDING UP CALCULATIONS 

This may be written as 

S2 = C2[EJ(~1~xoL _ (x ~xor] 

81 

X-Xo x-xo 
But _- is what we call t and -- we have shown to be f so 

c C 

we have as our formula for the variance 

S2 = C2 [~J2 -p] = C
2[f -(tY] 

Taking the square root, we find the standard deviation. as 

Izyrr- JEft2 (EJt) 2 

s - c ~ EJ -t2 =c -Ef - EJ 

NOW SEE IF YOU CAN DO THESE QUESTIONS 
USING THE RAPID METHODS 

Percentage Loss in weight of 40 samples of cloth in passing from 
the greasy to the clean state during manufacture 

9·3 7·4 10·4 9·3 8·8 10·2 9·5 11 '3 
I-------- ----I-

9·7 10·3 9-4 6·8 )0 '4 9·6 )) ·2 8'6 
r----

8·2 9·2 )0·6 7·6 9·4 9·8 8'S 9·7 
I-- - ----------I-

)0'4 8·8 9·3 10·7 8·2 9 , ) 5·9 )0·5 
I-- - --------- - I-

10·6 9·2 10·4 8·3 9 ·4 12,) 11 '3 9'6 

I. Layout the above data in a grouped frequency table, showing 
class limits, class boundaries, class midmarks and tally marks. Then 
find the mean, arid standard deviation, including Charlier's Check and 
the three standard deviations check in your working. 

2. Draw a histogram for the data. What is the modal value? 
3. Set up a cumulative frequency table for the data and find the 

median by linear interpolation. 
4. Draw a frequency polygon for the data. 
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Fault-Finding - The Binominal Distribution 

'When I was younger, Statistics was the science of large num
bers. Now, it seems to me rapidly to be becoming the science 
of no numbers at all." DR OSWALD GEORGB 

Undoubtedly one of the finest gambling games ever invented is 
Crown and Anchor. The excellence of this game is shown by the 
strict way in which it is driven underground by authority in 
this most puritan of lands where all pleasure is either taxed, or 
restricted to certain hours, or forbidden altog~ther. It is strange 
that a people which took so poor a view of the medieval mal
practice of the sale of indulgences should now raise over £1,000 
million out of a budgetary income of £3, 778 million by the sale of 
indulgences to drinkers, smokers, and gamblers. Maybe one 
day the swings will be opened to children on Sundar on condition 
that al,l indulgence is bouiht from the Chancellor of the Ex
chequer. There are few left in England to-day who could raise even 
a smile - let alone a howl of protest - if such a policy were intro
duced in the solemnity of the Budget. 

But let us return to our Crown and Anchor. In this game there 
is a wise man who owns the board and makes a steady and tidy 
profit. There are others, less wise, who cock a snook at the laws of 
chance by playiQg on the first man's board. The board is divided 
into six sections, labelled with a heart, a club, a spade, a diamond, 
a crown, and an anchor respectively. Each player having staked 
80 much on the section which takes his fancy, the owner of the 
board throws three dice simultaneously. Each die has its six faces 
marked heart, diamond, spade, club, crown, and anchor respec
tively to correspond with the sections of the board. In the event of 
the three dice all showing the same face, those who were lucky 
enough to back this section of the board receive back their stake 
money plus three times that amount. In the event of two of the 
dice being the same the banker pays back stake money plus twice 
that amount to those who staked on the double section of the 
board .• and stake money plus the same amount to those Who bet 
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on' the section of the .board corresponding to the odd die. When 
all three dice show different faces the banker returns stake plus 
the same amount to anyone who has bet on the appropriate sec
tions of the board. Moneys on other sections of the board are col
lected by the banker in all cases. It is commonly held by those who 
play this game that it is to the banker's advantage to get money 
placed evenly over the board. This is quite untrue in the long run. 
The belief arises from the fact that when the money is evenly 
staked on all sections it is impossible for the banker to lose even 
on a single throw. With money unevenly staked, his fortune can 
fluctuate a little from throw to throw, both up and down, but the 
ultimate outcome of any game lasting for an appreciable time is 
profit for the banker, as we shall now see. 

The laws of probability apply to each individual stake, what
ever section it be laid on and however big or small. If we consider 
the long run - which is what matters - we can most clearly see the 
situation by imagining bets of'one unit placed on each of the six 
sections for each throw of the dice. If we call the case when all 
three dice show the same face 'a treble, the case where two of the 
three dice show the same face a double, and the case where all 
three different faces a singles throw, then the position will be as 
follows, so far as the banker is concerned : 

Singles: Pays on three sections, collects on three sections. 
Profit = nothing. 

Doubles: Pays on one unit to one section, pays two units to one 
section, collects from four sections. Profit - 1 unit, 

Trebles: Pays three units to one section, collects on five sections. 
Profit = 2 units. 

The question now arises: What is the rel'ative frequency with 
which singles, doubles, and trebles come up? 

This is the type of problem where, if we assume that there is no 
bias in the dice, we can write down all possible results. In this way 
the r~lative frequencies of singles, doubles, and trebles can be 
ascertained. Suppose you were the Goddess of Chance. Then 
there would be six possible ways of making the first die show. 
With anyone of these six ways of settling the first die there would 
be six ways of settling the fate of the second die, making a total of 
thirty-six ways of settling the first two dice. Finally, with anyone 
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of these thirty-six ways there would be six ways of settling the fate 
of the third die, making a total of 216 ways in which the three dice 
could show up after any throw. Even as Goddess of Chance you 
would be limited to these 216 ways. The whole system of possibili
ties can be represented as in the following table, which shows the 
possibilities when the first die is,to show club and diamond respec
tively. The reader will be able to write down at once, for himself, 
the possibilities when the first die is to show heart, spade, crown, 
and anchor respectively. 

FIRST OIl! CLUB PIRST DI E DIAMOND 

ccc cdc @) @ e <ill> €) @ dhc dsc, d.c d;f.c 

(c]) @ chd esd c'llltd e.f.d ~ ddd @J ~ l~~ @ 
Ifc:il' edh ® csh c\illh e-t-h dch @ <ill> dsh d.h d;f.h 

~ cds ehs @) c,.,s (.:J;s dcs @ dhs ~ d~s d.t.s 

@ cd. eh. cs. ~ c~ de. ~ dh~ ds. (j[~ d.f.'IIr 

(;~ cd.f. ,ch.f. (.s-1: c'llll-1: ~ dc.f. @ dh.f, ds.f. dw.f. i@ 

In each of the two sections shown there are seen to be thirty-six 
possibilities. In the whole table, if the reader will take the trouble 
to write it out, there will be our 216 possibilities which exhaust the 
system. Inspection will show the reader that in each section of the 
table there occurs one treble. There will therefore be six possible 
trebles altogether, viz. ccc, ddd, Mh, sss, '* 'till" ,and .t. l.t. . So 
much will have been evident to the reader from the start. With 
regard to doubles, the table is a real help. In each section the 
reader will observe that there are fifteen doubles, five in a row, 
five in a column. and five along the diagonal of the section. These 
groups of five will be seen to correspond to the cases 

(a) where the double is made by first and second dice (column) 
(b) where the double occurs between first and third dice (row) 
(c) where the double occurs between second and third dice 

,(diagonal) 
(The reader will notice that the treble in each section occurs where 
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row, column, and diagonal intersect. This business of getting hold 
of patterns is one of the mathematician's most useful tricks.) 

We see, then, that there must be a total of 6 x 15"'90 ways in 
which doubles can arise - against 6 ways of getting a treble. Now 
it is clear that we must get a singles in those cases which do not 
result in a treble or double. The remainder of 216 possibilities will 
therefore be the singles. Hence number of ways of getting 
singles = 216 - 90 -6 = 120. 

Let us now think of 216 throws in which this expectation is 
satisfied. If one unit be staked on each section of the board for 
each throw of the dice, there will have been 6 x 216·= 1,296 units 
staked in the series of throws. There will have been 6 throws 
which resulted in a treble, making a profit to the banker of 12 
units. There will have been 90 throws in which the result will have 
been a double, thus giving the banker a further 90 units profit. 
Since, on singles, the banker breaks even, his total profit on this 
series in which expectation is realized will be 102 units out of 
1,296 units staked. The banker, therefore, can expect to make 
about 7'8% of the total staked in any run of play for himself. This 
is a fairly good rake-off. The game is beautifully designed, how
ever. In over half the throws the banker sees nothing for himself. 
Whenever he makes a profit, he pays out more bountifully to 
other people, so that the losers' eyes turn to the lucky winner in 
envy, rather than to the banker in suspicion. Spectacular wins are 
kept to the minimum, but when they do fall the blow is always 
softened by apparent generosity. With a throw every two minutes 
(not a fast rate) and unit stakes of Is. the banker would make 
himself 14s. an hour. 

The general reader may feel that to analyse a fairly complex 
case of this sort, by writing out all the possibilities, is a little 
laborious. He may ask whether the mathematicians have not 
found a formula for slJch a problem as we have just discussed. The 
answer is: Yes, the Multinomial Theorem. 

MUL TINOMIAL THEOREM 

Suppose we have an event which is characterized by a variable x, 
which can take on one of k values, XI> X2, X3, ••• Xk. To make this 
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concrete for the reader, let him think of a. die being rolled. The 
value of k is then 6, and the six possible values of our variable x 
are the six values stated on the faces of the die, viz. I, 2. 3, 4, 5. 
and 6. Then the probability that the value XI occurs II times, the 
value X2 occurs 12 times. the value X3 occurs IJ times,and so on in 
a specified order in N trials will be the product 

'1 '. t, It 
PI P2 PJ ·.·Pt 

where the p's are the probabilities of the corresponding x·s. Now, 
as we learnt previously, the number of ways in which the order 
can be specified is the number of permutations possible among N 
objects of which II are of one sort, 12 of another sort, and so on. If 
we denote this number by the symbol P, we have 

N! 
P - Itl I2!/J I. .. /k! 

Hence, the probab,i1ity that II times we shall get the value XI> 12 

ti~es the value X2, and so on, will be 

II '.', '" PPI Pl P3 ···Pk 

Now it may be shown, mathematically, that this is the general 
term of the expansion of the multinomial 

{PJ +P2 +P3 + ... +pJN 

We thus have a simple way of computing the various prob
abilities. 

This will seem a little complex to the non-mathematical reader. 
Perhaps an example will clear up the idea. Consider, again, the 
dice. Each face has a probability - i of turning up, i.e. in this case 
Pl - P2 - PJ = P4 =PS ""'P6, so that~ach of them is equal to t. 

Suppose, now. we wish to apply the Multinomial Theorem to 
calculate the probability that when a die is rolled three times in 
succession (or what amounts to the same thing. three dice rolled 
simultaneously), the result will be treble 1. Here we have all the 
p's equal to t, N equal to 3. Moreover, we want IJ (the number of 
times 1 is to appear) to be equal to 3. Since 

IJ +/2 +/3 +1. +/s +t6- N =3, 
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it is evident that all values of I except 11 will be zero. Also, 

p_ N! 
11 !t2!t) !t4 !t5!t6! 

3! 
- 3!0!0!0!0!0! 

87 

Now it can be shown that the value of O! is 1. It follows that in 
this case P = I, so the probability of treble 1 is simply 

(iV( i)O( i;)O(i)O(i)O( i)O 

all the terms of which. except the first, are equal to 1. The prob
ability of treble 1 is therefore (i)3 -rllr. 

The probability of a treble, irrespective of whether it be treble 
1,2,3,4, 5, or 6, may then be obtained by asking ourselves in how 
many ways a treble may arise. This simply boils down to asking in 
how many ways we can choose one face out of six possible faces. 
The answer is 6Cl. We see, then, that in a game such as crown 
and anchor, the probability of a treble is 

6 xrllr~to 

So far, the Multinomial Theorem will strike the reader as more of 
a hindrance than a help. However, if we go on to ask in how many 
ways a double can arise, we see its value. Previously. to solve this 
problem we had to write down all the possible results. This is no 
longer necessary. In terms of our theorem we have for any pro
posed double (e.g. 212, order not counting) an expression of the 
type 

to be multiplied by 

3! 
P - 2 !1 !OtO!O!O! 

w~ence we find the probability of any specified double to be 

3!(1)3 1 
2! 6 - 72 

But there are 2 x 6C2 ~ 30 doubles, all equally likely. (The factor 2 
before 6C2 arises because once the pair of denominations has been 
chosen either may be doubled.) It follows that the probability of 
obtaining a double irrespective of what double it may be is 

30x-h-n 
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Again, for any proposed singles result (e.g. 265, order not count
ing), we get an expression of the type 

(t) l( t )l( t) l( -Ir)O(t)O( t)O 
to be multiplied by 

3! 
p = 1!1!1 !O!O!O! 

whence we find the probability of any specified single result to be 
3! x (iV =;h-

But the number of such singles it is possible to form is found, 
simply, as the number of ways of choosing three denominations 
from the six possible, viz. 6C3 = 20. All these are equally likely, 
hence the probability of a singles result, irrespective of which of 
the possible ones it may be, is 

20 x j\ =~ 
It is certain that we shall get treble, double, or singles as our 
result, so the probabilities for these three events should total 
unity. 

BINOMIAL DISTRIBUTION 

A particular case 6fthe Multinomial Distribution which is of very 
great practical use j n research and industrial inspection problems 
is the Binomial distribution. The reader will find this very much 
easier to understand than the general Multinomial Distribution. 
Suppose we have a bag containing a very large number of balls, all 
identical except with regard to colour. Let 10 % of these balls be 
painted black, and the rest white. Then clearly the chance of a ball 
picked out of the bag at random being black will have a prob
ability P =ro. By the multiplication law for probabilities (Chapter 
2), the probability that two balls picked at random will both be 
black has p =i1f x "j~' =rbo. And the probablitiy that three balls 
chosen at random will all be black will be p =-bj x ili x -i~ =·d or;. 
In general, the probability that II balls chosen at random will aU 
be black will have p _ (_I~)n. In similar fashion, the probability 
that n balls chosen at random will all be white will have p ~ (!tI)n , 
since the probability of choosing a single white ball in one trial is 
P-l~. 
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So much is very easy, but, as a rule, the chosen balls will not all 
be of the same colour, and the question arises: What are the prob
abilities of getting 0, ), 2, 3, 4, 5, etc., black balls in a group (or 
sample as we shall in future call it) of" balls? This problem is of 
fundamental importance in sampling inspection in industry in 
cases where the sampling is on a qualitative basis, the items being 
classified as 'O.K.' or ' defective '. 

Let us start with a simple case, where we choose a sample of two 
items from a large batch containing 10 % defectives. (It is neces
sary for the valid application of this theory that the batch be so 
large that we may consider the proportion of defectives in the 
batch to be virtually unaffected by the drawing of our sample. 
This is no serious limitation in practice, as very small batches will 
normally be 100% inspected.) The probability of a single item 
chosen at random being defective has a probability p ~O · l. The 
probability of such an item being O.K. we shall denote by q =0'9. 
Since the item will certainly have to be classified as either O.K. or 
defective, we have 

p+q = 1 
The probability of both our items being defective in a random 
sample of two items will be pZ =0'01. The probability that both our 
items will be O.K. will be q2 = 0,81 . Hence, by the addition law for 
probabilities (Chapter 2), the probability that both our items will 
be either O.K. or defective will be pZ +q2 = 0·01 + 0 '81 = 0'82. 
There still remains the probability that we shall get one O.K. and 
one defective. Since this is the only remaining possibility its prob
ability will be 1 - 0,82 = 0'18. 

We obtained the probability of one O.K. and one defective 
simply by subtracting from I, the total probability, the prob
ability of an 'all or none' result. This would prove an unsatis
factory method in more complex cases, so we must look for a 
more direct method, based on the nature of the problem. The 
result 'one O.K. and one defective' can arise in two ways : either 
the first item chosen will be O.K. with the second defective, or the 
first item will be defective with the second O.K. By the rnultip1ica
tion law, the probability of the first way will be q x p ~pq and the 
probability of the second way will be p x q = pq. If, then, we are 
concerned only with the final result - irrespective of the order in 

4 
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which it comes about - the probability of one O.K. and one defec
tive will be written simply as pq+pq - 2pq=2 x O'l xO'9 = O'18 
(tbe result obtained by subtraction). These results may be gathered 
together as follows: 

RESULT Both defective lone O.K. and BothO.K. 
one defective 

PROBABILITY p2 

I 2pq q2 

The·reader who has done even first-year algebra will at once recog
nize here the terms of the expansion of (p +q)2. This gives us a 
<:Iue to follow up. Let us now analyse the case of a sample of three 
items: 

, 

I 

Type of Result Ways of arising Prob. of Prob.of 
way type of 

result 
. 

3 def ecti ves def. def. def. p) p) 

2 defectives with O.K. def. def. qp2 
I O.K. def. O.K. def. pqp 3p2q 

def. def. O.K. p2q 

I defective with O.K. O.K. def. q2p 
2 O.K. O.K. def. O.K. qpq 3pq2 

def. O.K. O.K. pq2 

I 
3 O.K. " O.K. O.K. O.K. q) q) 

This will be seen to give us in the right-hand column the terms of 
the expansion of (p +q)3. We shall expect, rightly, that the prob
abilities of 4, 3, 2, I, and 0 defectives in a sampJe of n =4 items 
will be the successive terms of the expansion of (p +q)4, viz. 
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p4+4plq+6pZqZ+4pql+q4. Thus, with p - O'l and q therefore 
= 0'9, we have: 

4 defectives have a probability p4 = (0'1)4 0 ·0001 
3 defectives have a probability 4plq = 4(0'] )3(0'9) 0 ·0036 
2 defectives have a probability 6p2qZ = 6(0'1 )2(0'9)2 0 ·0486 
1 defective has a probability 4pq3 = 4(0'1)(0'9)3 0·2916 
o defectives have a probability q4 = (0'9)4 0·6561 

Total probability, covering all possible results 1·0000 

Thus we have arrived at the very simple rule for finding the prob
abilities of various numbers of defectives in a sample of n items 
drawn from a large batch whose proportion defective is p. 

The probabilities of 0, 1, 2, 3, 4, etc., defectives in a sample ofn 
items draWl! at random from a population whose proportion defec
tive is p, and whose proportion O.K. is q are given by the successive 
terms of the expansion of(q +p)n, reading from left to right. 

The numerical coefficients in this expansion can be obtained, 
without actual multiplication, as nCO, nCl, nC2, nC3, IlC4, etc., 
proceeding term by term from left to right. Alternatively, they 
may be obtained from Pascal's Triangle, as showp in the follow
ing table. 

Number in the 
sample 

n 
1 
2 
3 
4 
S 

6 
7 
8 

PASCAL'S TRIANGLE 

Coefficients in expansion of 
(q+p)n 

1 
2 1 

1 3 3 1 

1~4._6/4 1 
1 S,\Y 10 5 

1 6 1S 20 1S 6 1 
1 7 21 3S 3S 21 7 1 

1 8 28 56 70 S6 28 8 1 

Inspection will show that each term in the table is derived by add
ing together the two terms in the line above which lie on either side 
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of it. Thus, in the line for n = 5, the term ] 0 is found by adding 
together the terms 4 and 6 in the line for n =4. 

Let us think, now, for a moment, about the problem ofsamp
ling inspection in industry. Why do we sample? There are several 
possible reasons. Firstly, it may be uneconomic to inspect every 
individual item. Secondly, it may be impossible. Some tests (e.g. 
testing the life of electric light lamps) are by their nature destruc
tive. We sample, in short, whenever we believe that ]00% inspec
tion is not a sensible procedure. Why do we inspect? To determine 
quality; to remove defective items; to protect the customer; to 
protect the reputation of the manufacturer. Inspection is a means 
of ensuring quality in the product which has been inspected. There 
is no such thing as perfection in the world of industry. With quan
tity production, in particular, even 100% inspection cannot give 
an absolute guarantee that every single item passed will be O.K. 
All the customer can reasonably ask is that his chance of getting a 
defective item will be suitably small, considering the nature of the 
product. There is probably no higher standard of inspection any
where than in industries such as the aircraft, telephone, and 
optical industries. Yet prototypes fail on maiden flights, faulty 
condensers find their way into telephone exchanges, and errors in 
lens grinding or assembly will occasionally get past the inspector. 
When such things happen the customer is very surprised - and 
rightly so, considering the enormous pains taken by the manufac
turer. But it is part of human frailty. So important is this human 
frailty that firms build reputations, not only on the quality oftheir 
goods, but also on the efficiency of their after-service. 

Bearing this in mind, we might say that the function of inspec
tion is to keep defective items to a small proportion in goods 
passed on to the customer. The same is true of sampling inspec
tion. It follows that in one way or another sampling inspection 
results are to be used as a pointer to the proportion of defectives 
in batches of items. In statistical terms, we do not know the value 
of p, but are trying to infer something about that value. This 
means we need a knowledge of how samples drawn from a bulk 
behave. We shall return to this problem in more detail in Chapter 
10. Meantime, the reader will notice one or two things which are 
apparent when we consider the case just worked out where we had 
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samples of n = 4 items being drawn from a popuJation containing 
10% defectives. 

Figure 34 shows the results in histogram form. The 
probabilities have been e)lpressed in terms of the percentage of all 
samples in a long run which we should expect to give the stated 
number of defectives. The first thing the reader will observe is that 
a small sample, in isolation, can give only a very crude estimate of 

bS ' b% 

o 

81NOMINAL 01 STRIBUTION 

p = 0·I.n-4 

0 ·3b% 0-01 " 
4 

NUMBER Of DEfECTIVES 

IN SAMPLE Of 4 IHMS 

Fig. 34. Expected percentage of samples with the stated number of defec
tives. Samples offout items drawn from a population 10% defective 

the value of the proportion defective. As the histogram shows, if 
the popuJation is 10% defective then 

65'6% of samples will contain no defectives, i.e. will suggest 
that the bulk from which they were drawn is perfect, 

29'2 % will contain one defective, i.e. will suggest that the bulk 
from which they were drawn contains 25 % defectives, 

4'9 % of samples will contain two defectives, suggesting that the 
buJk from which they were drawn contains 50% defectives, 
roughly onc-third of I % of samples will suggest that the bulk 
is 75% or 100% defective. 
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A very crude scale indeed. Notice also the paradox. Two-thirds of 
the samples give an optimistic estimate of the proportion of de
fectives in the bulk. This, of course, is quite natural. When the 
proportion of defectives in the bulk is relatively small, samples 
co,;not be very much better in proportion defective than the 
bulk from which they were drawn, but they call be very much 
worse. A very bad sample can be offset only by two or three better 
than average samples. On this showing there would seem to be 
very little use for small samples. We shall see later, however, that 
small samples do have real value when used in an understanding 
manner based on the theory of probability. 

The reader will notice, too, from the histogram, that while it is 
certainly true that' anything can happen when we take samples'. 
it is equally true that not all the possible things are equally likely. 
Not many people would stake their shirt on getting either three or 
four defectives in a sample of n - 4 items when the proportion 
defective in the bulk is p - 10 %. Even two defectives in a single 
four defectives in a sample of n - 4 items when the proportion 
sample is a bit of an outside chance, having the same sort of 
chance of coming up as a horse against which the odds are 20 to 1. 
This fact is made use of in • Control Charts' used in industrial in
spection as we shall see in Chapter 11 . 

NOW SEE WHAT YOU CAN DO WITH THE 

IHNOMIAL DISTRIBUTION 

1. If the probability that any person thirty years old will be dead 
within a year is p = 0·01, find the probability that out of a group of 10 
such people (a) none, (b) exactly one, (c) not more than one, (d) more 
than one, (e) at least one, will be dead within a year. 

2. Samples of n=5 items are drawn at random from a production 
process which is making 10% defectives. Draw a histogram showing the 
probabilities of 0, 1, 2.3,4, and S defectives in a sample. 

3. I enter three telephone booths in succession and notice that the 
number of the phone in each case ends in the digit I. A friend who is 
with me says it is just chance. I bet him 5s. thaI all the phones in call 
boxes have a number ending in 1. Was I ra.'1h? What is the probability 
of finding three phones in succession whose number ends with the digit 
I? (Check on the phone boxes in your area and see if there is any 
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peculiarity about the numbers. Is there anything apart from the last 
digit which is peculiar?) 

4. Male and female children are born in approximately equal 
numbers. If twins are born, in what relative proportions would you 
expect (a) two boys, (b) two girls, (c) one of each? 

5. Sometimes, but not always, twins of the same sex are • identical '. 
Twins of different sexes are never identical. Identical twins are born from 
a single ovum and caUed monozygotic. Ordinary twins are born from 
different ova and caUed dizygotic. If in a certain group of twins we find 
40 pairs are of mixed sex, how many like sex pairs would you expect, in 
terms of your answer to number 4, where the theory you used applies 
only to dizygotic twins? If the whole group consists of 100 pairs 
of twins, the balance not so far accounted for will give an estimate of 
monozygotic twins. What percentage of all twins are monozygotic on 
these data? (This is an example of Weinberg'S Rule for estimating the 
relative frequency of identical twins.) 
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Goals, Floods, and Horse-kicks - The Poisson 
Distribution 

' If a man will begin with certainties he shall end in doubts; 
but if he will be conlenl to begin with doubts he shall end in 
certainties.' FRANCIS BACON 

In the previous chapter we considered the Binomial Distribution 
in application to cases where we take a sample of a definite size 
and count the number of times a certain event (e.g. occurrence of 
a defective) is observed. Ip such cases we know (a) the number of 
times the event did occur and (b) the number of t imes it did not 
occur. There are problems, however, in which the number of 
times an event occurs can be counted without there being any 
sense in asking how many times the event did not occur. If I watch 
a thunderstorm for half an hour, for example. I can report having 
seen the lightning flash 142 times. I cannot state how many times 
the lightning did not flash. We are dealing in such cases with the 
occurrence of isolated events in a continuum of time. The number 
of goals scored in a Tootball match is another case of isolated 
events in a continuum of time. The number of flaws in a given 
length of electric cable provides us with the occurrence of isolated 
events in a continuum of length. The number of organisms seen· in 
one square of a haemocytometer is an example of the occurrence 
of isolated events in a continuum of area (or volume). To all such 
cases the Binomial Distribution is inapplicable precisely because 
we do not know the value of n in the fundamental expression 
(p +q)n. 

To deal with events of this type we make use of the Poisson Dis
tribution. Before giving the form of this distribution we must in
troduce the reader to the famous mathematical constant denoted 
by the letter e. This constant arises in the study of the natural law 
of growth (the exponential law), and has the value 
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the terms on the right-hand side going on indefinitely, getting 
smaller and smaller all the time. The value of e, in a less interest
ing but more meaningful form, is obtained by working out the 
individual terms: 

e= 1 + 1+0'5 +0 '16667 +0·04167 +0'00833 +0·00139 + 
0·00020 + 0 '00002 + .,. 

which gives us e = 2· 7183, correct to four decimal places. This 
number e is the basis of the natural or Napierian logarithms, 
where it takes the place of the base IO used in common logarithms. 
Now, if this number e be raised to any power z, thus e' - (2 '7183)\ 
then the result can be expressed in the form of an infinite series 
similar to the series for e itself. We get 

ZO z l Z2 z3 r4 zS 

e' - 01 +fi +2! +2! + 41 + 51 + ... 

Since zo, OJ, and I! are each equal to unity, the result is usually 
written at once as 

Z2 z3 Z4 ZS 

e' = I + z + 2i + 3l + 41 + 5 ! + ... 

In order for any distribution to be useful as a probability dis
tribution, the sum of all its terms must equal unity (the value of 
the total probability), and, moreover, we must be able to assign a 
useful meaning to the value of each term. Thus in the case of the 
Binomial Distribution, we had (p +q)n, where p +q = I and so the 
nth power of (p +q) must also be equal to unity, no matter what 
value is given to n. We were also able to give a useful meaning to 
each of the terms p l, q2, 2pq, etc., of the expansion. Witp a very 
slight' ruse de guerre ' we can utilize the expansion of e' as a prob
ability distribution. The algebra of the first form tells 
c '.e' =eo = I. This suggests that the product e-'.e' might form a 
handy probability distribution when written in the form 

( 

Z2 z3 Z4 ZS ) 
1 = r'.e' = e-' I + z + ii + 3! + 4! + 5! + ... 

It only remains to find useful work for this distribution by finding 
a meaning which may be attached to the several terms of the ex
pansion. It is found that this distribution describes very beauti
fully the occurrence of isolated events in a continuum, if we take 
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z to represent the expected or average number of occurrences of 
the event, for then the successive terms of the expansion, viz. 

z 2 z3 z4 
e-z, ze-z, 2[.e .... , 3j .e-r, 4l.e-z, etc., 

give us the probability of observing the occurrence of 0, 1,2,3,4. 
etc., events. This is a very remarkable fact. All we need to know 
is the average number of occurrences of the event, z, and we 
can at once work out the probabilities of observing all the 
various possible numbers of occurrences. The only condition is 
that the expected number shall be constant from trial to trial. If z 
vari.es, as for example if we inspect different lengths of cable at 
each trial, then it is not valid to apply the distribution. 

As an example, let us consider the following data, collected by 
Bortkewitch and quoted by R. A. Fisher, showing the chance of a 
cavalryman being killed by a horse-kick in the course of a year. 
The data are based on the records often army corps for twenty 
years, thus supplying us with 200 readings. 

Deaths 

0 
1 
2 
3 
4 
S 
6 

Number of years 
this number of 
deaths occurred 

109 
6S 
22 

3 
1 
0 
0 

We have total number of deaths 
= ]22. so that the average number 
of deaths per year per corps is 
0'61. 

We may therefore take our ex
pectation as 

z - 0·61 

Tbe value of e-Z is 0·543 (very nearly), so we have that tbe prob
abilities of 0, 1,2.3,4, etc., deaths per year per corps will be the 
successive terms of 

( 
Z2 z3 r4 ) 

e .... l+z+.21+31+4i+'" 

. ( 0·6J2 0'613 0'614 0'61 S 0'61 6 ) 
I.e. 0·543 1 +0·61 +21 +"'"'3'1 + 41 + 51 + 61 + ... 
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Working these out term by term, we enter them into the following 
table: 

Number of deaths per 
year per corps 0 1 2 3 4 

------
Probability 0 -543 0 -331 0 -101 0 -021 0-003 

------
Frequency expected in 

200 readings (approx_) 109 66-3 20 ·2 4·1 0·6 

Actual I 
]09 65 22 3 ] 

Comparison with the original data wiU convince the reader that 
the fit is remarkably good - especially when we bear ill mind that 
a repeat of the investigation would give a result which, while 
similar, would not be identical, unless by some freak of chance. 

In medical and biological research, the Poisson distribution is 
useful in describing the distribution of organisms in the squares 
of a haemocytometer_ For example, the haemocytometer is used 
for making counts of red corpuscles in the blood. A small sample 
of the patient's blood is taken and diluted down in known amount 
with pure water. Then a drop of this dilution is placed on a special 
recessed slide (Fig. 35) and covered with a second glass slide 
whose surface is ruled into small squares. Since the depth of the 
recess in the bottom slide is known, each square of the haemo
cytometer corresponds with a known volume of blood. The num
ber of cells in each of twenty or thirty squares is then counted 
under the microscope, and from the average value the number of 
corpuscles in a unit volume of blood can be estimated. The same 
principle is followed in making counts of bacteria by the dilution 
method. Since a very considerable variation in the number of 
organisms per square occurs, it is essential to count an adequate 
number of squares, where the average number of organisms per 
square is small. Agreement of the observed frequencies with the 
Poisson distribution can be made the basis of testing whether tbe 
experimental technique is satisfactory. 
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The mean value of a Poisson type distribution, z, is equal to its 
variance, so that the standard deviation will be equal to the square 
root of z. 

As we have already stated, the Poisson distribution may only be 

MICROSCOPE -U 'QI RULED GRATICU~E 
RECO SED / 

SLIDE ~ ;; :;?' .. ,: :" ,:,,;: :',''' ::: ... -----~u-+r.: 
DILUTED BLOOD SIDE VIEW DEPTH OF RECESS 
IN THIS SPACE ACCURATELY kNOWN 

/ TOP VIEW OF GRATICULE 

SMALL SQUARES OF 
ACCURATELY KNOWN -
AREA MADE BY FINELY 
MARKED LINES ON 

GRATICULE 

BLOOD CORPUSCLE 

WHAT IS SEEN THROUGH THE M ICROSCOPE 

Fig, 35. Haemocylometer. Each square corresponds to a known volume of 
blood or a known dilution. From the average number of corpuscles per 
squure the' Blood Count' is determined 

applied in cases where the expectation, z, is constant from trial to 
trial. Thus, il does not apply 10 the number of suicides per year in 
a given community, because the temptation to commit suicide 
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varies with the stress of the times, as was dramatically shown 
during the slump in the 1930's io America. Again, we should not 
expect the Poisson distribution to give a perfect description of the 
number of goals scored per team per match at football, since the 
expected number of goals depends, among other things, on which 
teams are opposed, on the weather conditions, and so 00. Fig. 21 
showed the sort of distribution obtaioed for goals in a football 
match. The actual figures on which Fig. 21 is based are as follows: 

Number of goals 0 1 2 3 4 5 6 7 
--- --- - --- -----I-

Number of times teams 
scored that number of 
goals in a match 95 158 108 63 40 9 5 2 

Thus 480 recorded scores give a total of 812 goals, which works 
out, very nearly, to an average of 1·7 goals per team per match. 
Our value for z in this problem is therefore z - 1'7, and the value 
of e-t may be taken as 0'18 (or 0'1827 more exactly). For our 
Poisson we then have: 

( 
z2 Z3 Z4 ) 

e-t 1 +z+2!+31+41+ ... 

( 
1'72 1'73 1'74 ) 

-0'181+1'7+ 21 +31"+41+'" 

Working out the successive terms of this distribution we get, as 
before, the following table (results expressed to the nearest whole 
number): 

Goals per match 0 1 2 3 4 5 6 7 
'----- ----,_ ---

Poisson Frequency 88 150 126 72 30 10 3 1 
----I------

()bservedFrequency 95 158 108 63 ·50 9 5 2 

This is not too bad a result as a prediction. It suggests that the dis
turbing factors of weather and team-matching do not exert so 
great an effect as is often supposed. However, the X2 test (see 
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Chapter IS) indicates that the fit · is not altogether as good as we 
might expect if the Poisson were a suitable distribution for this 
kind of case. 

In cases such as the one just discussed, where the expectation, 
Z, varies from trial to trial, we may use a modification of the 
Poisson distribution, which allows for this variability in the ex
pectation. What we have to do in this modification is to calculate 
the mean of the observed distribution and its variance. We leave 
this as an exercise for the reader, and simply state the result : 

Mean = I·7 Variance = 1·9 
(The reader will not be surprised that the value of the variance is 
so close to the mean value, since the actual distribution is, as we 
have already seen, fairly close to a Poisson, and mean and 
variance for a Poisson are identical,) 

We then set x _E i.e. .e = 1·7 (I) 
c c 

x 1·7 
and x+ -= ct2 i.e. 1·7+-=1·9 (2) c c 
The second equation gives us, on solving for c, c=8·S. Substitut
ing this value of c in equation (I) and solving for p gives p = 14·S. 
The probabilities of 0, 1,2, 3, 4, etc., goals per team per match 
will then be given according to this modification as the successive 
terms, passing from left to right, of the expansion 

( 
c )p{ p p(P+1) p(p+l)(p+2) } 

C+i l' c +l'21(c+l)2' 3!(c+l)3 .etc .... . 
Substituting for p and c the values calculated above, we get: 

(8'S)14.~{ 14·S (14·S)(15·5) (14·5)(IS·S)(16·5) } 
9·S 1. 9-5 • 2!(9.S)2' 3(9.S)3 • etc .... 

Calculating these probabilities and multiplying each term by 480 
in order to get the expected frequency of each score. we arrive at 
the following table: 

Number of goals 0 ) 2 3 4 S 6 I 7 
--·1-

Predicted frequency 96 147 119 69 32 12 4 1 
---------

Actual frequency 9S 158 108 63 40 9 5 2 
I ! 
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The X2 test (Chapter 15) confirms what the reader may judge 
for himself by comparison of the two predictions: that the modi
fied distribution gives a better overall fit than the ordinary Poisson 
distribution. Fig. 36 gives a visual comparison between the 
Poisson prediction and the actual observations, on the one hand, 
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Fig. 36. Correspondence between observed and predicted frequencies of 
isolated events such as goals scored in football matches 

(a) The blocks of the Histogram show the observed frequencies. The 
. arrows show the frequencies predicted by the Poisson 

(b) The blocks of the Histogram show the observed frequencies. The 
,IrrOWS show the frequencies predicted by a modified distribution which 
allows for a slight variation in the expectation 
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and between the modified distribution and the actual observations 
on the other hand. Figs. 37 and 38 give other examples of dis
tributions of the Poisson type, being occurrences of isolated 
eventS. 

Poisson probability paper is a graph paper with specially ruled 
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Fig. 37. The number of articles handed in as lost in a large department 
store follows a Poisson-Distribution 
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Fig. 38. Example of a Poisson Distribution of a fairly symmetriCal type 
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grids which has several uses in this type of problem. As will be 
seen by study of Fig. 39, the left-hand vertical scale is a prob
ability scale. The bottom horizontal scale is logarithmic, repre
senting values of z, the expectation. The face of the graph is 
crossed by curved lines, labelled c = I, c =2, c= 3, etc. 

Suppose, now, that we were dealing with a Poisson type dis
tribution for which we knew the value of the expectation, z. From 
the graph we could read off at once the probability that the event 
in question would occur at least c times. For example, suppose 
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Fig. 39. Poisson probabIlity paper, showing the probability, P, that an 
event will occur C limes at least (i.e. C times or more) when the expected 
number of occurrences has tbe value of z 

Z = 0 ·5, then running our finger up the vertical line at z =0·5 we 
find, by reading off the value on the probability scale opposite the 
various values of c, that: 

The event will occur at least once with a probability 0·4 

" " " " twice " " " 
0·09 

" " " " three times " " 0·02 
and so on. (The reader·is advised to notice carefully that the prob
ability scale has its small values at the top and larger values at the 
bottom, contrary to the usual.convention in graphs.) It is obvious 
that, knowing these values, we can obtain the probabilities that 
the event will occur exactly 0, 1, 2, 3, 4, etc., times by differencing. 
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Thus, knowing that the event occurs in this case at least once with 
a probability 0'40, we know at once that the event must occur 0 
times with a probability (1 -0'40) :"0'60. Again; we know that the 
event occurs at least twice with a probability 0 ·09. Evidently, then, 
it occurs less than twice with a probability (1 - 0'09) = 0 '91, and 
since we have just found that the event occurs 0 times with a prob
ability 0 '60, it is easy to see that it must occur exactly once with a 
probability (0 '9 1 - 0'60) = 0 '31. In like manner, we may calculate 
the probabilities of the event occurring other exact numbers of 
times. 

A second use of the paper is to test whether any actual distribu
tion in observed data may well be described by the Poisson law, 
and , if so, what the expectation for the distribution is. Consider, 
for example, the data already quoted for the deaths of cavalrymen 
from horse-kicks. We had: 

Deaths 0 1 2 __ 31_4 

Frequency 109 65 22 3 1 1 

The probability of eacn number of deaths can be derived from the 
frequencies corresponding to each group by dividing tfiese' f~

quencies by the total number of readings, viz. 200. Doing this, we 
get: 

Deaths 0 1 2 3 I 4 
-------,-Probability 0·545 0·325 0 '11 0 ·015 0·005 

From this table we can arrive, easily. at the following: 
At least one death occurs with probability = 0'455 
At least two deaths occur with probability = 0,13 
At least three deaths occur with probability = 0,02 
At least four deaths occur with probability = 0'005 

If the reader will plot these on the Poisson paper, placing each 
point on its proper. line, c - I, c = 2, etc., opposite the computed 
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value of the probability, he wiu find that they lie on a vertical 
straight line, at the value z = 0,6. Thus we may test whether a given 
distribution follows a Poisson type law by plotting it as just de
scribed above. If the points plot on a vertical straight line the dis
tribution follows a Poisson law, with expectation, z, equal to the 
abscissa for the vertical line. 

We shall meet with yet another use for this type of paper when 
we come to discuss • operating characteristics' of sampling 
schemes in Chapter 10. 

NOW SEE IF YOU KNOW ANYTHING ABOUT THE 
POISSON DISTRIBYTION 

1. Experience of a certain disease indicates that it has a fatality rate 
of 10%. A new treatment tried out on 30 patients results in 7 deaths. Is 
the evidence sufficiently strong to show that this treatment is inimical 
to the best iI!terests of the patients? 

2. A class of 20 students is prepared for an examination at which 
experience shows that 20% of candidates fail. Only 10 of this class pass 
the examination. Have the class reasonable grounds for complaint? 
(Or - if the reader is a teacher - has the teacher reasonable grounds for 
complaint ?) 

3. A carnival organizer wishes to buy 500 balloons and does not want 
more than 1 % to be defective. He goes into a chain store and buys a 
packet of 10 balloons, of which one is found to have a leak. What is 
the probability of getting a packet as bad as or worse than this if the 
balloons in that store are, in fact, only 1 % defective? 

4. The amount of dust in the atmosphere may be estimated by using 
an ultramicroscope. A very small volume of air is illuminated by a 
spark and the observer counts the number of particles of dust he sees. 
By repeating this operation a large number of times, the amount of 
dust in each cubic centimetre of air can be estimated. Suppose that the 
following test results were obtained in a series of 300 spot checks by the 
flash method. Calculate the expected frequencies for each number of 
particles for comparison with the observed frequencies shown in the 
table. 
Number of particles 
Frequency of occurrence 

o 1 2 3 4 5 morethan5 
38 75 89 54 20 19 5 

5. Compute the variance for the data in question 4 and see how 
closely it agrees with the mean value (remember that the mean and vari
ance of a Poisson distribution are supposed to be equal theoretically). 
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The Normal Distribution 

'If you will have your laws obeyed without mutiny. see well 
that they be pieces of God Almighty's Law; otherwise, all the 
artillery in the world will not keep down mutiny.' CARLYLE 

In previous chapters we have seen that the idea of a 'frequency 
distribution' is of the utmost value in statistical work, and we 
have noted how frequency distributions which arise in practice 
can be assigned to different mathematical families such as the 
Binomial and Poisson families with the great advantage that we 
can picture the form of the distribution from a knowledge of one 
or two compact measures. While the Binomial and Poisson dis
tributions enable us to deal with the occurrence of distinct events, 

, such as the number of defective items in a sample of a given size, 
or the number of accidents occurring in a factory during the work
ing day, we have not, so far, got a mathematical distribution for 
dealing with quantities whose magnitude is continuously variable. 
This problem we now take up with the introduction of what is 
variously known as The Normal Law, the Error Law, or the Gaus
sian Law. The reader should be on his guard, however, against 
thinking that there is necessarily anything abnormal about any 
observed distribution that does not follow this law. It is unlikely 
that any distribution observed in practice follows exactly any of 
the common distributions used as types by mathematicians. Care
ful enough study would in every case bring to light discrepancies. 

It will be a good thing at this point for the reader to give a 
moment's thought to the matter of the use of typical distributions 
by the mathematician. In the first place, it will be evident that to 
treat every distribution in isolation on its own merits would be 
very uneconomic. Someone (probably G. K. Chesterton) once 
said that the world of reality is a world oflimitations. This is never 
truer than in regard to applied mathematics. The mathematician 
can work to an unlimited number of mathematically significant 
figures. Probably not more than two or three of these are signifi
cant in practice in most cases. An accuracy of 1 % is ample for 
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most of the real things in life. This being the case, the approxima
tion in assigning any observed distribution-to the mathematical 
family to which it bears the greatest resemblance is not a matter 
for misgivings, but rather for confidence since it renders the 
mechanism of battle simpler. 

If the reader will consider some of the Figures. such as Figs. 
28b and 31, which show histograms for continuously variable 
quantities, such as height and intelligence which have a sym
metrical distribution, he will see that they approximate in shape 
to a bell. If, now, he will imagine the class intervals to be made 
smaller and smaller in width, it will be apparent to him that the 
jumps in frequency in passing from one class to the next would 

Fig. 40. The normal curve 

become less and less perceptible to the eye, until eventually the 
diagrams would have the appearance ofa smooth bell shape such 
as the Normal Curve shown in Fig. 40. 

The mathematical equation to this curve is rather fearsome at 
first sight: 

1 - (x-x)' 
y _ - - e 20' ay27T 

The quantity y, which is the height of the curve at any point along 
the scale of ~ is known as the probability density of that par
ticular value of the variable quantity, x. Thus, for example, if x 
represents Intelligence Quotient, we see that the probability den
sity has a maximum value at the average intelligence value, falling 
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away on either side. In other words, people with about average 
intelligence are much more frequently found than people who CU'e 
either geniuses or morons. The symbol (T is the small Greek letter 
s and stands for standard deviation. The difference between sand 
(T is that, while s is the standard deviation as measured by a sample 
of finite magnitude. (T is the true value of the standard deviation in 
the population. We may regard s as an estimate of the value of (T, 

based on a sample. We shall have more to say on this point later. 
The symbol X is, as before, the average value for the distribution. 
The symbol e is the base of the Napierian logarithms ( = 2'7183), 
and 7T is well known as the ratio of the circumference of a circle to 
its diameter ( - 3~). 

When we wish to think in terms of numbers of cases rather than 
in tenJ;ls of probabilities, we convert the probability density to 
frequency density by multiplying by N (the total number of items 
in the distribution). The value y is then called the frequency 
density. 

This Normal Curve is due to the great English mathematician, 
De Moivre,· who published it in 1733, after he had done con
siderable work on the theory of games of chance. Other mathe
maticians whose names are associated with this law are Gauss and 
Laplace, both of whOm were contemporary with De Moivre and 
who each derived the law quite independently of De Moivre. The 
law was found to represent the errors of observation in astronomy 
and the other physical sciences remarkably well- hence the reason 
for the name • Law of Errors', the errors being the deviations of 
actual observations from the true value. This law occupies a cen
tral position in statistical theory. 

The reader will remember that in statistics one of our aims is to 
represent the whole of a body of data by a few simple parameters. 
The parameters of the Normal Curve arc the mean, .i, and the 
standard deviation, (T . We referred to this idea of parameters in 
Chapter 5, where we showed that, given a knowledge of the mean 
and standard deviation, we could form a very good mental pic
ture of the whole of a distribution. The reader is asked to look 
again at Figs. 30 and 32 in order to refresh his memory on this 
point. The rule given in Chapter 5 as an arbitrary rule was, in 

• An EngUilhman of French origin. 
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fact, based on the Normal Law. What we were really saying then 
was that our distribution was symmetrical and unimodal, so that 
it was a reasonable assumption for most practical purposes to 
assign it to the Normal Curve family. The percentages between 
various limits quoted in Fig. 30 belong to the Normal Curve, 
which is a mathematical model with fixed and definite charac
teristics which are known and tabulated for us by the mathe
maticians. 

In order to go further, we must meet the Normal Curve in what 
is known as standard form. It will be apparent to the reader that 
all distributions in the Normal Law family are fundamentally the 
same. They can in fact differ from each other only in respect to 
their average value, X, and their standard deviation, CT. Their 

l-

S 
a; 
• ... 
o 
at! ... 

Fig. 41. Distribution with same standard deviation or spread, but different 
mean values 

shapes will all be similar. Fig. 41 shows distributions with dif
ferent values for their mean, x, all having the same standard 
deviation or spread, CT. They are identical curves, located at dif
ferent points on the scale of the variable quantity, x. For this 
reason, measures of central tendency are often called measures of 
location. Fig. 42 shows the case where we have distributions 
whose mean value is the same but whose standard deviation or 
spread is different from distribution to distribution. The reason 
why the curves differ in height is that the area under the curve is 
taken as unity, so as to represent the total probability. It follows 
that as the base of the curve shrinks the height must be increased 
so as to keep the area constant. In order to make all such distribu
tions immediately comparable with each other we have to reduce 
them all to their essential nature. That is to say, their individuality, 
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as expressed by their particular mean and standard deviation, has 
to be suppressed. This is done, very simply, by regarding the mean 
of each distribution as having the value zero, and measuring all 
deviations from this mean, not in terms of the original units, but 
in terms of the standard deviation of the distribution. When this 
is done, every distribution in the family will have a mean value 
zero, and ever), distribution in the family will have a standard 

L---____ ~ __ ~ __ L_~L-~ __ ~ __ ~._ ___ x 

Fig. 42. Distributions with the same mean, but different standard deviatIons 

deviation equal to "-nit)'. Any deviation from the mean will be 

represented in the new scale of units by a • code ' value t _ x - x. 
u 

To illustrate this. let us take a value 126 for I.Q. We know that the 
mean and standard deviation for our I.Q. distribution were 
x - 100 and s - 13 respectively. Taking s as (J, we see that the value 
x = 126 on our original scale of values would become 

126 -100 = 2 
13 

on our new scale of values .. All we are saying, in fact, is that 
the value 126 is two standard deviations away from the mean 
value of the distribution. If, then, in our equation for the Normal 
Probability Curve 

1 -(x-x)' 

y- uvr:;/ 2"-

X -x (X - x)2 
we write t - -- then --2- will become (2, and, since we are 

C1 C1 



· THE NORMAL DISTRIBUTION 113 

now in the new scale, 0' has the value unity. The Normal Prob
ability Curve then becomes, simply, 

I - ,' 
y = v];,.eT 

It may be shown mathematically that the area under this curve is 

equal to unity - in fact, the constant .} has been specially 
v 21T 

chosen by the mathematicians to ensure this. It is important to 
remember that it is the area under the curve which represents prob
ability. The area under the curve between any two values of t 
represents the probability that any item chosen at random from 

SCALE OF t - J 
SCALE OF I Q bl 74 67 

TOTAL AREA UNDER CURVE 
= I - TOTAL PROBABILITY 

100 113 12b 

Fig. 43. Area under the probability curve is equal to the probability that an 
individual chosen at random will have an I.Q. within the range indicated 

the distribution in question will fall between the values of the 
variable which correspond to those two values of t. Thus, in Fig. 
43, the area under the curve between t = - 11- and t = + 1- repre
sents the probability that any individual in the population has an 
I.Q. between SO! and I06t. 

The Normal Curve extends infinitely in either direction, getting 
closer and closer to the axis of x; for most practical purposes, 
however, we may regard it as terminating at three, or at most 
four, standard deviations on either side of the average. Actually., 
99'73 % of the area falls between the values t = - 3 and t = + 3 
standard deviations, and 99 ·994 % within the limits 1 = - 4 and 



114 FACTS FROM FIGURBS 

t - + 4 standard deviations. 50 % of the area is contained 
between the limits t == - 0'6745 and t = +0·6745 standard devia
tions. The term probable error was used in former times to denote 
0'67450', this being the deviation just as likely to be exceeded as 
not. The term, a poor one, is now very much obsolescent. It has 
been said that 'it is neither an error nor probable'. 

The table on page 116 gives the probability that any item chosen 
at random from a Normal distribution will fall outside the valuc 
of t quoted. The reader should notice carefully that the prob
abmty as statcd applies only to deviations in one direction (see 
Fig. 44). To get the probability of a deviation in either direction 

TABLE OUOTES PROBABllTY 

CORRESPONDING TO Q1LE 

Fla. 44. Tables of the lrea of the normal curve state the probability that 
an item chosen at random from a normal population will deviate morc 
than a stated number of standard deviations (I) from the mean value - in 
a specified direction 

greater than the stated value of t the value of the probability in the 
table should be doubled. We illustrate the uses of the table by a 
couple of examples. . 

Example. Tbe local authorities in a certain city instal 2,000 elec
tric lamps in the streets of the city. If these lamps have an 
average life of 1,000 burning hours, with a standard deviation 
of 200 hours, what number of the lamps might be expected 
to fail in the first 700 burning hours? 

In this case we want to find the probability corresponding to the 

area of the probability curve below t- 700 2~000 - - It. We 

i!,'1lore the sign and enter our table at t -I! to find that the 
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probability for lives less than 700 hours is p - 0·067. Hence the 
expected number of failures will be 2,000 x 0'067, i.e. 134. 
Example. What number of lamps may be expected to fail between 

900 and 1,300 burning hours? 
This problem is tackled in two stages. 
The number of lamps which will fail under 900 hours: The cor-

responding value of t is 900 2~000 = - 0'5. Entering the table 

with this value of t, we find for the probability of failure below 
900 hours p ... 0'309. 

The number of lamps which will fail over 1,300: The cor-

respondjng value of I is 13OO
2
;i000 ~ 1'5. Entering the table with 

thjs value of t, we find for the probability of failure over 1,300 
hours p =0,067. 

Hence the probability of failure outside the limits 900 to 1,300 
hours will be 0'309 +0'067 = 0'376. It follows that the number of 
lamps we may expect to fail outside these limits is 2,000 x 0'376 -
752. But we were asked to find the number which are likely to fail 
illside the limits stated. This is evidently 2,000 - 752 - 1,248. 

These answers are predictions. In the normal course of events 
we should expect our predictions to be reasonably close to the 
truth. Predictions of this sort always presuppose a continuance of 
the status quo. They make no allowance for the manufacturer who 
accidentally uses inferior materials in a batch of lamps or for the 
small boy who comes along with his catapult. 

Example. After what period of burning hours w~uld we expect 
that 10 % of the lamps would have failed? 

What we want here is the value of t corresponding to a prob
ability p = 0'10. Looking along our table we find that when 1= 1'25 
the probability is p =0' 106. This is near enough for our purpose of 
prediction. Hence we may take it that 10% of the lamps will fail 
at 1'25 standard deviations. Since one standard deviation is equal 
to 200 hours, it follows that 10% of the lamps will fail before 
1,000 - I '25(200) - J ,000 - 250 ~ 750 hours. 

The problem of street lighting is an excellent example of a case 
where variability about the average is of the greatest importance. 
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Concerns with mass lighting problems often prefer to replace their 
lamps at regular intervals instead of piecemeal as the lamps fail. 
When the standard deviation is small, this becomes a reasonable 
proposition, for as soon as any number of lamps worth speaking 
of have failed the remaining lamps have little life left to run . 
Psychologically, also, it is a good thing for the lamp manufac
turer's reputation for his lamps to have a uniform life. The odd 
bulb that fails soon after it is bought attracts much more attention 
than the many which burn on year after year until the customer 
has no idea of the length of time it has given him faithful service. 

TABLE OF AR EAS OF T HE NORMAL C URVE

(ONE TAIL ONLY) 

t 0 0-25 0-50 0-75 

Probability 0 -500 0-401 0 '309 0-227 

I 1-0 1-25 1'50 1-75 

Probabili ty 0 -159 0 ·106 0 -067 0-040 

t - 2·0 2·25 2·50 2·75 

Probability 0-023 0 '012 0 ·006 0-003 

TABLI! O F OJ{DINAT ES OF TH E NORMAL CUJ{VE· 

t 0 0 ·25 0·50 0-75 

Ordinate 0 -399 0 ·387 0 -352 0 '301 

t 1·0 1-25 1·50 1-75 

Ordinate 0 -242 0 -187 0·130 0 -086 

t 2·0 2 -25 2·50 2'75 

Ordinate 0 ·054 0 ·032 0 ·018 0 ·009 

.. ~ __ _ _ I . __ .• • • 1_ ... _ _ _ _ _ . .. _ ••.• 

3·0 

0 ·001 

3·0 

0·004 
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The probability density (height of the curve) at any value of t is 
given in the tables of the Ordinate of the Normal Curve, an abbre
viated version of which we have given under the Table of Areas of 
the Normal Curve (page 116). This table enables us to draw cor
rectly the shape of the Normal Curve, if, for example, we wish to 
superimpose over a histogram the Normal Curve with the same 
mean and standard deviation. To illustrate the technique of fitting 
a Normal Curve to a given distribution, we shall fit a curve to the 
I.Q. data for which we worked out the mean and standard devia
tion as ,f - 99'3 and s ~ 13'3 in Chapter 6. In order to keep the 
arithmetic simple we shall take x = 100 with CT ( - s) =- 13. In this 
distribution we had N - 100 values recorded in our histogram. 
The equation to the Normal Curve, when the area under the curve 
is made equal to unity so as to represent the total probability, is 

1 _ (X-,i)1 

y =--=e 20' 
CTY21T 

If we wish to make the area under the curve equal the total fre
quency, N, for a given distribution, we have to multiply the right
hand side by N, which gives 

N _(X- .i)1 

y =--=e 2,,' 
CTY21T 

In our particular case, we have N ~ ] 00, x =- I 00, 0' = 13, and the 
equation takes the form 

y _ (\~)( Y~1/ -~:~Il~)') 

Now the quantity (x ~~OO) is what, in our tables, we have called 

t. Hence, we have 

(100) ( 1 -t') 
y = 13 Y21T

e2 

The expression in the right-hand bracket is simply the standard 
form of the equation to the Normal Curve, and, therefore, our 
Table for the height of the ordinate applies to this bracket. In 
order to get the actual height of the curve to be applied to our his
togram, our equation tells us to multiply the ordinate height given 
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in the table by the factor W-7·7.1t will be ample, as a demon
stration, to calculate the ordinates for our curve at intervals of 
half a standard deviation. We show the results in the following 
table : 

( 0 o,s 1·0 I -S 2·0 2·5 I 3·0 - ---
y (from table) 0 '399 0·352 0·242 0·130 0·054 0·018 0·004 -_-------------,-
1·1y 3·01 2·10 1'86 1'00 0·42 0·14 0·03 

------- -------- -
% 100 106'5 113 119'5 126 132'S 139 

and and and and and and 
93·S 81 80'S 74 67'S 61 

The values of x are derived from the values of t, and of course 
there is a value of x on either side of the mean for both of which 
the t value is the same. We may now draw the Normal Curve for 
the distribution as in Fig. 45, by setting up a horizontal scale to 
represent I.Q. and a vertical scale to represent the values 7'7y cal
culated in the table. 

When the Nonnal Curve has thus been plotted, we may add the 
histogram. The heights of the several blocks in the histogram are 
obtained by-dividing the frequency the block has to represent by 
the value of the class interval. Thus, in our example, the class 

! )0 
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Fig. 45. Normal curve fitted to I.Q. data 
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whose boundaries are 94·5 and 104·5 has a frequency 33. Since the 
class interval, c, is 10, this block should be given a height of 3'3 
units on the left-hand scale. The scale on the right of Fig. 45 is 
obtained by multiplying the left-hand scale by the class interval, 
10, and so shows the frequency of occurrence of items in each 
class. Such a scale is possible only when the class interval is the 
same for all classes. 

YOU MAY NOW DEAL WITH THE FOLLOWING 

1. You work out the mean and standard deviation for n set of data 
and find oX = 24 with s = 3. Now try to find the answers to the following 
questions: 

(a) within what limits would you expect almost the whole of the 
distribution to lie '1 

(b) within what limits would you expect about 95% of the distribu
tion to lie'1 

(c) within what limits would you expect about two-thirds of the 
distribution to lie? 
2. Draw a histogram for the data of Chapter 6 examples. You will 

have found the mean and standard deviation already (if you have 
thrown the result away get it from the answers at the back of the book). 
Now fit a Normal Curve on top of your histogram. 

3. Draw a histogram for the coefficients of the terms of (p +q)s. 
Superimpose on it the Normal Curve whose mean is 2.5 and whose 
variance is 1·25. The area under the Noonal Curve is to be taken as 32. 
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What Happens when we take Samples 

• And tell by Venus and the Moon 
Who stoic a thimble or a spoon.' 

s . BUTLER (Hudlbras) 

The statistician's job is to draw general conclusions from frag
mentary data. Too often the data supplied to him for analysis are 
not only fragmentary but positively incoherent, so that he can do 
next to nothing with them. Even the most kindly statistician swears 
heartily under his breath whenever this happens. Before he looks 
at it he knows just what the position is going to be. It is a common 
pastime in many organizations, and even laboratories, to collect 
vast quantities of data on a routine basis, using apprentice labour, 
with the vague intention of submitting them to analysis 'one day 
when things are not so busy'. Of course, things are never slack, so 
the 'piles of useful stuff in the files' get more comprehensive 
and out of date - as the years go by. Pious intentions to analyse 
some day are of little value. If data are not worth analysis at a 
suitably near date they are rarely worth the labour of collection. 
Less time collecting-and more time analysing would be a valuable 
aim in many laboratories. 

But it is not simply because the road to hell is paved with good 
intentions that the miserly acquisition of data is to be deplored. 
There is a more serious reason. Data should be collected with a 
clear purpose in mind. Not only a clear purpose, but a clear idea as 
to the precise way in which they will be analysed so as to yield the 
desired information. Many ambitious schemes are finally acknow
ledged as nugatory with the phrase: 'If only we had kept a record 
of the pressure, or the cost of the leather, or the number of men 
we had on the job from time to time.' It is astonishing that men, 
who in other respects are clear-sighted, will collect absolute 
hotch-potches of data in the blithe and uncritical belief that 
analysis can get something useful out of it aU - especially if a 
statistician once starts to juggle with it. It cannot be too often re
peated that there are only a limited number of analytical tech
niques in statistics. Each technique asks certain questions of the 
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inquirer, as a preliminary to answering his question. Unless he 
can give a satisfactory reply he will never be able to receive one. 
The man who needs the services of a statistician usually knows 
little about statistical method himself beyond what is elementary 
common sense. For this reason it is important that he should get 
advice from his statistical expert before he commences the work 
of collecting data, whenever possible. In this way he will save him
self a lot of disappointments. It is surprising, when we consider the 
enormous volume of research that is done by physicists and en
gineers, biologists and economists, by essentially statistical 
methods, that their professional training so often is virtually 
devoid of any guidance in how to handle this type of material. 
The physicist, as a student, meets nothing but nice smooth curves 
in his experiments - by kindly arrangement of his tutors. When he 
gets out doing research in an industrial lab., all too often his 
graphs are plum puddings, through which he helplessly and hope
fully tries to draw a trend line. The chemist is in even worse case -
especially jf he is doing research on some natural material such as 
rubber or leather. If only such people had a short course as post
graduates, sufficient to make them • general practitioners' in 
statistics, with sufficient knowledge to deal with the everyday 
matters and sufficient insight to call in the professional statistician 
to complex cases at a suitably early time, we should see a marked 
improvement in the productivity of industrial and other research. 

But even if the data presented to statisticians were not inco
herent owing to the causes just dealt with, they would still be frag
mentary. There would still be difficulties. Bias will creep into data 
despite the most careful and refined attempts (some of which we 
shall discuss later) to eliminate it. Often we have perforce to make 
do and mend with imperfect raw data. Often, the statistician 
knows what he wants but simply cannot have it. Medical statis
ticians are regularly in this plight. Then again, the collection of 
data can be a slow and laborious process which cannot be speeded 
up, however anxious we may be. An instance of this will be found 
in the British Medical Journal (9 April, 1949), where H. J. B. 
Atkins, Directo'r of Surgery at Guy 's Hospital, explaining a pro
ject he wished to start with regard to carcinoma of the breast, ends 
by saying: 'so that we may be sure of answering at least one 

5 
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fundamental question about breast cancer by the year 2030'. It is 
relevant, too, to observe that the answer might be a negative one, 
telling us only that something was not concerned with the develop
ment of this disease. The whole medical profession of England 
would be willing to work without food or rest for a year to get the 
answer to this question. But there must be patience. There is no 
quick or royal road. , 

All sampling enquiries are aimed at discovering something 
about a particular population. We must be clear as to what 
population we are interested in. As M. G. Kendall in his Advanced 
Statistics puts it: 'Is the enquiry to be made among children? 
among inhabitants of the British Isles? among those who 
habitually drink milk? among townspeople or among country 
folk? and so on.' The condenser engineer might equally ask him
self: among all condensers? or among mica condensers only? 
condensers of all capacities? dry-stack or silvered? potted or Ull

potted? We must sample the right population and confine our 
conclusions to that population. 

Again, we must know very clearly what it is we are trying to find 
out about our population. To quote Kendall again, 'it is no use 
returning the facile reply" all about it" to this question'. As he 
pertinently points out, our sample will be of limited size and so 
will contain only limited information. A man may set out with a 
pint pot to fetch himself a pint of ale. If on his way he half fills 
his pot with paraffin he will bring back that much less ale - and 
neither ale nor paraffin is likely to be of overmuch use when he 
comes to sort them out. Every sampling investigation is a pint 
pot. It can never bring back more than its own capacity of infor
mation. Often, indeed, it will bring back less. If we can only carry 
out a limited investigation, we had best have a strictly limited 
target. Many investigations are extremely loose in design. They 
are like nets which are indeed spread wide but have a mesh so 
large that all but the most giant fish escape. In statistical work, 
the giant fish is the one that everyone can catch for himself, with
out the statistician's tackle. 

It is perhaps unnecessary to stress that we should take into 
account knowledge about our population derived from other 
sources. It sometimes happens that a statistician working as a 
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consultant in a strange field will announce what he takes to be an 
interesting discovery, only to get the reply: 'So what? We've always 
known that'. A pity, perhaps, that he wasn't informed before
hand. It would have saved him the trouble of finding out. All the 
wasted effort could have gone to finding something that the 
specialists in that particular field did not know, or were only won
dering about. It is a valuable and instructive discipline, after 
every investigation, to divide the conclusions into three groups: 
(a) the ones that were well known to start with, (b) the ones that 
confirm or refute previous' hunches', (c) the ones that no one 
ever thought of (and possibly cannot be believed, in some cases). 
Consideration of other knowledge about the population prior to 
the investigation has a funher value in suggesting what para
meters are likely to be suitable, what the form of the final distribu
tion is likely to be, what significance tests will be suitable, and so 
on. Very often, prior knowledge of this kind gives us very valuable 
clues as to the size of the sample likely to be needed in order to 
make firm conclusions possible in the final analysis. In absence of 
such prior knowledge, a preliminary pilot survey is often to be 
recommended. 

We must remember, also, that all sampling investigations are 
subject to experimental error. Careful consideration to design 
enables this error to be kept to a minimum. No sampling inves
tigations can give a result, except in terms of probability. What 
order of probability will satisfy us? The confidence we are able to 
extend to our . final results depends both on the magnitude of 
interfering effects and on the size of our sample. Only very care
ful forethought and hindsight can make any sampling investiga
tion other than an incoherent pile of data. 

All these points we have made are the sort of thing the intelli
gent reader will at once recognize as true. They are fundamentally 
common sense. There are other factors in sampling which, while 
they are common sense, are not obvious and not common know
ledge. We arrive at knowledge of them only by consideration of 
what is called 'sampling theory'. It is to such matters that we 
devote the rest of this chapter. 

Let us first consider the behaviour of samples drawn from the 
Binomial distribution. We have already seen (Chapter 7) how to 
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calculate the probability that samples of n items drawn from a 
population whose proportion defective (or, more generally, the 
proportion having a certain characteristic not belonging to the 
remainder of the population) is p shall contain 0, 1, 2, 3, etc., 
items defective (or having the characteristic in question). We did 
this by expanding the binomial (q + p)n, and found that the prob
abilities were the terms of this expansion, proceeding from left to 
right. The mean of a distribution of this type will be the expected 
number of defectives in our sample of n items, viz. np. For ex
ample if the population is ] 0 % defective, and we take samples of 
50 items, then the average number of defectives in such samples 
will be 5, which is np = 50 x 0 ·1. It can also be shown that the 
variance of the distribution for the number of defectives will have 
the value npq, so that the standard deviation will be ylnpq. In the 
example just given we have n = 50, p = O'l, and therefore q =0·9. 
We shall thus have variance equal to 50 x 0 ,1 x 0·9 = 4'5, and 
standard deviation equal to yl4'5 = 2 ' ]2. 

As we have to give these results in arbitrary fashion, it may help 
to convince the reader if we work out one case as a check. He may 
work others for himself if he is so inclined. Take the case of 
samples of four items drawn from a population for which p = 0 .]. 
The probabilities ofO, 1,2, 3, 4 defectives will be given by the suc

.cessive terms of the expansion of (0 '9 +0 ,])4, i.e. of 
(0·9)4 + 4(0 '9)3(0 ' 1) + 6(0'9)2(0 ·])2 + 4(0 ,9)(0 ·])3 + (0·1)4 

Evaluating these terms, and multiplying by 10,000 to get whole 
. numbers, we have that in 10,000 samples of four items the defec

tives should occur with the frequencies shown in the following 
table : . 

No. of defectives (x) 0 1 2 3 4 

Frequency predicted <f) 6,561 2,916 486 36 1 

We then have, using our standard formula for calculating the 
• average: 

~ _ If x = 6,561(0) + 2,916(1) +486(2) + 36(3) + 1(4) 
If JO,OOO 

4,000 
=---0,4 

10,000 
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Check: X ~np = 4(0'1) = 0,4 
Likewise for the variance, using the formula: 

1:fx 2 
*Var(x) = -tf - (.£)2 

we get 
Var(x) =~,561 (0)2 + 2,916(1)2 + ~_86(2)2 + 36(3)2 + 1 (4)2 _ (0'4)2 

10,000 

= 2,916 + 1,944 + 324+16 -(0 '16) 
10,000 

= 0'52 - 0·16 = 0 -36 
Check: Var(x) = lIpq =4(0'1)(0'9)'=0'36 

This is a very useful quick way of calculating the mean and stan
dard deviation ofa Binomial dist_ribution. 

Let us now convert the frequencies of this example to prob
abilities, by dividing by 10,000. We get: 

Number of defectives 0 1 2 3 4 

Probability 0·6561 0·2916 0-0486 0-0036 0 '000l 

These results are shown in histogram form in Fig. 46. If the 
reader will compare them with the Poisson distribution shown in 
Chapter 8 he will at once be struck by the similarity with regard to 
skewness. The comparison suggests that we might use the Poisson 
distribution as an approximation to the Binomial distribution 
under certain conditions. As a trial, let us see what sort of a result 
we should get using this approximation. The expected number of 
defectives per sample is 0 ·4. We make this the z of our Poisson 
expansion, thus: 

( ~ ~ ~ ) e- t 1 + z + 2! + 3T + 4i with other terms ignored 

We have to ignore terms above Z4 in our Poisson distribution, 
since it is obvious we cannot have more than four defectives in a 
sample of four items. Writing z = 0-4, we have: 

e-o.4(1 +0.4 + (0'4)2 + (0 '4)J + (0'4)4) 
2! 3! 4! 

• The symbol' Var{x)' is ofte.n used for the variance. 
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From tables of the exponential function (01', if we have no tables 
at hand, by substitution in the formula 

Z2 z3 z<4 
e-f - 1 - z + 21 - 3i + ;fl - ... + ) 

we find e-0.4 =0'6703, so the probabilities of 0, 1,2,3,4 defectives 
in a sample ofrour items when the expected number in the sample 
is 0'4 are given by the successive terms of 

0'6703( 1 +0·4 + (0~i)2 + (0~i)3 + (0~i)4) 

0 ... (o.q -t 0 ' 1)4 0-
-< 
0- '" '" ... 
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0- 0 
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3 .. 

NUMBER OF DEfEe'TlVES IN 

SAMPLE OF " ITEMS 

Fig. 46. Number of defectives in random samples of four items drawn from 
a population containing 10"10 defectives (P= O· I). The vertical arrows in 
each block show the approximation using the Poisson distribution 

W.orking these out, we enter them in the following table, with the 
true probabilities as given by the Binomial distribution for com
parison. 

Number of defectives 0 1 2 3 4 

Poisson prediction 0 ·6703 0·2681 0·0536 0 ·0071 0·0007 

Binomial prediction 0·6561 0 ·2916 0,0486 0,0036 0·0001 
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It will be agreed that the approximation is extremely good as a 
practical guide (see Fig. 46). The Poisson distribution can always 
be used as an approximation to the Binomial distribution when
ever either p or q in the Binomial is fairly small. The nearer p or q 
is to zero the better the approximation. This is very handy. be
cause in a very considerable number of problems we are con
cerned with either p small or q small. For example, the proportion 
of defective items produced in a factory under usual conditions is 
likely to be less tban 10% for any specified fault - even if the over
all rejection rale is higher than 10 %. We are able to read off the 
answers to quite a lot of sampling questions of the Binomial type 
from the Poisson probability paper which we studied in Chapter 
8. But more of this in a moment. The reader will observe, in .pass
ing, that when p is small, then q must be nearly equal to unity, so 
the variance for a skew Binomial distribution of the type we are 
discussing will be approximately Var(x) = np. Now np is the ex
pected number of defectives in the sample, and it will be remem
bered that the variance of a Poisson distribution was said in 
Chapter 8 to be equal to the expectation. 

Having considered a skew Binomial distribution and found it 
to be closely akin to a Poisson distribution, the reader will per
haps not be surprised that a symmetrical Binomial distribution 
is closely related to the Normal Curve. The symmetrical Binomial 
will have p ~q = 0'5, so that the average number of defectives in a 
sample will be np - 0'5n and the standard deviation will be 

Ynpq-yo.25n=O·5yn. If ' we consider the expansion of 
(0'5 +0'5)n we see at once that the part of each term involving the 
product of powers of p and q is always the same, namely (0'5)", 
and the several terms of the expansion differ only by the numerical 
multiplying factors given in Pascal's triangle (see Chapter 7). 
We find for n ~ 8 that these coefficients are : 

8 28 56 70 56 28 8 

so the frequency of occurrence of 0, I, 2, 3, ... 8 defectives in 
samples of eight items drawn from a population whose percentage 
of defectives was 50% would be proportional to these numbers. 
In like manner, if the reader cares to work out the coefficients he 
will find that when the value of 11 gets larger and larger, the 
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distribution approaches more and more closely to the Normal 
Curve. He may also check roughly that the sum of the coefficients 
(i.e. frequencies) lies more and more closely to the values between 
certain limits as predicted by the Normal Distribution. (It is 
handy, in doing this, to notice that the sum of all the coefficients 
given in Pascal's triangle for any values of n is simply 2", e.g. for 
n ... 4 the coefficients are I, 4, 6, 4, 1. Their sum is 

1+4+6+4 + 1 =16 = 2 x 2 x 2 X 2 = 24.) 

Thus, in the case where n=9, we have for the symmetrical 
Binomial a standard deviation ~0'5y'n -0'5y'9 = 0'5(3) = 1·5. 
The coefficients are: 

1 Std. Devn. I Std. Devn. 
+- +-- -_ 

2 Std. Devos. 2 Std. Devns. +- +-------------~ 

3 Standard Devns. 3 Standard Devns. 
+- +- -------+ 

(t+t) 9 36 (42+42) 126 126 (42 + 42) 36 9 (t+ H 

I+- ffi = 66% (68%) I 
+-----------------------------+ 

m = 96% (95'5%) 
tH = 99 '8% (99'7%) 

+-------------------------------------~ 

Some of the terms are shown divided into halves. This is because 
the standaI'd deviation is 1 t units, and as a rough approximation 
we have assigned half the frequency in the borderline cases to 
each group. The figures quoted in brackets are the percentages of 
the total frequency ( ... 29 =512) which are predicted by the Nor
mal Curve between the various limits. 

The approximation is seen to be remarkably good. ActuaUy 
the rough method we have followed in assigning half the fre
quency of borderline cases to each group gives a smaUer 
proportion to the inner groups than is strictly correct. 

More surprising still is that if n is made very large then, even 
when either p or q is quite small, the binomial distribution loses a 
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great deal of its skewness and is well approximated by the Nor
mal Curve. Clearly, the more nearly equal p and q are, the smaller 
n may be in order to make the distribution approach the Normal 
form; when either p or q is very small, n must be so much the 
larger in order to achieve approximate normality in the distribu
tion. As a guide to the orders of magnitude we give Figs. 47 and 

Fig. 47. Binomial (0·8 + 0,2),0 approximates the normal distribution 
closely 

o· 

0·2 

0 · ' 

b 

Fig. 48. Binomial (0'95 +0'05)30 is still markedly skew 

48, showing (0·8 + 0 '2)50 which is a good approximation to the 
Normal form, and (0'95 +0 '05)30 which is still markedly skew. 

A very useful approximation, due to De Moivre and Laplace, 
for the number of defectives in the range d1 to dz inclusive is as 
follows. If we have a Binomial distribution (q + p)n, then, as before, 
its standard deviation will be 0' = V npq. If, now, we write 

d. - np - t d2 - np + t 
11 - a and 12 - a 
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then the probability of a number of defectives in a sample of n 
lying in the range d1 to d2 inclusive is equal to the area under the 
Normal Curve between the limits II and f2' We saw how this is to 
be evaluated from the Table of Areas of the Normal Curve in 
Chapter 9. The theorem, as we should expect from what we have 
already seen, assumes that n is large. Provided'that dl and d2 lie at 
roughly equal distances away from the expected value, liP, on 
either side, the approximation is quite good, even when" is fairly 
small. 

It is time, now, to turn our attention to a further aspect of 
sampling theory which is of the utmost importance in practice, 
namely the question of what are 'known as 'operating charac
teristics' of sampling schemes based on the Binomial Distribu
tion. A very common type of inspection specification adopted 
when sampling is resorted to is as follows . The supplier is told to 
deliver his goods in batches of a given size, e.g. 50 to a batch. The 
arrangement then iS ,that from each batch a certain number of 
items will be drawn at random and inspected. This is the so-called 
sample number. If the sample is found to contain no defectives the 
whole batch is at once accepted, but if any defectives at all are 
found in the sample, then the batch is rejected. Rejection may 
result either in retutn of the batch to the supplier or in a sub
sequent 100% inspection, depending on the circumstances and 
the arrangement reached with the supplier. It will be a good thing 
for the reader to get familiar with the terminology and shorthand 
notation at this point. The batch or lot size is denoted by N, the 
sample size (number of items in the sample) is denoted by n, and 
the allowable number of defectives in a sample by d. This is a very 
compact notation. For example, 'N - 50, n - lO, d =O' tells us 
that the goods are to be delivered in batches of fifty, that a sample 
of ten will be drawn at random for inspection, that provided no 
defectives at all are found in this sample the whole batch will be 
accepted, but that if any defectives at all are found in the sample 
it will be rejected. Now whenever a customer performs a 'goods
inward inspection' his idea is to protect himself against accepting 
defective goods from the supplier. What does this mean? His aim 
is that all goods accepted and paid for shall be of acceptable 
quality, but this is an ideal which he knows he cannot achieve 
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absolutely. He knows that human fallibility will frustrate the most 
diligent efforts - even by 100% inspection - to guarantee this 
year in and year out. More usually, the customer will take his 
stand on the basis of economic considerations, arguing that in
spection is a non-productive function in a manufacturing organiza
tion - an overhead cost to be kept to an economic minimum. He 
will strike a balance between inspection overhead charges and loss 
due to less than perfect inspection. There is, moreover, sound 
practical common sense in this approach. There is something 
absurd in treating a supplier who has built up a first-class reputa
tion on the basis of high and consistent quality as if he were an 
itinerant huckster with catchpenny business methods. 

What factors have we to allow for in a good sampling scheme? 
First of all the inevitable risk. The scheme should be designed in 
such a way that this risk is equitably shared by the supplier and 
the consumer. Secondly the fact that a sampling scheme is a line 
of defence against a threat whose seriousness varies from time to 
time. When we lay down' N = 50, n = J 0, d = 5' we have laid down 
a fixed scheme irrespective of the threat. It is as if a general put a 
hundred men to defend a line irrespective of the forces attacking 
it. What we have to consider, then, is how any given sampling 
scheme will operate under different conditions. What will be the 
effect when the supplier is sending in batches of normal standard? 
What will happen as the supplier's goods fall off in quality? What 
we are asking, in fact, is: How will the rate of rejection enforced 
by the sampling scheme (N, n, d) change as the value of p, the per
centage of defectives in the producer's goods, increases 1 This is a 
question we can answer quite easily by making use of the Poisson 
probability paper. 

The first thing to be clear about is that the judgement' accept or 
reject' is made on the basis of the sample - irrespective ofwbat~e 
conditions may be in the remainder of the batch. In general, tho 
industrial supplier supplies goods for which the percentage of 
defectives is relatively small, so that, even when the number of 
items in the sample, n, is fairly large, the distribution (q +p)R wj1J . 
be quite skew and weJI approximated by the Poisson. Mathe
matical refinement is out of place in a problem such as we are 
discussing. What we need is a rapid method of assessing any 
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suggested sampling scheme. Let us consider, first, the sampling 
scheme N = 100, n = 10, d=O. This means that every time we find 
one or more defectives in a sample of ten items the whole batch of 
100 will be rejected. 

To calculate the operating characteristic, we assume a series of 
hypothetical values for p, the proportion defective in the goods 
supplied by the manufacturer. The corresponding expected num
ber of defectives in our sample will then be np. We then look up on 
the Poisson probability graph (Fig. 39) the probabilities of one or 
more (shown by the line c = 1) defectives when the expectation 
takes each of the hypothetical values. The result is shown in the 
following table. 

Supplier·, proportion defec· 
tive_p 0·01 0·02 0·03 0·04 0·05 0·1 0·2 0·3 0·4 

Expected number of defec-
tives in sample of n items '* 
np 0·1 0·2 0·3 0·4 0·5 1 2 3 4 

Probability of findina one or 
more defectiv .. ~ prob-
nbility of rejeclion 0·1 0·18 0·27 0·33 0·4 0·63 0·81 0 ·95 0·91 

Per cent of batches rejected by 
the scheme under the. as· 
Burned conditionJ 10 18 27 33 40 63 81 95 91 

The results are shown in graphical form in Fig. 49, which is the 
operating characteristic of the scheme. What comments are we to 
make on such a scheme.? It is certainly strillgent, but it is not very 
discriminating. By its very nature it is asking for perfection and 
makes no allowance at all for the poor manufacturer when he falls 
slightly from grace. Even when his goods are only 1 % defective he 
is to have 10% of batches rejected. What if the customer agrees 
that 1 % is a very reasonable proportion of defectives for the type 
of product in question? It is no use shouting at a man to keep on 
his toes when he is already doing his best. Batch rejection on such 
a heavy scale is uneconomic under such conditions (and the cost 
wjll surely be passed back to the customer in the long run). Our 
first lesson, then, is that stringency, like all other virtues, can be 
undesirable in excess. We have to make allowances for the other 
fellow's fallibility. 



WHAT HAPPENS WHEN WI! TAKE SAMPLES 133 

The reader may be tempted at this stage to suggest that the 
ideal operating characteristic would be of the form shown in Fig. 
50a. If we agree that the manufacturer will be doing a good job in 
sending us batches containing 1 % defective. then we should 
reject every batch with more than this proportion of defectives 
and accept batches as good or better than I % defective. Such a 
scheme would certainly be discriminating to perfection. But do 
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Fig. 49. Operating characteristic of sampling scheme which is certainly 
stringent but shows poor discrimination between good and bad quality 
in the batch 

we want perfection of this hard and fast type? If we are prepared . 
to accept a batch with 1 % defectives with unfailing regularity. do 
we really wish to reject with the same regularity whenever the per
centage of defectives reaches 1'1 %? The very idea is ludicrous. 
What we want, clearly, is to have it, say, 98 % sure that batches 
will be accepted at 1 % defective or better, and rejected at a rate 
which mounts very steeply as the region of 1 % defectives is left 
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behind. The ideal scheme should in fact look something as shown 
in Fig. SOb. The reader will observe that there are two values 
specially marked off on the percentage defective scale: one cor
responding to the quality the manufacturer can normally main
tain, the so-called process average per cent defective, and · the 
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other which we have called the tolerance per cent defective, a 
quality at which the customer would want to be sure of rejecting 
batches with a very high degree of certainty. Such a scheme, in 
practice, would be fair to both parties. Operating schemes for 
various values of sample size and alJowable defect number can 
rapidly be drawn in this way, and give producer and consumer a 
clear picture of what is involved in any sampling scheme before it 
is agreed upon. We shall deal with more complex cases of operat
ing characteristics in Chapter 12 where we consider the question 
of economy in sampling. 

A point over which confusion sometimes arises is the value of 
increasing the inspectioll density. (Density of inspection is simply 
the average amount of inspection carried out using any sampling 
scheme.) Our information as to the quality 0/ a homogeneous batch 
0/ goods is in no way related to the size 0/ the batch which is 
sampled. We get ill/ormation in return/or the work we do in actual 
inspection. Thus, if we have two batches of goods, one containing 
10,000 items and the other containing 1,000, and we draw a 
sample of 100 items from each batch, the information about the 
quality of the two batches will be the same, although the inspec
tion density in one case is 10% and in the other case 1 %. Pro
viding, then, that the batches are homogeneous in quality, it will 
be more economic to inspect large batches than small ones. The 
general rule should be that batch sizes are to be made as large as 
possible, though, of course, good batches should not be' poisoned' 
by admixture of bad batches, simply to get economy in sampling. 

We leave for the time being the problem of sampling by attri
butes, and turn now to a consideration of some of the basic facts 
in sampling theory dependent 'On the Normal Law. We have seen 
that the Normal Curve has two parameters, X and (1, which take 
care respectively of the central tendency and dispersion of the 
distribution, that is of the average and the variability about the 
average. If now we consider not the distribution of the values of 
individual items themselves but the distribution of the average 
value in a sample of n items, what shall we expect 7 To make the 
matter concrete, let us suppose that we were to consider the dis
tribution for the average weight in samples offive men. One thing 
will be plain at once: these averages will cluster more closely 
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round the grand average than will the weights of individual men, 
for the simple reason that when five men are chosen to make up a 
random sample the chances are that some will be lighter than 
average and some will be heavier. It will be a very rare thing to 
get five men all over twenty stone in a single sample chosen at 
random. The larger the sample the more closely will we expect the 
average weight in the sample to agree with the grand average. This 
means that the distribution for sample averages will have a smaller 

AVERAGES OF 2S ITEMS 

AVERAGES OF q ITEM S 

AVERAGES OF ~ ITEMS 

-5 

Fig. 51. The distribution for the averages of samples becomes more and 
more compact as the sample size increases, the standard deviation being 
inversely proportional to the square root of the number of items in the 
sample 

Note: 0 on horizontal scale is equal to the grand average value for the 
whole population 

spread or standard deviation than the distribution for the weights 
of individual men. Fig. 51 shows how the distribution of sample 
averages will become more and more compact as the sample size 
increases. The distribution retains its Normal character, but its 
standard deviation decreases as the square root of n, the number 
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of items in the sample. Thus, if we denote the standard deviation 

for the averages of samples of n items by Un, we have Un = _ ~_, 
-VII 

where u is the standard deviation for the distribution of the in
dividual items. If the average weight of men were 140 lb with a 
standard deviation of 20 Ib then the standard deviation for the 

averageweightoffourmenata time would beu4 = :4 ~~ ~ 10 lb. 

The standard deviation for the weight of 100 men at a time would 

be 0'100 = _ /0 = 2 lb, and so on. This has a very useful applica-
v 100 

tion in the theory of large samples. Suppose, having measured the 
heights of 90,000 men for the army medical examination, we 
found that the distribution for the heights of individual men had 
a mean value 67'5 with a standard deviation 2·62 inches, we 
should know that the true result must be very close to 67 ·5 inches. 
In order to get an idea of how close we were to the true value, we 

2·62 2·62 
should calculate Un = V = 300 = 0·0087. This would be a 

90,000 
measure of the degree of uncertainty in a sample of this size. We 
should be pretty confident that the true result for the whole 
population of the country, in this age group, did not lie more than 
two standard deviations =2 x 0·0087 = 0 '0174 inch away from the 
average value found, viz. 67 '5 inches, and almost certain that it 
was not more than three standard deviations, 0·0261 inch, away 

from 67 '5 inches. The quantity :n is referred to as the standard 

error of the mean. It may be shown that the degree of uncertainty 
inherent in an estimate of the standard deviation from a sample is 

given by the quantity _ ~ which is known as the standard error of 
-v2n 

the standard deviation . Other results of a similar nature are as 
follows: 

Standard error of the variance ~0'2 J~. 

Standard error of the coefficient of variation, V - _; . 
'V 2n 

. 1·250' 
Standard error of the medlan = Vn' 
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A further matter which we shall have to make use of later when 
we come to look at control chart techniques is the question of bow 
the range, i.e. the difference between the greatest and least values 
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in a sample, changes as the sample size is increased. It will suffice 
for the present to say that the average range likely to be met with 
in a sample increases as the size of the sample increases. Fig. 52 
shows how the mean sample range (expressed in units of the stan
dard deviation) grows as the sample size, n, increases. The graph 
starts at Il =2 (since we cannot get a range at all until we have two 
items in the sample), climbs rapidly at first, and then flattens out. 
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Fig. 53b. The same data as those in Fig. 53a but plotted after taking the 
logarithm of the variable quantity. If anything the positive skewness has. 
been over-corrected by the logarithmic transformation into a much less 
serious negative skewness 

So much of the useful theory of sampling turns around the 
Normal Law that when distributions are met with which depart 
seriously from the normal type - usually by being excessively 
skew - the statistician will force such data into a better approxi
mation by using 'transformations'. He may, for example, work, 
not with the original values, x, but with their logarithms, log x, or 
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with their square roots, vi: This sometimes strikes the onlooker 
as a 'bit of a fiddle'. In fact, it is nothing of the sort. The author 
was once accused of 'a fiddle' by some chemists with whom he 
was working when he recommended a logarithmic transforma
tion. One sharp fellow, who had been as worried as the rest, sud
denly saw light. 'You know,' he said, 'if these data had been pH 
readings, we should never have thought there was anything funny 
at all. In other words, if we had put the logs in, there would have 
been no query; our only grouse seems to be that you are putting 
them in.' It is true, of course, that when transformations are in
serted for analytical purposes pure and simple the results have 
to be interpreted afterwards, and will then lack obvious sym
metry. But the lack of symmetry was there to start with - that was 
the reason for doing the transformation in the first place. Figs. 
53a and b show the normalizing effect of a logarithmic trans
formation on a very skew distribution. 

WHAT HA VB YOU LEARNT ABOUT SAMPLING? 

1. Plot the operating characteristic for a scheme in which samples of 
50 items are to be drawn at random, the allowable defect number 
being I. 

2. Suppose that goods delivered in batches of 500 items are inspected 
according to the inspection scheme laid down in the first example, and 
that whenever a batch fails to be accepted on the basis of sample 
evidencc the remainder of the batch will be submitted to 100% inspec
tion. Investigate how the inspection density (percentage of the total 
batch submitted which is inspected on the average) varies with the 
percentage of defectives in the bulk consignment. 

3. A certain variety of peas is found to have an average pod length 
of 4 inches with a standard deviation of t inch. What will be the stan
dard deviation for the average length of samples of sixteen peas? 

4. Samples of four items drawn from a mass production line are 
measured for a particular dimension. It is found that the average cange 
in these samples is four thousandths of an inch. What do you estimate 
the standard deviation of the dimension to be? 
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Control Charts 

• Quality control is achieved most efficiently, of course, not by 
the inspection operation itself, but by getting at causes.' 
DODGE AND ROMIG 

We saw previously that small samples, in isolation, are a very 
unsatisfactory basis for estimating the quality of a batch. We 
recognized that the degree of confidence it was reasonable to 
attach to an estimate of any parameter based on a sample was 
closely related to the size of the sample, i.e. to the amount of 
effort expended in collecting information. Small samples are slip
pery customers whose word is not to be taken as gospel; to cope 
with their nimble behaviour statisticians have had to develop a 
special branch of theory called 'Small sample theory' - a sort of 
psychological study of delinquency in juvenile samples. Being 
immature, small samples are unsuitable for some of the work 
which large samples take in their stride; yet, sympathetically 
handled, they can be very useful fellows indeed; capable, by their 
nimbleness, of doing many jobs for which large samples would be 
too clumsy and too expensive. 

The small sample can never be more than a spot check. There 
are, of course, some cases where a spot check tells us everything 
we need to know, but, in the nature of things, spot checks will 
suffice to detect only really impressive features . We shall see small 
samples doing this kind of work in Chapter 14. There are other 
cases where, having carefully investigated the circumstances, spot 
checks are useful to keep us reasonably satisfied that no serious 
change has ' come about. Any such change of a dramatic nature 
will be spotted at once, even by the spot check; more insidious 
changes will force themselves on the attention as successive small 
changes in several spot checks create a cumulative impression. 
That is tbe fundamental idea underlying statistical Quality Con
trol Charts. But the idea is carried forward in a systematic way. 

It is at this point that we should devote a little thought to the 
inspector in industry. We may epitomize industrial history since 
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the Industrial Revolution as follows. Prior to the Industrial 
Revolution, goods were made by craftsmen (many of them fresh
water sailors and jacks-of-all-trades with never an artistic idea in 
their lives). For the most part these men designed, executed, and 
inspected their own jobs. They were in a happy position com
pared with the modern man working to designer's limits on a 
drawing - if they cut too deeply with their saw they could usually 
modify the design a little to make the error correct. Smaller 
crudities they just left -little dreaming how a later age would ad
mire these as evidence of artistic talent in handmade articles. It 
was the everyday work of very modest competence done by these 
men which set the standards by which average men and women 
were judging when the Industrial Revolution came along. The 
merit of the first machinery was soon recognized to be its speed. 
One man could turn out five shabby jobs where his father had 
made only one very modest one. With productivity came the 
advantage of cheapness - and the disadvantage ofunempioyment. 
Shoddy goods find their market amongst the needy. It was only 
natural that factory owners (curiously, still called manufacturers) 
should press home this advantage of volume of production - and 
no less natural that, under conditions where workers were paid by 
systems that demanded quantity, the virtues of quality should 
rapidly vanish. But there is a limit to all things. Goods can be
come so shabby that no market can be found for them at any 
price - the more so when free competition floods the market. 
When cheapness begins to fail as a distinguishing feature, the manu
facturer has to revert to quality. so that he can offer goods that are 
not only as cheap as those of his competitors but of better quality. 

This, logically, is how the modem inspector was born. The em
ployer paid one set of men to produce goods as fast as possible -
attention to quality resulting in a smaller pay packet. At the same 
time there was set up (often in a different room) a sort of Gestapo 
whose job it was to see that quality was maintained at as high a 
level as possible. The antipathy between men in the shops and 
inspectors which is ever present in many organizations "is only a 
natural outcome of both sides doing their best to obey orders. The 
inspector is despised by the workman because he is a critic who 
never makes anything himself, and despised by his employer 
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because he is an overhead cost - 'non-productive labour' is his 
official classification. For the general reader let it be said as a cor
rective to this highly coloured account that more sensible ideas on 
interdepartmental relations are beginning to prevail, some 
organizations, indeed, being quite near to perfection. 

In admitting that the picture is highly coloured we wish to con
vey to the reader that the South Sea Islands are not quite as bril
liant in hues as they are presented in Technicolor. Do not let him 
imagine that the truth lies in simple black and white. The truth is 
that the inspector in industry does usually occupy an anomalous 
position where his daily task is to make invidious decisions. Verj 
often he can fault the man on the machine by using measuring 
gear superior to that given to the man on the job - the very gear 
from which the worker's measuring instruments derive their 
authority. The inspector has the last say. The fact that the best 
instruments are - rightly - in the inspection department tends to 
create the impression that micrometers, Kelvin Bridges, and the 
like are the inspector's tools in trade. Some unimaginative heads 
of inspection departments have the same idea themselves, and 
devote their energies to worshipping the accuracy to which they 
can measure. It is a tenable point of view - and certainly a more 
promising one - that the inspector's real tools in trade are graph 
paper and pencil. The unerring sign of the good inspector is that 
he keeps lots of graphs and charts. He is a statistician by inclina
tion and instinct, as his hawklike manner of spotting half-baked 
conclusions as to the significance about trends in rejection rates 
shows. The good inspector distinguishes clearly between his pre
liminary function as the man who sorts goods out into' O.K.' and 
'Reject' and his ultimate function as the guardian and defender of 
quality whose aim it is to see that as little product as possible is 
classified as defective. In ciicket, a run saved is a run made. So, in 
the factory, a defective prevented is a positive contribution to 
production. It is an insult to classify this type of inspector as 'non
productive labour'. 

Bad work is done in the shops. The correct place for inspection, 
whenever this can conveniently be arranged, is where the goods 
are being made; the correct time, as the goods are coming off the 
production line. This is recognized in the concept of the 'patrol 
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inspector ', who wanders round in a more or less systematic way 
taking spot checks during production runs and stopping the 
machine whenever adjustment seems necessary. Better prevent the 
m'lking of a defective item than find it the next day at a grand in
spection in the next room. The tendency ofa machine to drift 'out 
of limits' can often be spotted before defective material is actually 
produced. This is a return to the continuous inspection of the 
craftsman, and the man on the machine has something of the 
craftsman's satisfaction in the assurance that the job he is doing is 
correct. 

Wherein lies the snag to this patrol inspection ? C1~arly in the 
fact that the inspector can only carry out spot checks, inspecting a 
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Fig. 54. Control Chart for average of sample of four items 

small sample every now and again. We already know how mis
leading small samples can be in isolation. It may be suggested that 
machinery such as is used in an engineering factory produces 
articles which differ from each other very little indeed. This is 
true; but no truer than that engineers work to close limits on their 
jobs. The best course is for the inspector to record his sample find
ings at each visit to the machine so that his spOt checks form a 
cumulative impression, from which tendencies to drift can be 
detected. Suppose, for example, that a machine were cutting off 
lengths of steel which were supposed to be 1'000 inch long with a 
tolerance of 0'005 inch either way, and that the inspector's 
graphical record for the average length of four items measured at 
each visit developed as shown in Fig. 54. The inspector would be 
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justified in regarding the variability between successive average 
values as of no significance. He would argue that his averages 
were comfortably within the design limits ; that, since the pieces 
produced by the machine were not absolutely identical, and since 
he had taken small samples only, such an amount of variability 
did no more than reflect th~ inherent lack of absolute precision of 
the machine, inflated a little by the inherent lack of absolute pre
cision in his micrometer, inflated in turn by his inability to read 
the micrometer with more than a certain degree of accuracy. He 
would feel that so long as the sample results continued to fluc
tuate to the same extent about the same average value there was 
no need to worry. With a record such as this ·he would be much 
more confident than would be justified as the result of a single 
sample. 

Suppose, now, that on his next visit he got the result 0·996 for 
the average of four items (the reader should plot this result in Fig. 
54). What is he to say? The result lies within the designer's 
tolerance, yet it is lower than previous samples would have led 
him to suspect. Even if all the individual items in his sample were 
within the designer's limits, his suspicions would be aroused. 
He most certainly would • take action', by measuring more 
items immediately. He would not feel justified in waiting another 
twenty minutes possibly before resampling. Had he not had his 
chart, had he been doing spot checks in isolation, his suspicions 
might well not have been aroused. Some patrol inspectors, of 
course, insist on adjustment whenever a sample seems on the high 
side. but the reader will see at once that this is likely to make for 
a lot of unnecessary adjustments, since the averages of small 
samples are, by nature, bound to fluctuate. The line must be 
drawn somewhere. 

Where whall we draw this line? Obviously, at the point which 
marks the probable limit or non-significant fluctuations. We may 
do this, crudely, by guesswork after a series of samples has been 
taken. The statistician has made it easy to do it accurately. 

There is a drawback to drawing this line roughly, which the 
reader will not have failed to see. The line has to be drawn after 
contemplation of the results obtained on a series of samples. Sup
pose these samples themselves were already giving unstable results, 
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owing to the existence of some trouble, how are we, by guesswork, 
to differentiate between inevitable variability and that extra 
variability caused by the existence of trouble? The problem is 
easy if the trouble is causing major fluctuations in the sample 
results, less easy if the trouble, whilp important for the job in 
hand, is not of colossal proportions. The statistical method of 
drawing our ' Action Limit' has to face the same difficulty, but it 
faces it with greater chance of success, as we shall see shortly. 

We have based our argument, so far, on inspection where some 
actual measurement is made on the individual items. Not all in
spection, however, is so careful. Often, on grounds of simplicity 
and economy, items are tested on the 'Go - No go ' principle, 
using a gauge. This 'all or nothing' technique is obviously less 
sensitive than actual measurement. We know whether the items 
are right or wrong but we have no indication as to how right or 
how wrong. all. other occasions we do not measure because we 
cannot, the inspection being essentially qualitative, as, for ex
ample, when we inspect for that nebulous characteristic 'finish'. 
The dangers of the small sample will in this case be even greater; 
the need for a soundly based technique of assessment all the more 
necessary. We shall have to have techniques both for inspection 
by measurement and for inspection by attributes (' go - no go' 
type). Let us consider them in tum. 

QUALITY CONTROL CHART FOR SAMPLING BY ATTRIBUTES 

If we have a product being made in large numbers, we take a 
sample of n items at suitable regular intervals and determine the 
number of defectives in the sample. This number is recorded until 
twenty or thirty samples have been taKen (all the samples, as a 
routine, being of the same size). From the total number inspected 
and the total number of defectives found we can determine the 
expected number per sample. This expected number will apply 
only provided the manufacturing process is stable in the sense 
that it produces a steady proportion of defectives. As an example, 
suppose that successive samples of fifty items yielded the follow
ing numbers of defectives: 

1,0, 1,2,2, 0, 0, I, 3,0,2,0,1,4,0,1,0,0,2,0 
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so that there were a total of 20 defectives in twenty samples of SO 
items each. The percentage defective is thus estimated at 2 %. i.e. 
proportion defective p ~0·02. The expected number of defectives, 
so long as these conditions remain stable, will be np in a sample of 
n items. Suppose, now, we decide to continue taking samples of 
n "" 50 items. The expectation will be 1 defective per sample. Such 
sampling will strictly be described by the Binomial (q +p)n, i.e. 
(0 '98 +0'02)50, and we could calculate the probabilities of 0, 1,2, 
etc., defectives in our samples by calculating the successive terms 
of the expansion. This would be mther hard work, but we have an 
easy way out. The Binomial distribution will be markedly skew, 
as we know, and therefore we can use the Poisson distribution 
as a good approximation, and save awkward computation by 
reading off our results on Poisson probability paper. 

What is our aim ? To find the probable limits of random fluc
tuation in the number of defectives found per sample. Violation 
of these limits we shall take to be prima fa cie evidence that the 
production set-up has changed significantly. We want, in short, to 
draw the line at the point where the number of defectives becomes 
unlikely on the basis of pure chance fluctuations. The question 
arises: What do we mean by 'unlikely'? A convenient practical 
convention, which is found to work well, is to draw the line so as 
to indicate that number of defectives per sample which will only 
be exceeded by chance, in the long run, in one sample in a 
thousand. We draw a line on our control chart at this number of 
defectives and call it the Upper Action Limit. It is common prac
tice, also, to add to the chart another line called the Upper Warn
ing Limit which indicates that number of defectives per sample 
which will only be exceeded by chance, in the long run, in only 
twenty-five samples in a thousand. Fig. 55 is a chart derived from 
Poisson probability paper, showing only the probability levels 
corresponding to Action and Warning Limits. Let us use it to find 
the Upper Action and Warning Limits for the problem we are 
considering, where the expectation is 1 defective per sample. Con
sulting the graph the reader will find that the Upper Warning line 
cuts the vertical at the expectation 1 on the curve c - 4. Thus, the 
number 4 or more defectives is our Warning Limit. We expect 4 
or more defectives once in every forty samples, in the 10Dg run. In 
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the same way the Upper Action line will be found to cut the'ver
tical line at the expectation 1 at the value c = 5·9. Now of course 
we can never have actually 5'9 defectives in a sample, butit is use
ful to use this fractional value as the point at which we draw the 
Action Limit on our chart, since it tells us that 6 defectives is 
already over the border line. We thus have : 

"" :: .... 
v ... ... ... 
0 

'" ... 
CD 

2: 
::> 
z 

'" 0 ... 
~ 
2: 
:::. 
_, 
0 ... 
I-
z 
0 
v 

Upper Action Limit = 5'9 Upper Warning Limit = 4 

10 

8 

b /' 

4 

2 

.... ./" 
~ o~ 

~r ,,'\ .... 
\.~""" 

f--\~ 

~ 
' ·0 

0 ·8 

O'b 

. 
0·4 

0 ·2 

0·1 
0 ' 1 0·2 04 0 ·bO·810 

L 
./ 

V 

,_, 
tf !: 

x 
lJ 

_, 

~r- z 
z 0 

'" ;: 
;/ v 

< 
4 b 8 10 

EXPECTED NUMBER OF DEFECTIVES IN THE SAMPLE 

Pi,. ~S, Chart for upper and lower warning and action limits for control 
charts for number of defective items in a sample 

Fig. S6 shows the Quality Control Chart drawn up with the 
limits marked in. In accordance with actual practice we have 
tbown the first twenty sample results plotted on the chart. We 
fiDd that the -results lie nicely within the limits of variability we 
ba~ calculated. This gives us confidence to believe that the pro
oeu is in 11 state of statistical control, since the observed differences 
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between sample results are explainable by the laws of chance. We 
have what we expect. One of our points lies on the Warning Limit. 
The reader will realize, however, that we expect one sample in 
forty to give a number of defectives as great as 4 or more. We are 
not surprised, then, that this result should have occurred in our 
first twenty samples. The position is almost the same as the chance 
of the ace of spades being in half a pack of cards. 

So long as succeeding samples lie within our calculated limits 
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Fig. 56. Control Chart for number defective 

we shall have reasonable grounds for supposing that the pro
duction process is stable. Suppose, however, that we draw a 
sample later on and find 7 defectives. what are we to think ? The 
first thing to think of is the meaning of our limit. In the long run, 
we expect the Action Limit to be violated by one sample in a 
thousand. That odd chance will come up every now and then, but 
we have agreed that whenever it does occur we shall be exceed
ingly suspicious and lake action. The first action to take will be to 
draw further samples, so as to confirm whether we have met the 



150 FACTS FROM FIGURES 

odd chance, or whether something has happened to the pro
duction set-up which has caused a significant change in the pro
portion of defectives being produced. Suppose we draw two 
further samples immediately and they both lie well within the 
warning limit, then we should feel that probably it was the odd 
chance. False alarms of this sort will be rare, precisely because of 
the probability level associated with our Action Limit, which is 
deliberately chosen so that we do not spend half our time chasing 
red herrings. Suppose, on the other hand, that our two next 
samples, while not outside the Action Limit, lie one just inside the 
Warning Limit and the other between the Warning and Action. 
This -would be ample to confirm that we should investigate the 
process at once. We should believe that some difference had crept 
into the production process - maybe a faulty batch of material, 
maybe wearing of a tool, maybe carelessness on the part of an 
operator - which had thrown the process out of its state of'statis
tical control'. In the usual jargon, we should believe there ex
isted an assignable cause for the apparent trouble, and that, by 
finding and removing this assignable cause, the status quo could 
be restored. Where such systems are operated it is usually found 
that because of the immediate and careful attention paid to the 
process it is improved notably. Production processes are rather 
like young children; they are best behaved in an atmosphere 
where discipline is always at hand. Where the stick is known to be 
ready it is rarely necessary to have to use it. Charts of this sort 
have the added advantage that they provide a record of quality 
and uniformity, a history of the production of the item in ques
tion. For this reason, samples should be plotted in historical 
order, and notes made on the chart of any factors such as change 
of method or material which might be reflected in the quality of 
the product, as well as brief notes of assignable causes of trouble 
found whenever limits are violated. Such information can be of 
the utmost value both to designers and to metho,ds and planning 
engineers. 

Quality Control can also be used for samples of unequal sizes, 
being based on the percentage of defectives found in samples. This 
is a useful technique applied to good inward inspection of large 
batches, especially when used in conjunction with the Dodge and 
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Romig Sampling Schemes. We leave consideration of the matter 
until Chapter 12, where those schemes are dealt with. 

Before we pass on from this type of chart the reader might like 
to have a handy way of getting the' feel' of the meaning of the 
Warning and Action Limits. In Chapter 8 we discussed the dis
tribution of the number of goals scored by a football team per 
match. We found the expected number of goals to be 1'7 per team 
per match. Now we may regard each goal scored as the occurrence 
of a defect in the defence of the opposing side. From Fig. 55 the 
reader may read off the Action and Warning Limits when the 
expectation is 1'7 as 

Action Limit = 7'5 Warning Limit = 5,0 

If he will now place himself in the position of the manager of the 
team against which the goals are scored, he will have a pretty good 
idea of the significance of the limits. Either the attack was very 
strong 01' the defence was pretty weak is the most likely con
clusion when 8 goals are scored against a team, and 6 goals is 
nothing to boast about - it might be just bad luck, but a wise 
manager would look for an • assignable cause'. 

There are cases sometimes when the expectation per sample is 
so large - either because the sample itself is large or because the 
proportion defective in the bulk from which the sample is taken 
is large - that we can draw not only Upper Action and Warning 
Limits, but also Lower ones. At first sight, some people say they 
do not see the point of lower limits, arguing that, after all, it is 
only when things look suspiciously bad that we are interested. 
This is true only up to a point. When samples show significantly 
good results there will be an assignable cause no less than when 
they show results that are significantly bad. Sometimes, the track
ing down of the assignable cause gives a clue as to how the pro
cess might be improved. Occasionally the assignable, cause is 
jiggery-pokery on someone's part by which the defectives were 
prevented from getting into the sample for fear they would show 
up. The author once found trouble in the process when the lower 
limits were violated. The person responsible for the trouble had 
been too conscientious in concealing it! Lower limits can be read 
off from Fig. 55 in precisely the same way as the Upper Limits. 
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We then have one chance in a thousand that the Upper Action 
Limit will be violated and one chance in a thousand that the 
Lower Action Limit will be violated; 25 chances in 1,000 that the 
Upper Warning Limit will be violated and 25 chances in 1,000 
that the Lower Warning Limit will be violated. 

QUALI T Y CONTROL CHART FOR SAMPLING BY VARIABLES 

The reader will see at once that cases of this sort require tW(} 

charts to be kept simultaneously if we are to keep full control over 
the job. One chart will be for the average value recorded in our 
sample, the other will be a chart which takes care of the vari
ability about the average. That is to say we shall want one chart 
for each of the two parameters of the Normal distribution, X and 
u . The calculation of the average value of five items is very simple, 
but to calculate the standard deviation every time we tC'lok a 
sample, even of so small a number as five items, would be very 
laborious. For this reason, it is the usual practice to base the chart 
controlling variability on the sample range (i.e. the difference 
between the greatest and least values recorded in the sample). In 
doing this we throwaway a little of the information available to 
us in our measurements, adopting the stand that small samples 
are only spot checks anyway, so that the moderate loss in infor
mation when we use the range instead of the standard deviation 
is more than compensated for by the time saved in routine cal
culation. The two charts are known as the Mean Chart and the 
Range Chart. 

The second point on which we must be clear is that the limits 
for warning and action on our average chart have absolutely no 
inherent connexion with the limits the designer sets for the ac
curacy required. The limits on Control Charts are statistical 
limits, which depend on the inherent variability of the manufac
turing process and on the size of the sample which is to be taken. 
Irrespective of the limits set by the designer, statistical control 
limits will widen if the job is made on a poor stability machine or 
by a poor operator (in so far as the operator has control over the 
accuracy of the product). Again, with the same design limits, with 
the same machine, and with the same operator, the statistical 
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control limits on the average chart will close in if the number of 
items in the sample is increased. The average chart sets down 
limits of variability for the averages of samples of a given size 
drawn from a particular source. The range chart does the same for 
the sample ranges. The reader is asked to refer again to Fig. 51 
which shows how the distribution of sample averages becomes 
more compact about the grand average value as the sample size 
is increased. It is very important that this idea should be clearly 
understood, not only by the people responsible for. running the 
charts, but also by operatives on the machines, or there may be 
complaints that they are being made to work to tighter limits than 
shown on the drawing. Just as the limits on the average chart 
tighten in as the sample size is increased, so the limits on the 
range chart widen to take account of the fact that the larger the 
sample the more likely it will be to include extreme values, 
either way. 

Fig. 57 shows how the distribution of individual values relates 
to the designer's limits. Since a total range of six standard devia
tions spans all but a negligible proportion of the individual values, 
it is evident that when the designer's tolerance (upper Iimit 
lower limit) is greater than 00 the job can be made by the pro
'cess whose standard deviation is (7 with a negligible proportion of 
defectives. If, on the other hand, the designer's tolerance is smaller 
than this value, 00, then a certain proportion of defectives will 
inevitably be made by the process in question. If these defectives 
are to be avoided, then the process must be modified, perhaps by 
using a more precise machine or - the designer must be less 
ambitious. Many design tolerances are set by conventional stan
dards, and sometimes trouble is thereby occasioned. It happens 
on occasions that the machine set to do a particular job is ex
tremely precise compared with the designer's tolerance. It would 
be foolish in many cases to • take action' simply because the 
statistical limits indicated a significant shift in the values of the 
items being produced, irrespective of whether that shift was of 
practical importance. Common sense must never be forgotten. It 
should not be taken as a general rule, however, that we are always 
to take full advantage of the designer's tolerance. My dictionary 
defines toleration as • allowing that which is not wholly approved'. 

6 
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The nominal value specified by the designer is what he really 
wants. His tolerance is a concession to our inability to achieve 
absolute perfection. Particularly where complex assembly of 
components is to follow, trouble may arise in assemblies as a result 
of bias in piece parts. In the case of telephone exchange equip
ment, for example, unless the components are distributed about 
their nominal value without bias, assemblies of components all 
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within limits, as components, give rise to a proportion of defec
tives, the systematic bias in one component being added to the 
systematic bias in another component. 

The following tables of constants will be referred to in the sub
sequent discussion. 

TABLE 1 

C ONV E RSION OF MEAN SAMPLE RANGE TO STANDARD 
DEVIATION 

Formllla: Mean sample range = d x Population standard deviation 
where d has the value shown in the Table for different sample sizes. 

Sample Sample 
size size 

n d " d 

2 1·128 7 2·704 
3 1·693 8 2 ·847 
4 2 ·059 9 2-970 
5 2·326 10 3-078 
6 2 ·534 

Example. If we know that the mean sample range calculated from 
a series of samples each containing n = 3 items has the value 8 '4, 
then we can estimate the standard deviation for the distribution 

f . d' 'd I ' 8 '4 5 0 o m ~Vl utt Items as 0' = 1,69 = ' , 

Or, again, if we knew that the distribution of individual items 
in a certain population had a standard deviation 0' =7, then we 
could use the table to estimate the mean sample range in 
samples of n ~ 9 items as: 

Mean sample range "" 2 '97 x 7 - 20'79 

The range in samples is customarily denoted by the symbol w, 
and the mean range by w (spoken of as • w-bar'), the addition of 
a bar to any sytnbof always signifying an average. ' 
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TABLE 2 
CONTROL LIMIT FACTGRS FOR THE AVERAGE CHART 

The sample size, n, having been chosen, and the mean range for samples 
of that size being known, the four limits, Upper and Lower Action and 
Upper and Lower Warning, are calculated by multiplying the mean 

range, W. by the appropriate Limit Factor, A. shown in the table, and 
adding the result to the Grand Average. X. in the case of Upper Limits 
and subtracting it from x in the case of Lower Limits_ Thus, 

Upper Limits = .f+Aw 
Lower Limits =X - Aw 

(The symbol .f, spoken of as 'x-double bar ' , is used to denote the 
average of the sample averages. viz_ the Grand Average). 

Sample Warning Action 
size factor factor 

n A A 

2 1-229 1-937 
3 0·668 ] ,054 
4 0·476 0·750 

. 
5 0·377 0·594 
6 0-316 0 ·498 
7 0·274 0 ·432 

8 0·244 0·384 
9 0·220 0·347 

10 0·202 0·317 

Example_ Set up control limits for the A,verage Chart, given that 
f - 23 and w - 4, when the sample size is n ~ 5_ 
From the table we find that when n =S the Warning Factor is 

0-377_ Hence, 
Upper Warnmg-.f+..4tll-23 +0-377 x4 - 24-5 
Lower Warnin.-! -..4w-23 -0-377 x4 - 21-5 

Similarly, we find the Action Factor to be 0-594, so that 
Upper Action - f+..4w - 23 +0-594 x4-2S-4 
Lower Action - I-Aw-23 -0-594 x4-20-6 
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It will be observed that the limits are symmetrically disposed 
about the Grand Average in the case of the Mean Chart. 

TABLE 3 

CONTROL LIMIT FACTORS FOR THE RANGE CHART 

The sample size, II, and mean range in samples of that size, W, being 
known, the four limits, Upper and Lower Warning and Upper and 
Lower Action, are calculated by mUltiplying the mean sample range, W, 
by the limit factor , D , shown in the table for the value of /I in question. 
Thus 

Lirnit = Dw 

Sample Upper Upper Lower Lower 
size action warning warning action 

factor factor factor factor 
n D D D D 

2 4·12 2-81 0 ·04 0·00 
3 2-98 2·17 0 '18 0·04 
4 2·57 1·93 0·29 0·10 

5 2·34 1·81 0·37 0·16 
6 2·21 J·72 0 '42 0·21 
7 2-11 1-66 0 ·46 0 ·26 

8 2·04 1·62 0·50 0 ·29 
9 ],99 j ·58 0·52 0·32 

JO 1·93 1·56 0·54 0·35 

Example. For sample of size n = 7 the mean range is found to be 
w = 6·4. Set up control limits for the Range Chart. 
From the table we find that with n = 7 the control limit factors 

are 2'11,1,66,0'46, and 0·35 for Upper Action, Upper Warning, 
Lower Warning, and Lower Action Limits respectively. Hence 

Upper Action =Dw - 2·1l x6·4-13·5 
Upper Warning - Dw - 1'66 x 6·4 -10'7 
Lower Warning - Dw - O'46 x 6'4-2·9 
Lower Action - Dw-O'26 x 6'4-1'7 
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It will be observed that in the Range Chart, unlike the Mean 
Chart, the Limits are not symmetrically oisposed about the mean 
range. 

Knowing how to use the tables the reader is now in a position 
to set up a control chart system for himself - of the straight
forward type. 

The first step, in practice, is to collect results on about twenty 
samples. It is commonly most convenient to have samples offour 
or five items. As an illustration, let us suppose we are going to 
introduce quality control to the weights of medicinal tablets, 
whose nominal weight is 5 grains. We shall suppose that the 
weight of the tablet is equal to the weight of the medicament. We 
shall suppose that it is desired that these tablets shall not differ in 
any case from the nominal weight by more than 5 % either way, 
i.e. we have an allowance of plus or minus 0'25 grains, to allow 
for lack of uniformity in the manufacturing process. We are going 
to do sampling inspection on the tablets, taking samples of five 
tablets at regular intervals. 

Let us suppose that the first twenty samples gave the following 
results (the figures have been rounded oITto ease the arithmetic in 
the example), the sample means and ranges being as shown. 

5·1 5'0 5-1 4·8 4 ·9 5·0 5·0 4·7 4·9 5·0 
5·0 4·8 4·9 5·2 4-9 5·0 5-l 4·9 4·8 5·2 
5·0 4·9 5-1 5·0 5·0 5·1 4 ·4 5·2 5·0 5·0 
5·1 5·2 4·9 , 4·9 5,0 5·0 5·0 5·0 5·1 4 ,7 
5·3 5·0 5·1 4·9 5·0 5-l 5·2 4,8 4 ·8 5,0 

Average 5·10 4·98 5·02 4·96 4·96 5·04 4·94 4 ·92 4 ·92 4·98 
Range 0·3 0·4 0·2 0 ·4 0·1 0·1 0·8 0,5 0·3 0,5 

4·9 5·0 5·0 5·1 4·9 4,5 5,0 5·0 5·2 5·2 
5,0 5·1 4·9 4-8 4·9 5·0 5·1 5·1 5·J 5·1 
5,3 5·0 4·8 4·8 4,9 5·0 5,0 5·j 5,0 4,6 
5·2 4·9 4-8 4·8 4-9 4·8 4·9 5·0 5· J 5·0 
5-1 5-3 4·8 4·9 5·0 4-9 4-9 4·8 5·3 5·1 

Average 5· JO 5·06 4-86 4,88 4-92 4·84 4·98 5·00 5-14 5·00 
Range 0·4 0·4 0,2 0·3 0,1 0·5 0·2 0 '3 0'3 0·6 

- - - - - - - - - -
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Our next step would be to calculate the grand average, ~, and 
the mean range, W. We total the sample averages and divide by the 

99'6 
number of samples to get the grand average as Jt '" 20 -4'98 

grains. This may be accepted as being very close to the desired 
value of 5 grains. For the average sample range we find 

iy= ~g = 0,345 grains. The next sensible step would be to make 

use of Table I, to estimate the standard deviation for the distribu
tion of individual tablets, in order to check the inherent- precision 
of the process against the required precision. We find that for 
n = 5, d=2'326, so our e~timate of the population standard devia-

. . w 0·345 015 ' . INk tlon IS (1 = (1 - 2'326 "" grams, approximate y. ow we now 

that for a Normal distribution 99·7 % of the whole population lies 
within three standard deviations of the average. We may expect, 
therefore, that for all practical purposes the whole of our tablet 
population will differ from the average value, 4·98 grains, by no 
more than 3<1 - 3 x 0'15 = 0,45 grains. But we are supposed to be 
making these tablets so that they differ by no more than 0'25 
grains from the nominal value. We conclude, at once, that the 
present technique falls far short of our requirements. We may 
calculate the proportion of defective tablets this process must in
evitably produce as follows. Our allowance of 0'25 grains either 

way is equal to g:;; = 1'67 standard deviations. If we enter tbe 

table of the Area of the Normal Curve in Chapter 9 with 'this value 
of t, we see that the probability of deviations greater than this 
value of t is (one tail), by rough interpolation, about 0'05, so that 
counting tablets that would be too large and tablets that would be 
too small we. see that about 10% of them would be out of limits. 

In order to continue with our illustration we shall (with pro
found apologies to the Pharmaceutical Society) change the limits 
so that our crude machine will count as satisfactory. We shall 
assume that we have a tolerance of 10%, i.e. 0·5 grains, either way, 
on these tablets. With such a tolerance we are in no difficulty. 

Our next step is to plot the same results in chart form. to teat 



160 FACTS FROM FIGURES 

whether there is any evidence of instability in the process as it 
stands. Fig. 58 shows the points plotted in the charts for mean and 
ran~, with the control limits drawn in. The computation of the 
control limits is as follows. 
Mean Chart .l' = 4·98 w=0'345 n = 5 

(Use Table 2 for limit factors) 
Upper Action -.l' +Aw-4'98 +0·594 x 0 '345 = 5,18 
Upper Warning - .!+Aw = 4·98 +0'377 x 0·345 = 5'11 
Lower Warning =.l' - Aw =4'98 - 0 '377 x O·345 = 4'85 
Lower Action =.l' - Aw =4'98 -0'594 xO'345 = 4'78 

Range Chart w - 0·345 n = 5 
(Use Table 3 for limit factors) 

Upper Action = Div ~ 2'34 x 0·345 = 0 ,81 
UpperWarning = Dw=! '81 x 0·345 =0,62 
Lower Warning = Dw =0'37 xO'345 = 0 ·13 
Lower Action = Dw = 0'25 x 0 '345 = 0'09 

The reader will note carefully that one point is plotted in each 
chart for each sample, the points representing anyone sample 
being identifiable by the fact that they have the same sample 
number. It will be at once evident that the process is in anything 
but a state of statistical control. There is marked trouble in the 
range chart. Usually, when the range chart is in trouble, we also 
find signs of trouble in the average chart, since it will not in
variably be the case that both a large and a small value will get 
into the same sample so as to keep the average of the sample at 
about the correct value. More usually, we shall have an odd large 
value or an odd small one in a sample, which will be reflected 
not only in the range chart but also in the average chart. More
over, the range chart shows an unusual type of trouble, viz. 
abnormally small range as well as the customary excessive range. 
There would be value in investigating the cause of these dis
turbances. With the assignable causes found and removed, the 
process would enter a period of statistical control, something as 
shown in Fig. 59, the standard deviation having been reduced in 
the process of removing intrusive causes of variation. 

A device often adopted is to plot, not the actual values, but 
deviations from the nominal value. This is a specially useful tech
nique in engineering when dimensions are checked on a clock 
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gauge set to read zero when a tcst piece of the nominal dimension 
is inserted. The quality control charts might then be scaled in 
thousandths of an inch. 

In cold print the system may look a little complex and time
consuming compared with the rough and ready methods fre
quently met with. [n practice the schemes are simplicity itself to 
operate. The general management of the charts on a routine basis 
can well be left to assistants with intelligence but no more than 
elementary education. To the engineer in charge and the tech
nical staff they are a real boon. When trouble occurs, the bell 
rings; when all goes well they are not troubled by red herrings. 
The psychological effect on operatives is very favourable, though 
it is a matter of obvious importance that schemes should not be 
pushed into operation in the full gaze of operatives until they are 
soundly based. Quality Control was killed in one organization 
because it was introduced with a flourish of trumpets by a da'bbler 
who unfortunately 'got the formula wrong'. The best plan is for 
the scheme to be introduced, as an experiment, alongside the 
existing procedure. When this is done, confidence in the value and 
reliability of the scheme soon grows. Initial difficulties can be 
ironed out without the fate of the firm's good name being at stake. 
Sometimes there is a reduction in actual inspection costs. At other 
times it is found a profitable business to allow inspection costs to 
rise somewhat, this being true mostly in places where inspection, 
being previously very inefficient, allowed the existence of a high 
rejection rate. As a general rule, it may be said that statistical 
methods of inspection will lead to the most economic inspeetion 
technique for the degree of protection demanded. It not infre
quently happens that people are aggrieved to be told that they 
will have to increase the inspection density to get the degree of 
protection they ask for. There is much confused thinking - by 
people who should know very much better from experience - on 
the question of inspection protection. It is a matter we shall be 
considering in some detail in the next chapter. 

We shall now sec what modifications are made in the statistical 
control scheme when the designer's tolerance is very wide com
pared with the inherent precision of the manufacturing process. 
Remembering that for a Normal Distribution virtually all the 
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distribution lies within three standard deviations either side of the 
average, so that we may take the effective width of the distribution 
as 00, we see that, if the designer allows plus and minus a quantity 
T on either side of the nominal value, the ratio of 6a to 2T will tell 
us at once whether the process is capable of meeting the design 

limits. If the ratio-fr is greater than unity, then rejects are in

evitable, however careful the operator may be in adjusting his 
machine. It is as if we gave him a hack-saw and asked him to work 
to one-thousandth of an inch. Now usually in statistical quality 
control we use the mean sample range as our measure of dis
persion instead of the standard deviation. We can of course use 
Table I to convert mean sample range to standard deviation. It is 
handy in practice, however, to be able to see the position at a 
glance using the mean sample range itself. Table 4 enables us to 
do this. We simply have to calculate the ratio of the desigllf~r's 
• tolerance range' , 2T, to the mean sample range, W, to get what is 
known as the Tolerance Factor. The result is compared with the 
minimum value of the factor quoted in Table 4 for the sample size 
in question. If the calculated value is less than the value quoted in 
the table we know that the process must produce reject material. 

Example. Suppose in a particular case we had a mean sample 
range of 0·003 inch in samples of n = 5 items. Is the process 
capable of making to limits plus or minus 0·005 inch? 

In this case we have 2T=0·01 inch and w- 0·003 inch. There
fore 

2T 0-01 
Tolerance Factor = ~ = 0.003 = 3·33 

But the value quoted in Table 4 for n =5 items is 2-580. We con
clude that the process is capable of meeting the design limits 
quite comfortably. 

There is obviously a simple relationship between the ratio of 
the calculated value of the Tolerance Factor to the Minimum 
value of the Factor and the minimum proportion of the product 
which will be outside limits. We have already shown how. having 
obtained the population standard deviation from the mean sample 
ran,e. by usin, Table I. we may use the table for the Areas of the 
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TABLE 4 
MINIMUM VALUES OF THE TOLERANCE FACTOR 

Tolerance factor 

2T 
=~ 

Sample 
size 

n 

2 
3 
4 

5 
6 
7 

8 
9 

Minimum 
value of 
factor 

5·321 
3·544 
2·914 

2 ·580 
2·363 
2·219 

2 ·108 
2·020 
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Normal Curve to estimate the proportion of the product which 
must be out of limits. Interested readers may like to follow up 
this clue and see for themselves the way in which the graph of Fig. 
60 may be arrived at, which shows the minimum proportion of 
defectives for various values of the ratio. 

Calculated value of Tolerance Factor 
Mininlum value of Tolerance Factor 

(by minimum value in this context we mean, of course, not the 
minimum possible but the minimum necessary to ensure that the 
process is capable of meeting the design limits with virtually no 
rejections). 

Suppose, now, we have a case where the calculated value of the 
Tolerance Factor is much greater than the minimum value indi
cated in Table 4, that is to say the design tolerance is very generous 
compared with the short-term precision of the process (as meas
ured by the range chart). It might well be pemickety in practice to 
insist that the nominal value be held, provided only that we keep 
the product within the design tolerance limits. In such a case we 
aball naturally want to modify our chart for sample means so as 
to permit a certain instability in the process average. 
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A very sensible approach is to fix both the position of the 
control limit and the sample size by specifying Producer and 
Consumer Risks. In order to illustrate how this may be done, let 
us imagine that we have a process for which the range chart 
indicates that the short term standard deviation is only 1'5 units, 
while the design tolerance is plus and minus 10 units from the 
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Fig. 60. Relationship between Rejection Rate and Tolerance Factor 

nominal value (which we shall call zero). We shall determine the 
sample size and position of control limits to ensure that 

(a) if the process is producing only 1 % of product out of 
tolerance when the sample is taken, there will be a Producer 
Risk of 2 % that the sample average will plot outside the 
control limit. 

(b) if the process is producing 10% of product out of tolerance 
when the sample is taken, there will be a Consumer Risk of 
5 % that the sample average will plot inside the control limit. 

To solve the problem, all we have to remember is that when we 
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have individual values distributed with standard deviation 0' the 
averages of n values will be distributed with standard deviation 
O'n =O'/Vn. The Table of Area of the Normal Curve on page 116 
then enables us to find what we wish to know, as follows. 

Let the proper position for the control limits be k standard 
deviations inside the tolerance limits and the appropriate sample 
size be n. Consider the Producer Risk condition i11ustrated in 
Figure 61. For 1 % of product outside tolerance (one tail only need 
be bothered with), the Table of Area of the Normal Curve indi
cates a value of t equal to 2'25. That is to say the process average 
will have to be 2'250' = 2'25 x 1'5 = 3,37 units inside the tolerance 
limit. With the process average in this position, we want 2. % of 
sample averages expected outside the control limit. From the 
Table of Area we see that this implies that the control limit will 
have to be at a distance 20'n - 20'/"';n = 3'O/VIi units away from the 
process average, in the direction of the tolerance limit. The reader 
will have no difficulty, now, in seeing from Figure 61 that the 
distance kO' = 1· 5k between the control limit and the tolerance 
limit will have to be such that 

l'5k - 3'37 - 3'O/"';n .... (1) 

If this equation is satisfied, the specified Producer Risk will 
obtain. 

Turning now to the Consumer Risk condition, and using 
exactly the same form of argument, step by step, it will easily 
be deduced by the reader (if he has followed carefully) that the 
Consumer Risk condition illustrated in Figure 62 will obtain 
provided that 

1'5k-l'87+2'47/Vn .•.. (2) 

Solving our two equations for nand k, we find that n - 13· 3 and 
k - l·7. Hence, the control limits should be placed at 1·70' -
1'7 x 1'5 - 2'5 units inside the tolerance limits and the sample size 
should be n = 13. Figure 63 compares this solution with conven
tional control limits for n -13 as well as with conventional control 
limits for the common arbitrary sample size of n -4. 

The reader will wish to have formulae for n and k. They are 

(
7'1 +7'2)2 d k 7'112 +T211 n- - - an .-=-='--..:::...:0 
11 - 12 7'1 +T2 
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PROCESS UPPER 

AVERAGE TOLERANCE 
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PRODUCT 
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Fig. 61 . Producer Risk Condition, showing behaviour of control chart when 
quality of product is acceptable (see Fig. 62) 
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PRODUCT 

~ 
CONTROL 

LIMIT 
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Fig. 62. Consumer RisJc: Condition, showing behaviour of control c:bart 
when quality of produc:t is unac:c:eptablc (see Fig. 61) 
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UPPH TOLERANCE 

k~" 2,5 

UPPER CONTROL LIMIT 
+ 7,5 r-'-------------------
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LOWER CONTROL LIMIT 

LOWER TOLERANCE 

Fig. 63. Comparison of limits based on Producer and Consumer Risk 
concept compared with conventional limits for n - 4 and n - 13 

where the I and 'T values are values of the quantity I in the Table 
of Area on page 116, selected such that 

11 corresponds to the percent defective product at which the 
Producer Risk operates 

12 corresponds to the percent defective product at which the 
Consumer Risk operates 

'Tl corresponds to the Producer Risk 
'T2 corresponds to the Consumer Risk. 

Thus, in the example just worked out 11 ... 2'25,12 - 1.25, 71 - 2'0 
and 'T2 .. 1,65. It is important to remember that when k is found 
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the control limits are to be placed at ku units inside the tolerance 
limits. The reader may check the results for the example using the 
formulae. 

Needless to say, when the machine drifts systematically in a 
predictable direction (e.g. owing to tool wear) we do not reset to 
the nominal but back to the safe side limit. Ifthe average number 
of parts pro(luced between resets is p and we inspect all the parts 
made since the last visit whenever the chart plots out of control, 
as a screening inspection, a rough rule for minimizing the total 
amount of inspection is to visit the machine at intervals long 
enough for the production of v';P pieces. 

By considering a range of hypothetical percentages defective 
being made by the process the reader may care to try to. deduce 

(0) the probability of the chart plotting out of control for 
various conditions of the process (a plot of this is the 
Operating Characteristic) 

(b) The expected amount of inspection as a total of (i) parts 
taken as samples and (ii) parts undergoing screening inspec
tion, for various conditions of the process, assuming that 
p = 130, and hence arrive at a graph for the average Out
going Quality. 

(part answer: Visit every 42 parts. A.O.Q.L. - 1'6% defective 
when the process is making 5 % defective). 

There remain only two practical points we should mention in 
this introductory discussion. The first is that the control limits 
need revising from time to time so as to be soundly based on 
recent experience. The second point is that these charts can be 
used with every confidence, even where the distribution of the in
dividual items is extremely skew. The process of taking the 
average samples rapidly 'normalizes' skew distributions, the 
eccentricity of extreme values from the tail of the distribution 
being masked by averaging with values nearer the modal value. 

NOW TRY YOUR HAND AT CONTROL CHARTS 

1. Ten successive samples, each of 100 items, were taken from a pro
duction line in a factory and the number of items failing to pass a ring
gauge test in each sample was recorded as follows: 

1,2,2,4,2, 1,0, 1,2',0 
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Use these data to calculate the expected number of failures per sample 
of 100 items and-use Fig. 55 to set up a control chart for this sampling 
arrangement. 

2. Design a new control chart on the basis of the data in the above 
question to cover the case where 200 items were to be drawn io each 
sample. 

3. A certain company has a quality control system on a tin-filling 
operation. Twenty successive samples, each of four tins, are weighed 
and the grand average weight found to be 2 Ib with an average sample 
range of 3 drams (there are sixteen drams to an ounce). Use Table I to 
estimate the standard deviation, and hence estimate within what limits 
virtually all the tins lie. 

4. What would you expect the mean sample range to be in samples 
of ten tins each? Use Tables 2 and 3 to set up control charts for mean 
and range in samples of ten tins, for the case mentioned in question 3. 

5. The length of a certain dimension on a piece part to be used in 
vacuum cleaners is to be held withio 1 thousandth of an inch of the 
nominal value. The job is put on to a certain machine and the average 
range in a series of samples of four items is found to be 1·4 thousandths 
of an inch. Estimate the standard deviation of the product from this 
machine, and so make use of tables of the area of the normal curve to 
estimate the minimum percentaae of defective items which this machine 
would make. What standard deviation would be acceptable? What 
mean sample range in Samples of four items does this correspond to? 
What is the mioimum value for the tolerance factor (see Table 4)7 
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Safety in Sampling 

, .. No. no!" said the Queen ... Sentence first - verdict after
wards."· LI!WlS CARROLL 

One of the main ideas behind sampling inspection is economy of 
inspection effort, and considerable attention has been paid to the 
problem of achieving the maximum economy of inspection effort 
compatible with the degree of risk willingly faced. In order to 
achieve this maximum economy, we shall have to make use of the 
theory of probability which gives us knowledge of the behaviour 
of sampling schemes. To introduce sampling schemes without 
adequately considering how they will operate is the height of 
foolishness. 

We may summarize some ofthe fundamental principles already 
dealt with as follows. Firstly, a small sample in isolation tells us 
next to nothing about the quality of the batch from which it is 
'drawn. Thus a sampling scheme which says 'Deliver in batches of 
50. Samples of 5 items to be taken. Allowable defect number - 0' 
is pretty hopeless. In a pack of 52 playing cards there are 12 face 
cards. As any card player knows, it is extremely common for a 
hand of 5 cards to contain no face cards. In the same way it will 
be very common for a sample of 5 items drawn from a batch 
which is highly defective to contain no defective items., If, how
ever, we accumulate sample results over a period, then we can use 
the control chart technique to tell us whether the apparent dif
ferences between the samples may be ascribed to random sam
pling fluctuations, or whether there is evidence of real between 
sample variation in quality. We may also use accumulated 
samples to form an accurate estimate of the general quality level, 
and with this knowledge at our disposal we can then use small 
samples and a control chart technique to spot future de
partures from the quality level estimated from our previous 
experience. 

Inspection of batches may be by Consignment Sampling, in 
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which the onus rests primarily on the consumer, or it may be 
based on systematic records of the Quality Control type, kept by 
the manufacturer and checked by small samples taken by the con
sumer. 

We said previously that the risk deliberately accepted in samp
ling inspection should be fairly divided between the producer and 
the consumer. The Producer's Risk in a sampling scheme is the 
risk that a batch of goods of acceptable quality will be rejected by 
the sampling scheme as a result of a pessimistic-looking sample 
being drawn. The Consumer's Risk is the chance that a batch of 
goods will be accepted by the sampling scheme as a result of an 
optimistic-looking sample being drawn from a batch which should 
properly be rejected. We have seen that there is a sharp distinction 
to be drawn between stringency and discrimination in a sampling 
scheme. Increased stringency does not bring increased discrimina
tion. A further point is that every sampling scheme favours a par
t.icular quality level, so that increased stringency only has the 
effect of penalizing the producer without making any contribu
tion to an equitable distribution of the risk. 

Suppose, now, that you are a manufacturer, regularly receiving 
batches of goods and accepting or rejecting them on a sampling 
basis. The supplier may be some outside organization, or you 
may be receiving the consignments from a previous stage in your 
own organization. You ask the sampling scheme to give you pro
tection. Immediately we ask: • What sort of protection? '. You 
may want protection on every individual lot, so that you may be 
sure that the chance of any single lot being poorer than a certain 
quality level is small. You will want this Lot Quality Protectioll 
whenever the lots retain their individuality, not being mixed in 
store with other lots of similar items. But if the lots are passed into 
a store and mixed with other lots so that they lose their identity 
you will require Average Quality Protectioll. This is not to suggest 
that in either case you will be indifferent to one kind of protection. 
You will always want both - but there will be a natural emphasis •. 
Either lot quality protection will have no significance for you, or 
it will be a matter of some importance. It will be clear that in 
guaranteeing one kind of protection we must automatically do 
something about the other. This distinction of practical impor-
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tance is frequently not thought about. We vaguely realize that the 
two are closely related; that it is impossible for batches to be 
really bad in one respect and simultaneously really good in the 
other, and we leave it at that. A pity, for the distinction is worth 
making, and we can do something about it. 

Suppose you say that you are interested in Lot Quality Pro
tection. The statistician will then at once raise the unpleasant 
question of the Consumer's Risk. He will say that, since you want 
to sample, you must face squarely the question of this risk. When 
you specify the risk you are prepared to run, he will design for you 
the sampling scheme which gives you that level of guarantee with 
the minimum amount of inspection effort. If you are prepared to 
take big chances, the scheme will be very light on inspection costs, 
but if you are going to be very fussy, the cost will rise - but always 
the cost will be the minimum to ensure what you ask for. To 
specify your Consumer's Risk, you tell the statistician what you 
would consider to be a really bad lot in terms of percentage defec
tive. If you wanted to be highly sure of rejecting by the time a 
batch was as poor as 5 % defective, then it would be suggested 
that you took a chance of 10% of accepting such a batch. This 
would be your Consumer's Risk. The level 5 % defective is then 
called the Lot Toleranu Percent Defective. This idea needs a little 
explaining in its psychological aspects. It does not mean that one 
batch out of every ten accepted would be 5 % defective. It means 
that of all batches which are 5 % defective, 90 % will be returned 
as rejected batches. The reader with experience of industry will 
appreciate that a rejection rate of 90% is catastrophic. What we 
should picture is a supplier falling from grace, and his rejection 
rate rising so rapidly that it would reach 90 % by the time his 
batches were 5 % defective. 

Suppose, on the other hand, you were interested in Average 
Quality Protection. In this case the statistician will ask what is the 
absolute upper limit to the percentage defective in the goods after 
inspection that you are prepared to accept in the long run. You 
may reply that you want to be absolutely sure that in the long run, 
no matter how bad the batches offered you, there will be no more 
than 4 % defectives in the goods actually accepted by you. This 
value of 4 % is called the Average Outgoing Quality Limit, i.e. the 
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maximum percentage of defectives that will in the long run be left 
in the goods accepted and outgoing from the inspection process. 
Notice that it is an upper limit - in practice the outgoing per
centage defective rarely exceeds half the limit value. 

When we have told the statistician what we want, he will then 
have to consider the most economic way of achieving the result. 
The sizes of the batches to be inspected are not usually within his 
control - the most he can do is to recommend, in accordance with 
general principles, that for the sake of economy they should be as 
large as possible subject to the requirement of reasonable as
surance of homogeneity. He will ask for one further bit of infor
mation, however. So far you will have told him what you want to 
be sure of in the way of quality after inspection. To give you the 
most economic sampling scheme he will need to know the pressure 
to which the sampling scheme will be subjected in the ordinary 
way. If the goods supplied normally contain a fairly high propor
tion of defectives, the pressure is great, and the sampling scheme 
will have to be made proportionally robust in the way of larger
sized samples, the real reason for this being that the quality of the 
goods supplied will be near to the rejection quality, so that a care· 
ful inspection will be required to decide whether or not to accept 
them. In statistical terminology, we shall be asked the value of the 
supplier's Process Average Percent Defective. 

This whole problem has been carefully worked out and the 
results for all cases likely to arise in practice have been made 
available in the form of Single and Double Sampling Tables, by 
Dodge and Romig of the Bell Telephone Laboratories. We shall 
now explain these sampling schemes, which are characterized by 
provision for 100% inspection of all batches not accepted as a 
result of the drawing of a satisfactory sample. This 'screening 
inspection' plays a fundamental part in achieving the desired 
result, as will shortly appear. The reader will notice that the total 
amount of inspection performed in the long run under this 
system is made up of two distinct parts: 

(a) the inspection of pieces drawn as samples; 
(b) the inspection of the remainders of those batches which fail 

to be accepted by the sample results and so are detailed 
for 100% inspection. 
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It will be evident that in the event of the supplier's quality falling 
off, the amount of 100% inspection enforced by the schemes will 
rise. Thus we see increased risk resulting in greater protection 
costs, the normal insurance principle. Moreover, these increased 
inspection costs provide a compelling argument for action to be 
taken to stem the rot. 

In the Single Sampling Schemes, whether for Lot Quality Pro
tection or for Average Outgoing Quality Protection, each scheme 
will be represented by three numbers : N, the batch size, n, the 
sample size, and d, the allowable number of defectives. For a 
given value of the Process Average Percent Defective - which we 
shall in future refer to for convenience as the ·P.A.'- there will 
be a precise value for the probability of the allowable number of 
defectives being exceeded by chance. This probability is the chance 
that a lot which in fact is of acceptable quality will be rejected 
under the sampling plan. It is what we have learnt to call the Pro
ducer's Risk. Lots so rejected will be detailed for 100% inspection 
of their remainders. 

We can calculate the average amount of inspection per lot for 
a given value of the P.A. as the number inspected in the sample 
pillS the product of the remainder of the lot times the Producer's 
Risk. Mathematically, if we have lots of size N from which 
samples of n items are drawn, then the expected amount of in
spection in the long run when the Producer's Risk has the prob
ability R will be given by 

l = n + (N - II)R 
It is thus open to us to calculate this average amount of inspection 
for different sample sizes and different allowable defect numbers 
by the theory of probability, and so arrive at the scheme which 
gives the desired protection with the minimum amount of inspec
tion on the average. In practice, of course, we have no need to do 
the work for ourselves; we can make use of the published tables 
already mentioned. 

As an illustration of the way in which the calculations may be 
performed, let us design a sampling scheme for the follOwing 
case. Batches of goods are to contain N - 500 items. We wish the 
scheme to ensure a Consumer's Risk of 10 % of accepting batches 
which contain 5 % defective, i.e. the scheme shall reject 90 % of 
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such batches. The scheme shall be the most economic possible for 
this degree of protection under the normal conditions, i.e. when 
the supplier is sending in batches of Process Average Quality. The 
P.A. is 1 % defectives. 

Our first job will be to make a list of sample size and allowable 
defective numbers which will give the required degree of protec
tion when the supplier is submitting batches of Lot Tolerance 
Percent Defective, viz. 5 %. We may do this very simply by making 
use of our Poisson Chart, which will be amply good as an approxi
mation to the skew distribution of the relative Binomial 
(0,95 +0·05)n. Referring, then, to Fig. 39, we set up the following 
table. 

Allowed Expectation SampJesize 
defect number 

d - e n 

0 2-3 46 
1 3-9 78 
2 5'4 108 
3 6-8 136 
4 - 8'0 160 
5 9'2 184 

The first column-shows allowable nurn~r of defectives, 0, 1,2, 
etc. We use the Poisson Chart to read off the expected number of 
defectives per sample such that the probability of rejection, i.e. 
the probability of the number, d, being exceeded is 0·9. For ex
ample, when d =O, we find the probability 0'9 on the left-hand 
vertical scale, run our finger out until we meet the curve c - 1 or 
more, and read off the expected number per sample for which 
these conditions hold on the bottom scale as equal to 2'3. 
Similarly, when d ... l, with the probability 0'9 and the curve c-2 
or more, we find that the expected number of defectives in our 
sample should be 3,9, and so on for other values of d. These num
bers are entered ~ the second column. The third column is arrived 
at by asking ourselves what size of sample. 1f, would have the 
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expectation given in the second column when the supplier is send
ing in batches containing the Lot Tolerance Percent Defective, 
5 %. Thus, with the value 5 % defective in the bulk, we should have 
to have a sample of n - 46 to give us an expected number of defec
tives in the sample equal to 2'3. A sample of 78 would give us an 
expectation of 3'9, and so on. These sample sizes are entered in the 
third column. Any of the (n, d) combinations in this table will 
give us the protection we ask for. 

The question which of them we shall use is an economic one. 
We argue that the supplier normally sends in lots of Process 
Average Quality, viz. 1 % defective, and ask ourselves which of 
the schemes is most economic in inspection effort under these 
normal conditions. 

We calculate the average amount of inspection using the for
mula previously quoted. The Producer's Risk, R, is different for 
each (n, d) combination. It is found from the Poisson Chart. The 
whole procedure for finding the minimum inspection scheme is 
shown in the following table. The third column, headed 'expec-

Sample All. Expecta- Prod. Avg. in- Avg. Total 
size defects tion at risk spected as inspected 

II d P.A. remainders 

46 0 0·46 3·37 168 214 
78 I 0·78 0 ·19 80 158 

-+108 2 1·08 0·10 39 -+147 

136 3 1'36 0·06 22 158 
160 4 . 1·6 0·03 10 170 
184 5 1·84 0·01 3 187 

tation at P.A.', is found by multiplying the sample size, 11, by the 
P.A. expressed as fl'Clctio/l defective, in this case 0'01, since the 
P.A. is 1 % defective. Knowing this value for the expected num
ber of defectives in our sample, we can read from the Poisson 
paper the Producer's Risk for the scheme. Thus, [or n - 46, the 
expected number of defectives in the sample under P.A. con
ditions is 0,46. The Producer's Risk is the probability that I or 
more defectives will be found in the sample when the allowable 
defect number is O. We find the Producer's Risk-O'37, Le. with 
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this scheme 37 % of all batches at P.A. quality would be rejected 
by the sample result and have to go for 100% inspection of their 
remaining items. The average number of items inspected per 
batch on the 100 % screening inspection is found by multiplying 
the remaining number of items in the batch by the Producer's 
Risk. The total amount of inspection expected on the average per 
batch is then easily found and the result entered in the last column. 
In our case the batch size is N ~ 500. Inspection of the last column 
shows that, as we pass down the table, the average amount of 
inspection at first falls, but then begins to rise again. The mini
mum amount of inspection occurs when we use the scheme 
(n - l08, d = 2). This is the required solution for our problem. 

We shall next wish to draw for ourselves the Operating Charac
teristic for this scheme. We have already shown how this is done 
using Poisson paper, and assuming different values for the per
cent defective in the bulk. To avoid a lot of arithmetic, we may 
assume for this purpose that the sample size is n = 100; this will 
have a negligible effect on the Operating Characteristic. The cal
culation would then be as follows: 

Assumed % Defectives Probability 
defective expected in of 3 or more 
in bulk sample defectives 

n = l00 

0·5 0·5 0 '015 
1·0 ) ,0 0 '08 
1'5 l 'S 0·20 
3'0 3·0 0 '57 
6'0 6·0 0'94 

10'0 10·0 0'996 

The figures in the last column, multiplied by 100, are the percen
.., of batches which would be rejected by the samples at the 
stated percentage of defectives in the bulk. The results are shown 
sraphioally in Fig. 64. Figs. 65 and 66 show how the Producer's 
RHk and Consumer's Risk arise. 
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Now although the present scheme was designed specifically to 
give a certain Lot Quality protection, it is evident that it will also 
provide average quality protection, incidentally. We can inves
tigate what the percentage of defective items left in the batches 
will be after inspection as follows. Let us suppose that defective 
items are either repaired or replaced whenever they are found, 
either in a sample or during screening inspection of remainders of 
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Fig. 64. Operating characteristic for samples of IDO items when the batch 
will be rejected whenever three or more defective items arc found in the 
sample 

batches rejected by their samples. Under these circumstances the 
proportion of the defectives in batches which will be removed will 
be in simple proportion to the fraction of the bulk inspected 
altogether. This fraction, as we have already seen, will vary as the 
percentage of defectives in the batch changes. The Operating 
Characteristic tells us at oncc what proportion of batches have 
100% inspection at each possible value of the perccnt defective in 
the batch (Fig. 64). We calculate the average percent defective in 
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the batches after inspection, as shown in the table on the adjoin
ing page. For any given value of percent defective in the goods 
offered for acceptance we get the fraction of batches rejected by 
sample from the Operating Characteristic and enter it in column 
2. Knowing this, and the si2'.e of batch remainders (=400 here), 
we can enter in column 3 the average number per batch which 
will be inspected as remainders. Column 5, the total average 
amount of inspection per batch, is then obtained by adding to 
the figure in column 3 the sample size (here taken as 1(0). But 
the batch size is N=500, so we can at once enter in column 6 the 
average fraction of the batch NOT inspected. If the percentage 
defective in the batches, as given in column J, is multiplied by the 
fraction not inspected we get the percentage of defectives left 
after inspection, as shown in column 7. This is the Average Out
going Quality; The results are shown in graphical form in Fig. 67. 
It will be seen that there is a maximum possible value for the Out
going Percent Defective. This is the Average Outgoing Quality 
Limit. In this case it has a value just over 1·1 %, and occurs 
when the goods submitted for inspection contain about 2 % 
defectives. Notice that, when the supplier is sending in goods at 
the P.A. value of IX, the Average Outgoing Quality is about 
0'7 %, and that ifhe started to send in batches at the Lot Tolerance 
Quality of 5 % the goods passed on from inspection would only 
contain 0'5 % defectives, this being due to the high proportion of 
batches detailed for 100% screening inspection (Consumer's Risk: 
10%, therefore 90% of batches get screening inspection). 

We hope to have made the reader sufficiently at home by this 
example with the principles on which the Dodge and Romig 
Sampling Schemes are worked out, so that he may use the tables 
with understanding and appreciation of the very considerable 
care and hard work which went into their computation. We hope, 
too, that he will agree that rough guesses are not likely to give 
such good results in practice as use of the published tables. We 
emphasize yet again that sampling is a complex business in which 
decisions are best left to experts if we wish to know exactly what 
any scheme will really do in practice. It is easy to lay down the 
law; much less easy to know the meaning and effect of what you 
have said. 
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It remains now to give a description of the tables themselves. 
They are in two sets: one specifically designed for cases where the 
emphasis is on Lot Quality Protection, the other for Average Out
going Quality Protection. The tables cover lot sizes from N = I to 
N = 100,000 for all practically useful values of Lot Tolerance Per
cent Defective and Average Outgoing Quality Limit up to 10 %. 
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Fig. 67. How the average outgoing quality varies with Ihe percentage 
defeclive in batches of 500 items from which samples of 100 items are 
taken with an allowable number of defects equal to two per sample. With 
the screening inspection there is a limit to the poorness of quality in the 
goods after sampling inspection 

In the Lot Tolerance Tables, for each sample scheme we are given 
the A.O.Q.L. (Average Outgoing Quality Limit) corresponding 
to the scheme. In the Average Outgoing Quality Tables, for each 
scheme we are given the Lot Tolerance Percent Defective based 
on a Consumer's Risk of 10%. The general layout of the Single 
Sampling Tables is similar to that of the Double Sampling Tables 
illustrated on pages 190 and 191. 

7 
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Our indebtedness to Messrs Dodge and Romig is not ended 
with the Single Sampling Tables, however. Imagine that you were 
inspecting a batch of N - 5,000 items, wishing to work to a Lot 
Tolerance Percent Defective of 2 %, knowing that the supplier's 
P.A. ran at 0,] %. Consulting your Dodge and Romig Single 
Sampling Tables, you would be told to take a random sample of 
n - 195 from the batch and allow not more than I defective in the 
sample. You are really getting splendid advantages from your 
large batch size, the inspection of ]95 items out of 5,000 being 
very jolly to contemplate. You know the scheme is mathe
matically worked out to give you the protection . desired in the 
most economic way. You take the sample and are aghast to find 
two defectives in your sample. This would indeed be very dis
turbing. You cannot monkey about with the schemes without 
upsetting them. The strict position is that you should now roll up 
your sleeves and get busy doing 100% screening inspection on the 
remaining 4,805 items of the batch. This is not so jolly. The prac
tical man's very natural and proper reaction is • Blow this for a 
game. Let's take another sample.' The reader, being by now more 
than a little versed in these matters, while sympathizing with the 
practical man will query whether this is in fact a sensible thing to 
do. The line was drawn and agreed to; if we can rub it out and 
start again once there seems no logical end to the game. Obviously. 
if we can set aside sampling judgements in this arbitrary fashion 
just because we are ordered to do a bit of hard work in our own 
ultimate interests, then there is no point in having properly de
signed schemes at all. We just keep on taking samples until we 
get a favourable result. Yet surely the practical man is not being 
altogether silly? We feel that given circumstances of this sort, 
there should be some properly worked out system for taking a 
second sample. We shall of course insist that the result I)btained 
on the unfortunate sample be not thrown away, that it shall be 
pooled in with any further sample result so as to have a fair say, 
We shall also probably feel that any second sample taken after an 
unfavourable first one should be strictly worked out in accord
ance with probability theory so that the protection we aim at 
from our sampling scheme shall not suffer as a result of this 
second chance. 
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The statistician agrees with all these points. They are common 
sense and so comfortably at home in statistics. He welcomes the 
idea for another reason: with this arrangement of the' second 
chance' he can design his schemes even more economically in 
terms of average inspection. In fact, the more chances we have the 
more economic the scheme can be ill the long mil. We shall be dis
cussing later in the chapter the schemes where we sample the 
batch olle item at a time, and cease as soon as we can draw a con
clusion. There is a drawback in practice to the use of multiple 
sampling schemes. Like the people who want to • have a second 
shot'. they are irresolute. Shilly-shallying of this sort would often 
be intolerable in a factory, where smooth running of the pro
duction machine depends as much on taking the bull by the horns 
as on being right in every detail. It all depends on the circum
stances and each man must adopt the plan which best suits him in 
a particular case. This is not the affair of the statistician. His job 
is to give us the tools and let us choose from them as we think lit. 
Let us then look at the Double Sampling Schemes of Dodge and 
Romig. 

In Fig. 68 the Double Sampling Scheme is made clear. As an 
actual case, if we enter the Dodge and Romig tables for a Double 
Sampling Scheme for inspecting a batch of size N = 450 when the 
P.A. of the supplier is 1 % defective and we are prepared to accept 
a Consumer's Risk of a 10 % chance of accepting a lot in which 
the percent defective is 3 %, we find the scheme (Ill = 85, d1 - 0, 
n2 ~ 125, d2 =3), i.e. we are to take a first sample of 85 items at 
random from the batch and accept the batch on the basis of this 
first sample provided no defectives at all are found in the sample. 
If more than three defectives are found in this first sample, the 
batch is to be rejected at once without any further sample being 
taken, but if the number of defectives in the first sample, while 
exceeding 0, is not more than 3, then we are to take a second 
sample of 125 items and may accept the batch provided the total 
number of defective items jor first and second samples combil/ed 
does not exceed 3. 

The basic ideas behind the computation of these Double Samp
ling Schemes are precisely the same as those underlying the 
Single Sampling Schemes, though they are naturally rather more 
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complex. The Consumer's Risk is now made up of two com
ponent parts, viz. 

the probability of accepting a lot of Lot Tolerance Quality on 
the basis of the first sample pills 

the probability of accepting such a lot on the basis of the com
bined first and second samples, after failure on the first 
sample. 

Does not 
exceed d1 

Take a first sample 
of II, pieces 

I 
lf the number of defcctives 

in this ~ample 

I 
I 

Exceeds d, 
but does not 

exceed d2 

I 

Take a second sample 
of 112 pieces 

If the number of 
defectives in both 
samples combined 

I 

Exceeds 
d2 

Does not 
exceed d2 

Exceeds d2 

1 I 
Accept the 

batch 
Inspect the whole 

of the remainder of 
the balch 

Fig. 68. Double Sampling Inspection Procedure 
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As for Single Sampling, tables are published covering the whole of 
the likely range of conditions, both for Lot Quality Protection 
and for Average Outgoing Quality Protection. Figs. 68 and 70 are 
excerpts from the two kinds of table, showing the layout. 

When using the tables, we have to make an estimate of the sup
plier's process average percent defective. Sometimes we have little 
or no previous experience to guide us. In such cases it is better to 
overestimate the P.A. as the additional amount of inspection will 
then be less than if we underestimate the P.A. It should be clearly 
understood that the tables do 110 1 depend for safety on a well-con
trolled P.A. in the goods received from the supplier; the whole 
point is that, while quality submitted is good, acceptance will nor
mally be by sample, but, as quality deteriorates in the goods 
supplied, 100% inspection will be forced more and more fre
quently. Jt will be appreciated that the plans are not only protec
tive, but also corrective, in the sense that they create a back 
pressure whenever the quality starts to fall off. 

It is a useful thing to add to the Single or Double Sampling 
Scheme a fraction defective control chart. The information for 
this chart is automatically to hand as a result of the sampling, 
so that it is simply a matter of plotting the results on the control 
chart. The control chart is set up by getting an estimate of the 
supplier's P.A. based on the first twenty or so samples drawn from 
consignments. If we denote the process average by p, then the 

Upper and Lower Warning Limits are set at p ±2JP(l - p) and 
II 

the Upper and Lower Action Limits at P ±3Jp(l - p) where /I 
/1 

is the number of items in the sample. Where the samples drawn 
vary in size from batch to batch, it will be necessary to set the 
control limits separately for each batch. Under such condition~ it 
is best to calculate ¢e Iimits'for several values in the likely range 
of 11 and plot them in a graph, so that the limits can be read off at 
once for any case. The assumed value of p should be revised from 
time to time as the variation in the supplier's P.A. demands. 

The technique by which we build up our sample one item at a 
time, and after inspecting each item, ask ourselves: 'Can we be 
sure enough to accept or reject this batch on the information so 
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far collected?' is the problem tackled in what is known as Sequen
tial Analysis, a great deal of the work being done by the Statistical 
Research Group at Columbia University during the 1939--45 war, 
under the leadership of A. Wald, who had published in 1943 a 
report which gave the basic mathematical theory and showed how 
it could be applied to a variety of problems. The work on this 
subject was so much a team achievement that there was a reluc
tance in subsequent publications to assign credit to individuals. 
To quote from the publication Sequential Analysis of Statistical 
Data .' Applications: ' Its value in enabling reliable conclusions to 
be wrung from a minimum of data was deemed sufficient to re
quire that it be classified Restricted within the meaning of the 
Espionage Act. The Army, the Navy, and the Office of Scientific 
Research and Development, however, introduced it into several 
thousand manufacturing establishments as a basis for acceptance 
inspection, and this resulted in a widespread demand for access to 
information on the subject. In response to representations from 
the War Production Board, the Army, and the Navy, the Re
stricted classification was therefore removed in May 1945.' There 
can be no further need to emphasize the value of such techniques 
in industry, both in relation to process inspection and to research. 
We shall give a brie outline of some of the cases to which it may 
be applied. 

Consider, first of all , the case where we are inspecting a batch 
of goods, classifying each item as ' O.K.' or' Reject' , that is to say 
we are inspecting in what is essentially a Binomial Distribution 
problem. How is this tackled by the Sequential technique? What 
we do is to lay down two values for the fraction defective, one of 
which we regard as good and the other which we regard as bad. 
Suppose, for example, we regarded 1 % defectives as good and 
5 % defectives as bad quality in a consignment. Then our position 
would be that we should want the risk of rejecting a batch for 
which the percentage of defectives was Jess than 1 % to be small, 
and the chance of accepting a batch for which the percent defec
tive exceeded 5 % to be small. The chance of a good batch being 
rejected is what we have learnt to call the Producer's Risk, and 
the chance of a bad batch being accepted is what we have called 
the Consumer's Risk. Now these four quantities, (1) a bad quality, 
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(2) a good quality, (3) the Producer's Risk, and (4) the Con
sumer's Risk, are sufficient to determine a sequential sampling 
plan. The following notation is used: 

The acceptable quality, expressed as fraction defective = PI 
The probability of rejecting a lot of this acceptable 
qMli~ -a 

The unacceptable quality, expressed as fraction defective =pz 
The probability of accepting a lot of this unacceptable 

quality - {3 
Given this demand (Pt. a , P2, (3), we then calculate three constants 
hI. hz, and s which characterize the control chart on which the 
inspection of batches will be based. The formulae for computing 
the three constants are : 

10g(, pa) 
hI ~ ------';c7--'-o 

10g~(1 -PI) 
PI 1 - pz 

10g(~) 

10g(, : ,8) 
h2 = l- P-2--'-(;-:I---PI) 

og1'1 -1 -- -P2 

log~ - PI s = (1 ) 
PI 1 - pz 

The formulae look a little fearsome at first sight, but they are easy 
to handle as follows, and it should be borne in mind that these 
calculations are' once and for all' efforts, which will enable us to 
inspect all future batches at once, without further calculation. 
Procedure: Calculate: 

Then, we have: 

(
I - PI) gz= log -- ; 
1 - pz 

(
1 -a) b = log T 

b a gz 
h1 = -- ' hz~--' s=--

gl +gz' gl +g2' gl +gz 

It is worth noticing that if a ={3 then hi is equal to h2• 

With our three characteristic constants calculated, we set up the 
inspection chart, as shown in Fig. 71 . 
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Let US take an actual case and work through the necessary 
steps to set up a chart. Suppose we name our acceptable quality 
as being of fraction defective PI =0'01 (i.e. 1 % defective) and 
agree to a probability oro'lO (a 10% cha,nce)·ofrejecting a batch 
of this quality. Let us suppose, further, that we name as un
acceptable quality a fraction defective 0'05, and agree to a Con
sumer's Risk of a probability of 0·10 (a 10% chance again) of 
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Fig. 71. Sequential sampling chart layout with meanings of the three 
characteristic constants of sequential schemes, hit hl' and S 

accepting a batch containing this fraction defective. We cal
culate h10 h2' and s, the characteristic constants of our sequential 
scheme as follows: 

PI - O'Ol a = 0'10 P2 - 0'05 fJ - O'lO 
Sincea - fJ. then hI = h2 and we have: 

cl - Iol! = 102~'05 -log 5 == 0'699 
PI ,,·01 
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C2 ~ 10g G =;~) -lO~::~-log 1·04 ... 0·017 

a - log C :,8) - 10g~:~ =10g9 -0'9S4 
And, since ex = ,8, we shall have b ""' a ~0'954 
We then get: 

b 0·954 0·954 
hI ~ Cl +C2 - 0'699+0'017 - 0'716 = 1·32 

and "2 = 111 ~ 1·32 

C2 ' 0'0170 
S =Cl +C2 = 0'716 = 0'024 

Characteristic Constants: hI - h2 = 1·32 s =0'024 

195 

To fix the Acceptance and Rejection Lines in our Inspection 
Chart we need to have two known points on each. When n, ' the 
number of items inspected so far', is equal to zero, the Rejection 
Line is passing through the point h2 on the axis for d, 'the number 
of defectives found so far', and the Acceptance Line is passing 
through the point - hI on that axis. A further point on each line 
may be found by substituting any convenient value for n in the 
equations of the lines. Thus, putting n = 100, we find that the cor
responding value for d, the number of defectives found so far, is 

Fol' the Rejection Line d2 =sn + h2 
- 100 x 0·024 + 1·32 
... 3'7 

For the Acceptance Line d1 =sn - "1 
= 100 x 0·024 - 1,32 
= 1'1 

Our Acceptance and Rejection' Lines may thus be drawn, and the 
Inspection Chart is as shown in ,Fig. 72. The Acceptance Line 
below the axis of n is shown dotted, since it has no practical mean
ing, a negative number of defectives being quite impossible in 
practice. 

The reader will see from the Inspection Chart, Fig. 72, that in 
this case, while a decision to reject can be made almost from the 
beginning, it would not be possible to accept until about sixty 
items had been inspected. 
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There will be certain points on which the reader will wish for 
further information about the scheme. Firstly, he will want to 
know how this scheme operates, that is to say he will want to 
know the probability of accepting batches of different quality. 
For this he will expect an Operating Characteristic. Secondly, he 
will want to know what the average percentage of defectives is 
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~ 

'" o 3 

o 
'" ::: 2 
:z: 
::> 
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w 
> 

0- FI XI NG POINT 

CUMULATIVE 
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Fig. 72. An actual Sequential Inspections Chart showing the four fixing 
points computed in the text 

after inspection, under different conditions of the supplier's pro
cess average. Thirdly, as a supplementary query to the previous 
demand, he will want to know the Average Outgoing Quality 
Limit of the scheme. Finally, he will want some idea as to the 
average sample size which will be required in order to reach a 
decision, since this is an economic matter of importance which in 
these schemes is not predetermined. All these questions are easily 
answered before any scheme is put into operation by the doing of 
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some very simple calculations. We thus have at our disposal an 
inspection scheme which we can easily design for ourselves and 
whose nature we can thoroughly understand. 

Let us take, first of all, the question of the Operating Charac
teristic. Five points on the Operating Characteristic (commonly 
known, aptly enough, as the O.c.) can be plotted at once. Thus: 

Lot fraction Probability of 
defective acceptance 

0 1 

-' 
PI J - ex 

h2 
s --

hi +h2 

P2 f1 

1 0 

In the scheme we have just designed, we had 

a=O·lO fil=0'10 h1 = 1'32 h2 = 1'32 
PI = 0·01 P2 = 0·05 S =0'024 

We have five points on our O.C., then, as: 

Lot fraction defective 0 Pl = O-Ol s=0 -0238 P2 =0 ·05 I 

Probability ofaccep· 
~~O-SO tance 1 (l - a) = 0-90 {1 = 0 ' 10 0 
"1+h2 

i.e. Percentage of 
batches accepted is 100 90 50 10 0 

When % defectives in 
the lot is 0 1 2'38 S 100 
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The O.C. is shown in Fig. n 
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Fig. 73. Operating characteristic of the sequential plan computed in the 
text 

We may similarly plot an Average Outgoing Quality Curve 
(A.O.Q.) from the following five points: 

-Lot fraction defective 0 PI S P2 1 
-

A.O.Q. fraction defective 0 (1 -IX)PI 
s1l2 

hi +112 {JP2 0 

Substituting oW' own particular values, we get: 

Lot fraction defective 0 0·01 0·0238 0·05 1 
-

A.O.Q. fraction defective 0 0·009 0·0119 0·005 0 
-

i.e. lot percent defective 0 I 2·38 5·0 100 
------ -

gives A.O.Q. % defective 0 0 ·9 1·19 0·5 0 
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These results are plotted in Fig. 74 and a smooth curve put 
through them by eye tells us all we want to know about A.O.Q., 
as practical men. It will be observed that the A.O.Q. Curve has 
a maximum value for the Average Outgoing Quality Percent 
Defective. This, of course, is the Average Outgoing Quality Limit. 

There remains the question of the average amount of inspection 
required to reach a decision under different circumstances. Again, 
we are able to plot a simple five-point curve, called the Average 
Sample Number Curve (A.S.N.), by using the following table: 

Lot fraction defee-
o I tive PI S P 2 1 
- --

Average sample 
number !!l "I - ",(hl + }l2) hlh2 h.-/l(hl +"2) h2 

s S - P I s(1-s) P 2 - S T::s 

Substituting our own particular values, we get: 

Lot fraction defective 0 0·01 0 ·024 0·05 1 

Average sample number 55 75 74 41 1-3 
1-

% defective in the lot 0 1 2·4 5 100 

The Average Sample Curve is shown plotted in Fig. 75. 
Special tables have been published which eliminate the labour 

of calculation. Sequential Analysis is of particular value in con
ducting tests which are by their nature destructive, or in which the 
inspection cost per unit item is great. In cases where it is desired 
to classify defects into major and minor, separate inspection 
charts are kept for the two types, each having. its own suitable 
values of (Ph a, P2, fJ>. It will be possible, on occasion, for the test 
to proceed in such a way that though a considerable number of 
items have been inspected no decision is arrived at. Special pro
visions exist for truncating tests in such cases, 
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Fig. 74. A.O.Q. curve of the sequential plan computed in the text 
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In the case just discussed we were trying to decide whether a 
single batch should be regarded as of acceptable quality. Fre
quently we are faced with making a choice between two sources 
of supply and we wish to choose the source which is likely to con
tain the smallest proportion of defective items. We may, for 
example, receive samples from two competing suppliers. Alter
natively, in a research laboratory, we may be trying to decide 
which of two possible processes for doing a job yields the best 
result. We are then dealing with what the statistician calls a 
'double dichotomy', i.e. a double division, the two divisions re
ferred to being (a) a division into source or product type and (b) 
a division into good and bad quality. Thus a double dichotomy 
gives us a fourfold classification of the type shown: 

O.K. items Defectives 

Product A 462 24 
Product B 148 7 

and it is our purpose to decide between the two sources. If we are 
presented with all the inspection completed, the decision would 
be made using the X2 test (see Chapter 15). But in cases where in
spection is costly, or where it is a long and slow business to 
acquire information (e.g. as in many branches of medical re
search), then we shall want to review the situation continuously 
as the evidence piles up, so that a decision may be made at the 
earliest possible moment. We may be starting from scratch with 
no particular bias in favour of either process, or we may, for 
example, already be using one technique and wish to decide 
whether an alternative suggestion is sufficiently superior to war
rant scrapping of the existing process in favour of the new one. In 
the latter case, considerations of cost involved in scrapping the old 
process may demand a marked superiority in the new process 
before we would be prepared to change over. 

What is the underlying approach to such a problem in Sequen
tial Analysis? We say that a pair of trials in which both the Stan
dard and the Experimental process score either failure or success 
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yields no information about the superiority of one process over 
the other. Only when we test one item from each source and get 
one a success and the other a failure do we learn anything positive 
about the relative merits of the processes. Pairs of this tyPe are 
known as pairs favourable to one or the other process. We meet 
then Pairs Favourable (p.F.) to the Experimental process and 
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UP TO OA E • n 

I. TAN e 

Fig. 76. Inspection Chart for sequential analysis on • pairs favourable' 
basis to decide between two processes or materials 

P.F. to the Standard process, and the Inspection Chart is ar
ranged very much as in the previous example, as is shown in Fig. 
76. As before, the Inspection Chart is characterized by three con
stants, hb h2' and s, which we must now consider how to cal
culate. 

To get at this, we must now introduce the idea of the Odds 
Ratio. Considering only a single process, the effectiveness of that 
process may be described satisfactorily by the proportion, p, of 
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successes or O.K. items which it produces. Alternatively, we may 
describe it in terms of the number of successes per failure, i.e. by 
the odds on a success. Since the odds are a simple mathematical 

function of the proportion of successes, namely: odds ... -1 P ,it 
- P 

matters little which method we use. If, now, we come to compare 
the relative merits of two different processes, we might think of 
using the difference between the values of p, the proportion of 
successes for the two processes, i.e. basing our comparison of 
Experimental and Standard processes on the difference PB - Ps. 
This would be a poor measure of relative merit, since its sig
nificance is not independent of the magnitudes of PB and Ps. A 
difference of 0·02 would matter little if Ps and Ps were large, but 
would be very important if they were small. A more likely measure 
would seem to be the ratio of the proportions of successes for the 

two processes, viz. PB, but even here the meaning of the ratio is 
Ps 

still dependent on the values ofpB and Ps. Thus, if we had /}}} =1, 
Ps 

this would indicate a difference (Ps - p)s - O' l if the value of Ps 
were 0'1, and a difference(ps -Ps) ofonlyO'Ol if Ps had the value 

0'01. Moreover, the ratio ~ -t could not even exist if Ps were 
Ps 

greater than 0 '5, since tms would require for PB a value greater 
than unity. The best method of comparing the relative merits of 
the two processes is as the ratio of the odds in favour of a success 
for the two processes. The odds for the Experimental process are 

I 
PB and the odds for the Standard process are 1 Ps ,and the 
- h -h 

odds ratio is therefore defined as 

. (1 ~~J PB(1 - Ps) 
II = - - - =~.,--~ 

(.J!L) Ps(l - Ps) 
1 -Ps 

Interchanging the designations 'success' and 'failure', or 'stan
dard ' and 'experimental' has the effect of converting the odds 

. fi 1 ratio rom u to-. 
u 
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The three quantities, hh h2, and s, which characterize a Sequen
tial Plan are essentially arrived at by choosing two points on the 
Operating Characteristic, viz :. 

Ul the odds ratio below which the standard process is taken as 
superior; 

U2 the odds ratio above which the experimental process is taken 
as superior. 

0: the maximum risk of accepting the experimental process 
when the standard is superior; 

{3 the maximum risk of accepting the standard process when the 
experimental is superior. 

If, now, we let L represent the probability that sample evidence 
will lead to a decision in favour of the standard when the true 
odds ratio is u, then the Operating Characteristic will be a graph 
of L against u, and when U = Ul we shall have L = I - 0:, and when 
U = U2 we shall have L ={3. 

To set up the testing chart, we perform the following calcula
tions: 

(
I - IX) 

log T 
hI = () 

log ~ 

s= 

10 (1 +112) 
g 1 +111 

log(~) 
Then letting n =' total pairs favourable up to date' 

and E = ' pairs favourable to experimental process up to 
date', 

we calculate the equations for the control limit lines on our chart 
as 

and 
E2 =sn + 112 (upper line) 
E1 =sn - "I Oower line) 

The inspection chart then looks as shown in Fig. 76. If at any 
stage the line EI is equalled or fallen short of, we accept the Stan
dard Process. If E2 is equalled or exceeded, we accept the Experi
mental Process. Failing either of these decisions, we continue 
testing. 
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It will be apparent that, as we only make use of ' pairs favour
able', the average amount of data will be less than the average 
amount of actual testing. To reach a decision, the average num
ber of pairs favourable depends only on the difference between the 
two processes as measured by the odds ratio, but the amount of 
actual testing to be expected depends on the actual probabilities 
of successes of the two processes, Ps and Ps. 

Formulae/or computing the Operating Characteristic : 
(1) When u=o L = l 
(2) .. U= UI L = l-ct 

(3) U - (1 ~J L- (hl~hJ 
(4) .. U= U2 L - {3 
(5) u =oo L =O 

(N.B. The sign 00 is used to denote' infinitely great'.) 

Formulae /or Average Sample Number Curve (Average Number 0/ 
Favourable Pairs) : 

(1) When u =0 ii _ '!J 
s 

(2) U=U1 ii = "1 - ct(h1 +h~ 

s-(l:luJ 
s _ hlh2 

(3) u~r:s n= s(1 -s) 

(4) u = U2 n = ;'2 - {3(lrl + "2) 

(I : 2uJ -s 
_ h2 

(5) U = 00 11 =-r:s 
(N.B. This A.S.N. Curve tells us the average number of pairs 

favourable required to reach a decision, NOT the average amount 
of testing.) 

The average number of tests, N, required to reach a decision, is 
obtained by multiplying the average number of favourable pairs 
required, n, by the factor 

k = 1 
Ps + Ps - 2psPs 
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where PB and Ps are the probabilities of successes for the experi
mental and standard processes, respectively. It will normally be 
the case that we have froOl experience a good knowledge of the 
value of Ps for the standard process. In such a case the factor k 
may be written as a function of u and it becomes possible to cal
culate iii for each value of u, using the following formula: 

k = 1 x ps(u - 1) 
Ps(1 - Ps)(u + 1) 

On occasion it is possible to change the level of Ps by changing 
the severity of the test conditions, i.e. to make a change in the 
absolute effectiveness of both experimental and standard pro
cesses, without disturbing their comparative effectiveness. If we 
do this so as to make Ps = t then k will be equal to 2 irrespective of 
the value of u or Ps. as may readily be seen by writingps = t in the 
last formula given for k. 

On other occasions a reasonably fair estimate of the odds ra tio 
will be known before the experiment starts. In such cases the 
value of k may be made a minimum by adjusting the test con
ditions so that 

1 
PS = l x VU 

Special provision is also made for performing the tests in groups 
of unequal sizes or equal size. instead of in single pairs at a time, 
which is not always convenient in practice. Details of the pro
cedures will be found in the literature quoted in the bibliography. 

The following is an example of the method quoted in Sequential 
Analysis .. Applications, published by the Research Group of 
Columbia University. 

Example. A standard gun is to be compared with an experimental 
gun on the basis of hits on a designated target under specified 
conditions. 

An odds ratio, u, of three or more is set as the criterion of 
superiority for the experimental gun, and an odds ratio of 1'2 or 
less as the criterion of superiority for the standard gun. That is, if 
the ratio of hits to misses for the experimental gun is three or 
more times as large as for the standard gun; it is important to 
decide in favour of the experimental gun; but if the ratio is 1'2 or 
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less times as large for the experimental as for the standard gun, it 
is important to decide in favour of the standard. It is regarded as 
more serious to decide erroneously in favour of the experimental 
gun than to make an erroneous decision in favour of the standard. 
For this reason it is decided to accept a risk ex - 0·02 of deciding 
that the experimental is superior when in fact the standard is 
superior, but a risk of /3 ~0'05 of deciding that the standard is 
superior when in fact the experimental is superior. 

We leave the reader to work out this inspection chart for him
self. Calculate, first, the values of hi> hz, and s, by substituting in 
the fonnulae 

to obtain the results 

hi = 3'247 

ex = 0'02 uz =3 /3 = 0'05 

s = 0'653 

Then compute the equations of the two control limit lines as 

Upper Line E2 =sn +hz -0·653n +4·215 and 
Lower Line EI -sn - hi - 0'653n - 3'247 

where n - 'total pairs favourable to date', 
The testing chart should then be drawn as shown in Fig. 77. 
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The next step is to compute the A.S.N. for the average number of 
favourable pairs required, by substituting in the formulae given to 
obtain 

When 

" 

U=o 

u=u\ =1'2 

u=_s_ = 1.9 
1 - s 

u = uz= 3 

u = ex:> 

- hi 5 n = - = s 
fi = h. - (1.(hl +11 2) = 29 

s - (1 :luJ 
fi = ..!!J!!:L = 60 

s(l - s) 

fi = liz - (J(1I1 + liz) =40 

(1 : zuJ - s 
_ hz n=- =12 1 -s 

The A.S.N. Curve may then be plotted as in Fig. 78. 
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Fig. 78. Average sample number curve for example on guns 

Suppose, now, we assume that it be known that the standard 
gun will produce about 10 % hits under the given conditions, i.e. 
the Ps = 0,1. Then in the case when u = UI = 1'2, we shall have : 

- - = U - = 1,2 - = 0 '1333 PB (ps) (0'1) 
1 -Pr; I-ps 0·9 

from which we find PB =0'1176 
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We then find 

k ~ 1 = 5.15 
PB + Ps - 2PBPS 

and so learn that when U = 1'2 the average number of trials 
N=148. 

In similar manner, for u = 3, we find the average number of 
trials as N - 132. 

The Operating Characteristic, which tells us the probability of 
deciding in favour of the standard process when u has different 
values, is found by substituting in the formulae given. Thus: 

When 

" 

" 

u =o 
u = ul = 1'2 

u = -~-' = 1,877 
1 - s 

u =u2= 3 
u =oo 

L = I 
L = l -lX - I - 0 ·02 =0·98 

L= .-!!L =0 '565 
hi +h2 

L ={3 =0'05 
L = O 

The Operating Characteristic may then be plotted as shown in 
Fig. 79. 

In the two cases so far considered we have been dealing with 
inspection by dichotomy, that is on an 'O.K.-defective ' basis. 
But the sequential technique is also applicable to cases where we 
make actual measurements on the articles tested. A common type 
of problem is where we wish to know whether a specified standard 
is exceeded or fallen short of. Thus, for example, a firm purchasing 
electrical condensers from an outside supplier may wish to satisfy 
themselves that the average value for the loss angle of the con
densers did not exceed a specified value. Alternatively, if the firm 
were purchasing valves they might wish to be sure that the average 
life was not less than a specified value. The reader will observe 
that we are concerned in such cases with a one-sided condition. 
We do not care how much smaller the loss angle is than the 
specified value, nor how much longer the life of the valves than 
the specified value. Let it be supposed that in a case of this sort we 
have a reasonable knowledge of the standard deviation likely to 
be found in the product offered for acceptance. Then on the 
further assumption that the distribution of the measured quan
tity is reasonably approximated by the Normal or Gaussian 
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Distribution, we can set up a sequential testing scheme in the 
following manner. 

As always in sampling inspection, we shall have to face a double 
risk: accepting a lot which ought properly to be rejected and re
jecting a lot which should be accepted. Having stated what risks 
we are prepared to take, a sequential scheme can be drawn up 
which will do our inspection in the most economic fashion. As in 
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Fil. 79. Operating characteristic for sequential testing scheme computed in 
the text for example on guns (Probability quoted as percentage) 

all sequential schemes, the sample size required to make a decision 
on a given lot will not be known beforehand. 

We lay down two values for the average of the quantity to be 
measured corresponding to unacceptable quality, mh aDd ac
ceptable quality, mz. We denote the risk of accepting a batch 
when the quality has the average value ml by a, and the risk of 
rejecting a batch of average quality mz by f3. The sequential 
scheme is completely determined by the four quantities mh <J, 

/liz, f3. 
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let us assume that ml is the smaller quantity, and that the stan
dard deviation will be some value u. Call the value recorded on a 
given item inspected x, and let n denote the number of observa
tions. We may then denote the sum of the values found in the 
first /I observations by :Ex. 

The first step in this type of problem is to get an idea of the 
amount of inspection likely to be incurred by a given scheme. To 

do this we calculate a =2'3108 C :,8) and b - 2'3 log C fiex) . 
Then the average sample size fj when the average value of the 
measured variable in the batch is at the level n71 is given by 

_ (I-ex) b -cxa 
11 - (m2 -ml)2 

- 20'2 -

And the average sample size when the average value of the 
measured variable is at the level m2 is given by 

_ (1 - {I) a - ,8b 
n

llm 

(m2 - ml)l 
20'2 

We adjust m" ml, ex, and,8 until the amount of inspection likely to 
be required, as indicated by the above check calculations, seems 
reasonable. 

The next step is to calculate our three basic quantities, hit h2, 

and s, which tell us how to draw our inspection chart. They are 
found as: 

bu1 
hl~-

ml-m1 
ml+mz 

s =-2-

The equations to the control limit lines on our inspection chart 
are then: 

Upper Line Ix - sn + hz 
Lower Line :Ex - sn·-hl 

and the inspection chart is drawn up as indicated in Fig. 80. The 
read~r will note that the criterion in this test is the sum of the 
values obtained - not their average. 

Operating Characteristic and Average Sample Number Curves 
may be drawn for this case. 
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Fig. 80. Sequential Testing Chart for testing whether the average value of 
some numerical characteristic exceeds or falls short of a specified value 

Operating Characteristic. The probability of accepting the lot, 
L, when the average value of the measured variable for the lot is 
at the level m is given by 

L =e"-l 
ea -1 

where e is the base of the Natural logarithms (e=2'718) and 
p""'hjk and q=(hl +h2)k, the value of k being given by the 

. 2(s - m) 
equatIOn k = ~ and s, as we have already noted, has the 

value ml ; n72. When m = s, this formula for L becomes indeter

minate, having the value *, but it may be shown that the value of 

L is then h/;h
2

' By applying the above formula for L, the O.C. is 

easily computed. 
A verage Sample Number Curve. Points for this curve may easily 

be computed using the formula: 
_ L(hl +h0 - hi 
n- m-s 
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where L is the probability of accepting a lot whose average value 
is m, as computed for the O.C. above. When m = s, it may . be 

shown that ii = hl~2. The reader will find in the questions at the 
u 

end of this chapter an example of this type for him to work for 
himself. 

There are occasions when a departure either way from the 
specified average value is equally undesirable, as, for example, 
when a rubber is desired to have a certain modulus of elasticity, 
or a solution a specified viscosity or specific gravity. Sequential 
schemes similar to those already outlined have been designed for 
such cases. Yet again, we may be more concerned with uniformity 
than with the average value, i.e. we shall want to be sure that the 
standard deviation for the distribution of the measured quantity 
shall not exceed a certain value. Such a case has already been 
quoted, namely the life of street lamps. A different case is illu
strated in shrinkage testing of hosiery. Different testing pro
cedures not only differ in the figure they yield for the average per
cent shrinkage, but also vary very considerably in the standard 
deviation of the results obtained. The difference is inherent in the 
testing method. Clearly, a test that gives uniform results has some
thing to be said in its favour as against a test which gives less con
sistent results. In hosiery testing, one test specification is used in 
England and another in America. They differ considerably in 
assessing shrinkage. Clearly for exporters and importers it is 
desirable that comparable tests be used by them both. 

We have outlined in this chapter some of the ways in which the 
statistician, by applying the mathematical theory of probability, 
introduces maximum economy into sampling inspection - with
out needlessly sacrificing safety. We have shown how he not only 
gives us a scheme but also tells us how that scheme may be ex
pected to operate as the stresses to which it is subjected vary. We 
are not given a pig in a poke or a blind guess - but a scientific 
system to do the particular job required. There are of course other 
schemes which it is not possible to include in this book. Simon's 
Grand Lot Schemes, for example, where we use our experience of 
a supplier to adjust the amount of inspection done on consign
ments of goods received - treating him with confidence so long as 
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he deserves it, and putting him on probation when he falls from 
grace, until such time as he proves once more that he may be 
trusted with a lighter inspection. 

At this point we shall be taking our leave of industrial inspec
tion. Before we do so, let us reiterate that in our belief the in
spector's main tools are not micrometers and microscopes, but 
statistical techniques to which all the rest are subservient, in the 
inspector's real job of stepping up and maintaining quality in the 
manufacturing organization. It would be a very great step for
ward if heads of inspection departments who may be too old or 
too busy to take a course in the statistical principles of inspection 
themselves would encourage those who are to succeed them to do 
so. These are new techniques, and in the drive to maintain a 
larger export market than ever before in our history we cannot 
afford to ignore applications of mathematics and science which 
other countries like America are so quick to introduce. In the 
mathematical field this country has done more than its share of 
pioneering in the modern statistics. The results are practical. Let 
them be practised. 

NOW SEE IF \'OU CAN DESIGN SAMPLING 
SCHEMES 

I. It is desired to set up a sampling scheme to cover the case where a 
supplier whose Process Average Percent Defective is known from 
experience to be 2% is sending in batches of 1,000 items at a time. It is 
considered that the Consumer Risk should be set at 10% for a Lot 
Tolerance Percent Defective of 4% (i.e. 90% of batches containing 4% 
defective should fail to pass the sampling test). Failure to pass the 
sampling test would entail 100% inspection of the remainder of the 
batch. Design the most economic single sampling scheme to give this 
degree of protection. 

2. Plot the Operating Characteristic for your scheme and the Average 
Outgoing Quality Curve. 

3. Consult Fig. 69 to find a Double Sampling Scheme for a Lot 
Tolerance Percent Defective of 2% for a supplier whose Process 
Average Percent Defective is known from experience to be 0'7%, 
assuming the goods delivered in batches of SSO items. What is the 
A.O.Q.L. for the scheme? 
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4. Consult Fig. 70 to find a Double Sampling Scheme for the case 
of a supplier whose Process Average is known to be 1·1 % if the goods 
are delivered in batches of 500 and the consumer wishes to be assured 
that in the long run the product accepted after inspection will not 
contain more than 1·5% ( = A.O.Q.L.). 

5. From long experience it is estimated that goods from a particular 
supplier contain 2% defectives, and this is considered a satisfactory 
performance for the case in question. Design a quality control chart 
for percentage defective based on the assumption that the consignment 
will contain 400 items each. 

6. Design a sequential sampling scheme to cover the following case. 
2% defective is considered acceptable quality and the risk of rejecting a 
batch as good as this is to be p =0·1. A batch of 5% defectives is 
considered so bad that the probability of its being accepted is to be 
only p = 0·1. Plot the Operating Characteristic, Outgoing Quality 
Curve (so getting the A.O.Q.L. of the scheme) and the Average Sample 
Number Curve of the Scheme. 

7. A wholesaling firm does not consider it economic to do business 
with retailers more than 25 miles from the depot unless the weekly sales 
to be expected reach 40 dozen of the product in question. The standard 
deviation is known very roughly from experience to be of the order of 
10 dozen. If the sales are to be of the order of 35 dozen a week, the 
wholesaler only wants a 10% chance (p = O' J) of signing a con.tract for 
deliveries. On the other hand, if the sales will be of the order of 50 
dozen a week then the wholesaler only wishes to run a 10% risk of 
refusing to enter into a contract. Deliveries are to be made for a trial 
period. Set up a sequential testing scheme by which the wholesaler 
might make his decision with the minimum expected delay for the 
degree of assurance he is asking. Plot the Operating Characteristic and 
the Average Sample Number Curve for the scheme you design. 
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How to be a Good Judge - Tests of Significance 

' Omnis pcrfcctio in hac vita quandam imperfectionem sibi 
habet annexam : et omnis speculatio nostra quadam caligine 
non caret .' THOMAS A K E MP1 S 

In the previous chapter we considered the type of problem where 
we have to decide on sample evidence which - if either - of two pro
ducts is the superior. It was assumed that sampling could be con
tinued more or less indefinitely on a sequential basis until a 
decision could be made with the risks of errors in judgement held 
to predetermined levels. For a given degree of certainty, the 
average amount of inspection required to reach a decision will 
increase as the difference in quality between the two populations 
from which the two samples are drawn gets smaller. But even with 
extremely small differences between the populations we can make 
the distinction to any required degree of certainty by sampling, 
provided only that we are prepared - and able - to let the samp
ling continue long enough. The world of fact being a world of 
limitations, however, particularly in the sense that life is short 
and action often imperative at a level far short of certainty, we are 
frequently compelled to make the best judgement possible with 
the evidence at our disposal. By this we do not necessarily mean 
that a decision one way or the other must always be made, for 
even in the most pressing case there will be the possibility that 
anything more than a blind guess is impossible. On such occasions 
we must dig in our heels and refuse to be rushed into an un
warranted pronouncement. Yet, often, we shall have to make 
decisions and bury our mistakes. It is perhaps less fair to make 
this jibe about burying mistakes against the doctor than against 
the man of affairs and the engineer, who make mistakes no less 
frequently than the medical man. Many of their decisions an
nounced with a flourish of trumpets are mistakes -luckily, for the 
most part, about matters short of life and death. 

In everyday life we are constantly making judgements on the 
basis of the evidence from small samples. Not only so, but there is 
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something wonderfully satisfying in making snap judgements 
with an air of omniscience which provokes the sense of worship 
and admiration in subordinates. When we prove lucky we are in
clined to underline the fact with '1 knew in my bones, somehow' 
for all the world as if we were possessed of a special grace of in
sight from on high. When the event proves us wrong, we keep a 
discreet silence. The fact is: it is all iargely luck - and, fortunately, 
it rarely matters whether we are right or wrong. But this business 
of snap judgements on prima facie evidence is an insidious habit 
which we all too easily carryover into matters where it does 
matter whether we are right or wrong. The evidence of small 
samples, as we have seen, can be very treacherous, and inspired 
guesses are stupid in such circumstances, for even should they 
prove correct we are morally to blame for having trusted to guess
work instead of careful judgement. 

The research worker, following up a bright idea, will often get 
small sample evidence which favours his hunch. A sensible and 
cautious man will at once try to put bias out of court by con
sidering the possibility of the apparent value of his hunch being 
due to pure chance. Suppose he were asking whether a new pro
cess he had thought of were better than the existing process. Then 
he might sensibly adopt what the statistician calls a Null Hypo
thesis, i.e. he would assume that there was no real significant dif
ference between his pet process and the standard. He would 
assume, provisionally, that the sample results obtained by his new 
process might well have come from the same population as results 
obtained by the standard process. The position then would be 
that his pet process had produced a sample of above average 
quality. His next step wO.uld be to calculate the probability that 
the standard process would give a sample as good as that ob
tained by the new process. If it proved that the chance of the stan
dard process giving so good a sample were extremely low, then, 
although his sample were small, he would be justified in rejecting 
the Null Hypothesis, on the grounds that it seemed a very unlikely 
explanation. It would then be fair - and unbiased - to conclude 
that his new process could be accepted as having a real superiority 
to the standard process. On the other hand, if it proved that such 
a sample might arise with fair frequency from the standard 

8 
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process, it would be rash or dishonest to claim the new process 
as superior to the standard process. 

When we get a result which is very unlikely to have arisen by 
chance we say that the result is statistically siglJificant. By this we 
mean simply that it would be rather fantastic to ascribe it to 
chance, that the difference must, in all common sense, be accepted 
as a real difference. Since the judgement is based on probability, 
falling short of absolute certainty, we indicate our degree of con
fidence in the reality of the difference by describing it as' Probably 
Significant ' or • Significant' or • Highly Significant' depending on 
the probability level associated with our judgement. Thus a result 
that would only arise in one trial in twenty on the basis of pure 
chance we should describe as' Probably Significant'. A result that 
would arise on the basis of pure chance only once in a hundred 
trials we should describe as • Significant'. A result that would 
arise by chance only once in a thousand trials we should describe 
as • Highly Significant', and so on. The proper thing to do, of 
course, is not simply to use words of this kind but to quote the 
level of probability, p = 0'05, p = 0 '01, or p = 0 '001 . When the 
results have to be assessed by people unversed in probability 
theory, say straight out in plain English: • This result could arise 
by chance once in twenty trials', or whatever it is. There is no 
value in technical jargon. It is irritating to those who do not 
understand it, and is as likely to produce a bad effect as a good 
one. 

What practical points arise out of all this? In the first place 
there can never be any question, in practice, of making a decision 
purely on the basis of a statistical significance test. Practical con
siderations must always be paramount. We must never lose sight 
of commonsense and all those other relevant factors which can
not possibly be taken care of statistically. An engineer doing a 
statistical test must remain an engineer, an economist must re
main an economist, a pharmacologist must remain a pharma
cologist. Practical statistics is only one tool among many. The 
importance of non-statistical considerations will be apparent if 
we consider a hypothetical case. Suppose I did a fancy bit of re
search and found that my new process gave results which were 
highly significant, p - O'OOI, i.e. there was only one chance in a 
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thousand of the result arising by chance. I am naturally very 
pleased. But there are a lot of matters to be considered before I 
should be justified in putting the new process forward to replace 
the standard process. Firstly, the high statistical significance re
lates only to the reality of the difference between my process and 
the standard. Now a very real difference may yet be very small. 
Atoms are no less real because they are invisible to the unaided 
eye. I should have to show not only that my process is statistically 
significant, but also that the difference is of practical importance 
in magnitude. How great the difference will have to be in this 
respect will depend on how costly and how disturbing a change
over in process will be. There is a lot of bunk talked about large 
companies suppressing the practical use of new developments and 
inventions. It would be possible only in a lunatic asylum for every 
invention to be put straight into production just because it proved 
a little better than what was already being done. Economically, we 
must wait until the standard process has had its run; that is, until 
newer methods are so superior that the changeover can be made 
without punishing the customer with a savage rise in price for an 
incommensurate improvement in what he buys. The inventor is 
only one of many people with a say in how business shall be run . 
]fwe could start from scratch, we could have a much better tele
phone system than we have. But total scrapping is too fantastic to 
consider. We sensibly wait for growth rather than shout for 
revolution. Thus, the choice of significance levels involves taking 
into account not only our degree of certainty but also the ques
tion of economic and practical feasibility. Logically, we have first 
to establish the reality of the difference, and then to estimate its 
magnit.ude and practical importance. 

The reader should be clear that there can be no possibility of 
attaining absolute certainty in any statistical test of significance. 
We shall always have the two risks of sampling, viz. deciding that 
a real difference exists when in fact there is none; or deciding that 
no difference really exists when it does. Using the Null Hypo
thesis, if the result proves non-significant it is equivalent to a ver
dict of • not proven' - we are still open to consider further evi
dence which may be offered. We work on the principle that what 
is inherently unlikely is not likely to have happened to us on the 
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basis of chance. We argue, in fact, that the 'exception proves the 
rule', in the original meaning of the word prove, Le. tests the 
validity of the rule. 

There exists a great variety of tests of significance in statistical 
method. In this book we shall only be able to consider some of the 
more commonly used tests. One of these, the X2 test, will be 
separately considered in a special chapter. Others, not dealt with 
here, will be introduced more appropriately in various chapters 
where the need for them arises naturally, e.g. tests of the sig
nificance of correlation coefficients, of ranking, and so forth. 

A result of fundamental importance in the theory of significance 
testing is the following. 

The variance of the slim or difference of two independent· random 
variables is eqllalto the sum of their variances. 

Now we already know that the variance of the average of 
samples of n items drawn from a population whose standard 

2 

deviation is equal to a is given by ~ (it will be remembered that 
n 

the standard deviation is the square root of the variance). If, then, 
we have a sample of n) items drawn from a population whose 
standard deviation is al and a sample of n2 items drawn from a 

'

population whose standard d~viation is a1.:' the ' variance for the 
distribution of the difference of sample means such as Xl and x2 

will be given by 
al 2 a2z 

Var (XI - .tz) = - +-
nl nz 

Since we know that departures greater than two standard devia
tions occur relatively rarely (of the order of once in twenty trials 
on the basis of random sampling), it is apparent that we have here 
a means of testing the statistical significance of the difference be
tween sample means. The standard deviation for the distribution 
of sample means is usually referred to as the standard error of the 
difference, and we regard a difference of more than two standard 
errors between the sample means as probably significant, Le. not 
very likely to have arisen by chance and therefore suggestive of a 
real difference in the mean values of the two populations from 
which the samples were respectively drawn. A difference of three 

• Provided the variables are nOI correlated. 



HOW TO BB A GOOD JUDGE 221 

or more standard errors is regarded as definitely significant, the 
associated probability being of the order of less than one-half of 
one per cent that so great a difference should arise by chance in 
random sampling. 

Example. In the Physique of Young Males, by W. J. Martin, pre
viously referred to, we find that the average chest girth in 
74,459 males classed as Grade I at medical inspection for 
military service was 35·8 inches with a standard deviation for 
the group of 1 ·94 inch. For 2,146 males classified as Grade IV 
the average girth was 34 ·8 inches with a standard deviation for 
the group of 2·01 inches. Is there a significant difference in 
chest girth between the two Grades ? 

We have 

111 = 74,459 
112 = 2,146 

0"1 = 1'94 
0"2 = 2·01 

The difference between the sample means is 

XI - X2 = 35'8 - 34·8 = )·Oinch 

: . 0'1 2 = 3'764 
:. 0'22 =4'040 

Also 
0'1 2 0'22 3'764 4·040 

Var (Xl - X2) = n;- + 112 = 74,459 + 2,146 

= 0·00005 +0·00187 = 0 '00192 

The standard error of the difference is the square root of the 
variance of the difference, 

i.e. Std. Error of Diff. = "\1'0·00192 = 0'044 

Hence, the observed difference between the sample means, 1 inch, 
although not large, is very highly significant indeed, being of the 
order of more than twenty times its standard error. 

Consider, now, a similar type of problem where, instead of 
having actual rrteasured quantities, we have the Binomial type of 
distribution. To make the case concrete let us suppose that we 
were trying to assess the effectiveness of some particular inocula
tion. We shall suppose that nl persons received the inoculation 
and of these Xl subsequently developed the infection which the 
inoculation was supposed to guard against, and that a further 
group of n2 persons, of whom Xl were infected, did not receive the 
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inoculation. The problem will then be to try to assess the effective
ness of tbe inoculation by comparing tbe proportion of inoculated 

persons who were infected, Xl, with the proportion of those not 
nl 

inoculated who were infected, ~. 
n2 

It would be the part of wisdom in such a matter to make the 
Null Hypothesis that the inoculation was without effect, aod then 
see how likely the observed difference was to arise by chance in 
random sampling. On our Null Hypothesis there is no reason 
why we should oot pool th~ two sample results together, so as to 
get a better estimate of the proportion of persons likely to be in
fected, assuming the inoculation to be neither good nor bad. This 
estimate for the proportion infected would then be 

X l +X2 total infected 
p = 111 + n 2 = total exposed to infection 

This value, p, is of course the probability that an exposed person 
will be infected. The probability that an exposed person will not 
be infected is q = 1 - p . Now we know that the standard deviation 
for a Binomial frequency distribution for samples of n items is 
given by v' pqn. Hence, the standard deviation for the Binomial 
probability distributi~n will be v' pq (n being put equal to unity). 
The variance for the distribution of proportion defective in a 

sample of n items will therefore be l!!l. It follows that the variance n 
for the difference in proportion defective in two samples of nl and 
n 2 items both drawn from a population whose proportion infected 
is equal to p will be given by 

Var. (Diff. in proportions) _l!!!. + l!!!. 
nl n2 

Evidently then the standard error of the difference will be 

u .. = Jl!!!.+I!9 
nl n 2 

and it is against tbis standard error that we shall have to judge the 
significance of the observed difference in proportions 

W _ I~I_~I' 
nl n2 
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The vertical lines enclosing the difference in proportions are 
meant to indicate that we consider only the absolute value, of the 
difference, ignoring whether it is positive or negative for the pur
pose of establishing significance (though not, of course, in con
sidering the practical meaning of the difference). 

Example. The figures for antitoxin treatment in the City of 
Toronto Hospital for the first decade of this century in the 
treatment of diphtheria were: 

I 
Cases I Deaths 

Antitoxin treatment 228 37 
Ordinary treatment 337 28 

Are we to conclude that death was significantly more frequent 
in the group treated by antitoxin? 
Adopting the Null Hypothesis that the antitoxin was without 

effect, we calculate the proportion of deaths for the combined 
samples as 

= total deaths = _lLS_ =0'115 
P total cases Tn 

The standard error of the difference in proportions between two 
samples of nl - 228 and nz = 337 cases will then be 

CT .. -Jpq('! +!_) - VO'I15 xO'885(-rn+m) 
nl nz 

- v'0'115 xO'885 x 0'00736 - 0'027 

The proportion of deaths in the group receiving antitoxin treat-
ment was 

M = 0-163 
and among those who received ordinary treatment was 

-if, ~0'083 
Hence the difference in proportions was 0-163 -0-083 ... 0-08_ The 
observed difference in proportions is thus extremely significant 
indeed, being equal to three standard errors. The chance of so 
great a differen~ is infinitesimaUy small on the basis of pure 
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chance, and we are bound to conclude that antitoxin treatment 
was undoubtedly positively associated with greater mortality. 

At this point we must forget statistics, as such, and start to do 
some commonsense thinking. Are we necessarily to conclude 
from this evidence that antitoxin treatment was a bad thing? It 
must at once be conceded that this is the sort of fact which the 
protagonists of antitoxin treatment are going to keep discreetly 
quiet about, while those who set their face against this form of 
treatment on principle will shout it from the housetops. We must 
not draw general conclusions from particular instances without 
realizing the inherent dangers of such a proceeding. That is not to 
say, of course, that such instances may be ignored. The first thing 
we should ask is whether the two groups were exposed to the same 
risk. Was it perhaps the case that those who received the anti
toxin treatment were those most seriously ill ? In all such cases 
unless the two groups were exposed to the same risk and had 
equal treatment in other respects we are not likely to be able to 
draw any valid conclusion - however significant the difference in 
mortality rate may be. The statistical significance will in such 
cases merely reflect the unequal exposure to risk. No statement on 
the practical significance of the figures is possi ble until such ques
tions 'have satisfactorily been answered. Precisely the same pre
cautions have to be observed when the figures favour a particular 
treatment. It might well be, for example - as A~ti-vivisectionists 
are quick to tell us - that the part of the population which comes 
forward for immunizations on a voluntary basis are the very 
group which are exposed to the lesser risk by virtue of the fact 
that they are more educated, better fed , better clothed, and better 
housed . There is no matter fraught with greater pitfalls for the 
unwary than the making of deductions from medical statistics. It 
is the exception rather than the rule for the groups being com
pared to be identical in other material respects than the one under 
consideration. Every statistician who has ever played about with 
medical statistics knows how frequently he is thwarted because 
the groups offered for comparison are not strictly - or even at all -
comparable. Our faith in treatments of the immunization and 
antitoxin variety is very largely based on experiments on animals 
- and it is not infrequently questionable how far such conclusions 
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are completely referable to human beings. Undoubtedly it is 
(rue that the greatest medical advance in the fight against in
fectious diseases has been the improved standard of living. As 
overcrowding is eliminated, as sewage is disposed of in more 
civilized fashion, as soap is plentifully used, and as children are 
fed and protected from exploitation as cheap labour, we may well 
not be surprised that infectious disease vanishes from our midst 
whether we have prophylactic treatment or not. The sanitary 
inspector and dustman play perhaps an even more vital part in 
society than the medical man - on considerably less pay and with 
considerably less glamour. Those who oppose prophylactic treat
ment, arguing that our aim should be improvement of the stan
dard of living, argue in a good cause from a social point of view, 
but the doctor must consider the individual who cannot help his 
poor environment and who needs protection from it - if such pro
tection is to be found. 

The problem of significant differences in proportions may also 
be tackled by the X2 test, dealt with in Chapter 15. 

Of particular importance are problems where we have small 
samples and wish to make valid significance tests as to differences 
in dispersion or differences in mean value. Development of an 
adequate theory to deal wi h such cases is the work of the present 
century, being associated especially with the names of W. S. 
Gosset, who published his researches under the pseudonym 
'Student', and of R. A. Fisher. Readers desirous of a detailed 
knowledge of the mathematical foundations of what is to follow 
must refer to textbooks referred to in the bibliography. Here we 
can only indicate the analytical methods which should be adopted. 

We have already mentioned that, while the mean value of a 
sample of n items is an unbjased estimate of the mean value in the 
population from which the sample is drawn, the standard devia
tion is biased, tending to underestimate the population value. 
This bias is especially marked in small samples. It may be shown 
that the expected value of the variance in a sample of n items, $2, 

is related to the population variance, 0-2, in accordance with the 
equation 

(
n -1 ) E(s2)= n 0-2 
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where the symbol E(S2) denotes the expected value for the variance 

of the sample. The factor (n: 1) is referred to as Bessel's cor. 

rection. It will be necessary, from this point onwards, for the 
reader to make a clear distinction in his mind between the follow
ing three terms: 

Population variallce, denoted by the symbol 002 ; 

Sample l'ariallce, denoted by S2 ; and 
Best estimate of the population variance, denoted by the symbol 

002, which is obtained from the sample variance, S2, by applying 
Bessel's correction, thus 

&2 = (....!!_ )S2 n - l 
(The circumflex accent over any symbol is always used to 

denote that the quantity is a ' best estimate ' of some parameter.) 
The real reason why the sample variance tends to underestimRte 
the true variance in the population is that the sum of the squares 
of the deviations of the values in a sample has a minimum value 
when the deviations are taken as deviations about tbe sample 
mean. In general, the sample mean will not coincide exactly with 
the true population mean, so that the sum of the squares of the 
deviations of the safnple values from the population mean will 
normally be greater than the sum of the squares of the deviations 
measured from the sample mean. Bessel's correction makes an 
adjustment for the discrepancy which may be expected to arise in 
samples of given numbers of items. The reader will observe that, 

as n increases, Bessel's correction (n ~ 1) approaches closer and 

closer to unity, so that when n is large it becomes a matter of 
trivial importance whether the correction is applied or not. 

As an extension to the 'above it may be shown that if we have 
several independent samples drawn from the same population, 
whose variance is 0'2, the samples being of nl> nz, n3, ..• nk items 
respectively which have sample variances S) 2, S22, S32, ••• Sk2, then 
the best estimate of the population variance which we can make 
by pooling all the samp~e information is 

A2 T 
0' - --N-k 
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where T-nls12+n2s22+n3s)2+ .•. +n.SJc2 

and N = nl+n2+113+ .•. +n. ' 

k being the number of samples. 

Example. Four samples drawn from the same parent population 
had the following numbers of items and gave the stated sample 
variances. Make a best estimate of the variance of the parent 
population. 

nl - 7 
n3 ~ 13 

We calculate , T~nlsI2+n2s22+n3s32+n.s42 
=168+370 + 351 +704-1,593 

and N = nl + n2 +n3+n4 
~ 7 + 10 + 13 +22 -52 

We then have the best estimate of the population variance as 

i72=,_I_=W =33 
N-4 

The divisor (N - k) is usually referred to as the number of degrees 
of freedom - an important term which the reader will do well to 
note carefully, as he will hear a great deal of it a little later. 

'STUDENT' S' t DISTRIBUTION 

If we wish to test the hypothesis that a sample whose mean value 
is ;i could have come from a population whose mean value is g
and whose standard deviation is 0', we calculate the ratio 

Error in Mean IX -xl IX -xlvii t = ... -- - '-'--'-'!'__~ 
Standard Error of Mean ( :ii) 0' 

which is called Student's I. The vertical lines enclosing the dif
ference between the means of the sample and the population 
12 - xl denote that the difference is to be taken as positive irre
spective of whether it is positive or negative. In practice, when we 
apply this formula, we do not as a rule know the value of 0', and 
are forced to estimate it from the sample data.lfthe sample has a 
standard deviation s, then the best estimate we can make of (T will 
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be a = s J n : l' Writing this best estimate in our formula for 

Student's t, we get: 

t = 
Ix -xlvn=1 

s 
Evidently the larger the discrepancy between the means of sample 
and population the greater will be the value of t . Now t will have 
its own probability distribution - any specified value for t being 
exceeded with a calculable probability. Special tables have been 
drawn up showing the value t may reach for given probability 
levels, and so we have a simple method for testing whether any 
sample mean differs significantly (in the statistical sense) from any 
proposed hypothetical population mean. To make the approach 
clear, let us take an example. 
Example. Two laboratories carry out independent estimates of fat 

content for ice-cream made by a certain manufacturer. A 
sample is taken from each batch, halved, and the separate 
halves sent to the respective laboratories. The results obtained 
on 10 batches were as follows: 

PERCENTAGE FAT CONTENT IN SAMPLES OF I CE-CRE AM 
~ 

Batch number 1 2 3 4 5 6 7 8 9 10 
--- -----------I-

La boratory A 7·2 8·5 7-4 3·2 8·9 6·7 9-4 4·6 7·7 6·9 
Laboratory B 9·1 8·5 7·9 4·3 8·4 7·7 9·3 6·6 6·8 6'7 

The laboratories differ in their assessments. Moreover, it ap
pears that the manufacturer made an ice-cream of varying fat 
content, both labs agreeing in finding a marked fluctuation . The 
manufacturer points to the discrepancies between the findings 
of the two labs, and suggests that the testing is not too reliable. 
The question arises as to whether the discrepancies between the 
two laboratories are such that laboratory A tends to return a 
lower estimate of the fat content than laboratory B. 

This problem might well be tackled as follows. It is the dif
ference in estimates on the same batch which is in dispute. More-
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over, since there seems to be some agreement about the variation 
in the manufacturer's fat content from batch to batch, it will be 
best to conduct the analysis in terms of the discrepancies between 
the labs on the several batches. We subtract the estimate oflabora
tory A from the estimate of laboratory B, and obtain the follow
ing table. 

BETWEEN LABORA T ORY DISCREPANCIES 

LAB. B MINUS LAB . A 

Batch Number I 2 , 3 4 6 6 7 8 9 

D iscrepancy 1·9 ooTo:s 1·1 -0,5 1·0 -0·1 2 '0 -0'9 

10 
1-
-0'2 

The average discrepancy is found by calculation to be +0 '48 % 
fat content. If there were no bias between the labs we should 
expect that this discrepancy will not differ significantly from zero. 
Our first step is to calculate the sample variance of the ten dis
crepancies, using the formula : 

Ex2 
s2=- _ Xl 

n 

for which we already know n = 10 and x = 0,48. We get 
S2 = -h-[(I .9)2 + (0' 5)2 + (1'1)2 + ... '" + (0 ·9)2 + (0'2)2] - (0 '48)2 
i.e. s2 =0'89 ; s =0'94 

We now apply Bessel's correction to obtain a 'best estimate of the 
population standard deviation of the discrepancies: 

&=sJ _ n- = 0'94vlf=0'99 
n - I 

The assumed value of the population mean discrepancy X = 0. 
We now calculate Student's t as: 

IX - xl v n - 1 IX-j'lvn 
t = or s (1 

0·48v9 O'48vlO 
= 0'94 or 0 '99 

( - 1·53 
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The graph shown in Fig. 81 indicates the value of t which will 
be exceeded by chance (a) only once in twenty trials, (b) only once 
in a hundred trials, (c) only once in a thousand trials. If the cal
culated value of t exceeds the value given by the 5 % probability 
level curve for the number of degrees of freedom in question, we 
conclude that the result is probably significant. If the 1 % prob
ability level is exceeded, we conclude that the result is definitely 

t 

1~--~~~~4~~b~~8~IO~--~2~O~~~4~O~~bO~8~O~IOO 

DEGREES OF FREEDOM 

Fig. 81. Graphs of Student's I for 5%, 1%, and 0·1 % significance level. If the 
calculated value for I is greater than the value shown above for the appro
priate number of degrees of freedom, the indicated level of significance is 
reached· 

significant, and if the 0'1 % probability level is exceeded the dif
ference is regarded as highly significant - in the statistical sense. 
The number of degrees of freedom, N - k, for a single sample of 11 

items will be seen to be equal to 9. Referring to the graph of 
Student's t we find that the difference between the laboratories is 
not significant. We conclude that it is reasonable to ascribe it to 

• See acknowledgements, p. viii 
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chance, arising out of experimental error in the test. (By 'experi
mental error' we do not mean 'mistakes' but the inevitable lack 
of accuracy to which any experiment is subject.) 

The reader will recall that the result 'not significant' from a 
statistical significance test is not so much a complete acquittal as 
a verdict of 'not proven'. There may be bias between these labs, 
but the evidence so far is insufficient to create doubt in the mind 
of an unbiased observer - as distinct from a suspicious one, such 
as our manufacturer might conceivably be. With more evidence 
it might ultimately be that a significant difference could be estab
lished. There is obviously some point, therefore, in asking what 
degree of uncertainty remains in the figure of 0·48 % difference 
found between the labs. 1bis point will be taken up in Chapter 14 
when we come to deal with the problem of estimation and con-
fidence limits, as they are called. -

Besides the problem where we wish to consider whether a single 
sample has a mean value differing significantly from some hypo
thetical value, there is the similar - and in some fields much more 
common - type where we have to decide whether the difference 
between the mean values of two samples drawn from different 
sources is significant of a real difference between the parent 
sources. Let us take an actual example. 

Example. Lea strength tests carried out on samples of two yarns 
spun to the same count gave the following results: 

Number Sample Sample 
in sample mean variance 

Yarn A 9 42 56 
YarnB 4 50 42 

The strengths are expressed in pounds. Is the difference in mean 
strengths significant of a real difference in the mean strengths of 
the sources from which the samples were drawn? 
We have previously investigated the significance of the dif

ference in chest girth of Grade I and Grade IV army candidates, 
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where the samples were very large. In this case the method there 
used is not valid because of the small size of the present samples. 
To illustrate the very different result obtained using the refine
ment of the Student's t distribution, we shall first work out the 
present problem by the method valid for large samples, and then 
repeat the analysis using the correct procedure for small samples. 

Large sample method (invalid). We assume (a) that the sample 
variance is an unbiased estimate of the population variance and 
(b) refer the results to the Normal Probability distribution in
stead of to the distribution for Student's t . 
Standard Error of difference of two means is equal to 

u .. =v¥+~;, = V16·7 = 4·08 

Difference of means = 50 - 42 = 8 

t - Difference of Means =_8_= 2 
Standard Error of Difference 4·08 

Referring this value of t to the Normal Distribution we find that 
the probab.i1ity of so great a difference arising by chance is 4 ·5 %. 

Conclusion. The difference is probably significant. 
~ 

Small sample method (valid). We take account of the bias in small 
samples, applying the Bessel correction, and refer the resultant 
ratio to Student's t distribution. 

The first step is to make a pooled estimate of the variance - on 
the Null Hypothesis that the two samples are drawn from popula
tions identical both as to mean and variance (see F test below for 
important remarks): 

52= nlsl2+n2s22 =9 x 56 +4 x 42 ~ 61 
nl +n2- 2 9+4 - 2 

5 = v'6f = 7·8 

It follows that our best estimate of the standard error for the dif
ference of the means of two samples of this size is 

)
-1 - I ./-

5. ~ 5 - + - =7·SVf+i=4·67 
nl n2 
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The observed difference between the means of the samples is, as 
already found, equal to 8. We calculate Student's t as: 

t = Difference of Me~~ = _!__ = 1 .7 
Standard Error of Difference 4·67 

The number of degrees of freedom for Student's t = 9 + 4 - 2 = 11. 
Referring the calculated value of t to tables of Student's t, with 11 
degrees of freedom, we find that the observed difference could 
arise by chance in rather more than 10 % of trials. 

Conclusion. Significance-of difference not established. 

Comparing the results, the reader will not fail to notice the very 
marked difference between the two assessments of the probability 
that the observed difference might arise by chance. Student's t 
shows a probability twice as great as that obtained in the large 
sample method that the difference might have occurred by chance. 
f he use of the refinement is therefore imperative. 

The reader will have noticed that in testing the significance of 
the difference of the sample means we not only included in our 
Null Hypothesis the assumption that the means of the parent 
population were identical but a further assumption: that the 
variances of the parent populations were also identical. The 
reason for this extra assumption is that we pooled the two sample 
variances to get the best estimate of a population variance which 
the Student's t test assumes is the same for both populations. This 
being the case, it will be evident that before doing Student's t test 
to investigate the difference between the sample means, we should 
logically do a prior test to investigate whether the sample variances 
are sufficiently alike to warrant our assuming that they are in
dependent estimates vf the same population variance. We test the 
significance of the difference between sample variances by the 
Variance Ratio test. This test depends mathematically on Fisher's 
z distribution, an extremely general and fundamental distribution 
which includes the Normal distribution, the X2 distribution, and 
Student's t distribution as special cases. The Variance Ratio test 
is often referred to as Snedecor's Ftest, since Snedecor computed 
tables for the variance ratio distribution, and named the ratio F, 
in honour of R. A. Fisher. 
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Variance Ratio test. The variance ratio is defined as 
greater estimate of the variance of the population 

F~ - _ - .--
lesser estimate of the variance of the population 

What population? The assumed common parent population pos
tulated by the Null Hypothesis. The estimates are best estimates 
arrived at by applying Bessel's correction to the sample variances. 
It is clear that the greater the variance ratio tne less likely it is that 
the Null Hypothesis is·a valid one. But it will be no less clear that 
the magnitude of the ratio alone will not decide the matter. We 

, shall not be surprised if two small samples give a variance ratio 
appreciably different from the expected value of unity. Large 
samples, if the Null Hypothesis is true, should give .a value of F 
which differs little from unity. Thus, in our significance test we 
shall have to consider (a) the calculated value of F and (b) the 
numbers of items in the two samples whose variances are being 
compared. Tables have been drawn up showing the value of F 
which will be exceeded with a given degree of probability for 
various sample sizes. The number of degrees of freedom for a 
sample of n items will, according to the rule already given, be 
equal to n - I. The tables are drawn up, for reasons later 
apparent, in terms of degrees of freedom instead of sample sizes. 

The following is an -abbreviated version of Snedecor's Table for 
the Variance Ratio, sufficient to give the reader an idea of how the 
tables are laid out and how they are made use of. 

So,{, LEVEL OF VARIANCE RATIO· 

Number of degrees of freedom in the greater 
variance estimate 

I 2 3 4 5 10 
20 I 00 ------'1-

i!~~ 
I 161 200 216 225 230 242 248 254 

1;;, .... 2 IS'S 19 19-2 19-2 19'3 19·4 19-4 19-5 
u.!! e; 3 10-1 9-6 9'3 9-t 9 '0 S·8 8 -7 g.s 

"0 c '':: 4 7·7 6·9 6·6 6-4 6·3 6·0 5-8 5·6 ._ .. 
'oS" 5 6-6 5-8 5-4 5·2 5-0 4-7 4-6 4 -4 
.. 0 8 10 5·0 4 ·1 3·7 3-5 3-3 3-0 2-8 2'5 u] ; il ... ·c 20 4 ·3 3-5 3-1 2·9 2-7 2-3 2-l J-8 
:I~ ~ 00 3·8 3-0 2-6 2-4 2-2 1-8 1-6 1-0 
Zo 

" -• See acknowledgements, p_ VIII_ 
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1% LEVEL OF V ARIANCI! RATIO· 

Number of degrees of freedom in the greater 
variance estimate 

1 2 3 4 5 10 20 
--------------
4,100 5,000 5,400 5,600 5,800 6,000 6,200 
98 99 99 99 99 99 99 
34 31 29 29 28 27 27 
21 18 17 16 16 IS 14 
16 13 12 11 II 10 9·6 
10 7 ·6 6·6 6·0 5·6 4 ·8 4 '4 
8·1 5·8 4·9 4 ·4 4 ·1 3·4 2·9 
6·6 4·6 3·8 3·3 3·0 2'3 1'9 
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OC) 

-
6,400 
99 
26 
13 
9 '0 
3'9 
2 '4 
1·0 

N.B. The symbol CO denotes 'infinitely great', i.e., in praclice, ' very large' . 

Example. A sample of nl = 11 items has a standard deviation 
SI = 5'0 and a second sample of n2 = 6 items has a standard 
deviation $2 =8'0. Do these sample standard deviations differ 
significantly? 
For the first sample we have a sample variance of 52 = 25 based 

on ) 1 -1 ~ 10 degrees of freedom. Applying Bessel's correction, 

aI2 = (nln~ I)S12~ (tt)25 -27.5. In like manner, for the second 

sample a22 = (n2
n
:. 1 )S22 = (~)64 = 77 with 6 - I = 5 d.f. 

Hence, the variance ratio: 

F= Greater Var. Est. =.I!... =2'8 
Lesser Var. Est. 27'5 

The number of degrees of freedom is 5 for the greater variance 
estimate, 10 for the lesser variance estimate. Entering the tables 
for the variance ratio with these degrees of freedom, we find 

5% level of F - 3·3 and 1 % level of F - 5·6 
Since the observed value for F is less than the 5 % level, we con
clude that the difference between the standard deviations is not 
significant. 

In the case of large samples we can test the significance of a 
difference in standard deviations by using the straightforward 

• See aclOlowJedgements, p. viii. 
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standard error of a difference method, and the fact that the 
2 

variance for the distribution of sample standard deviations is ;n 
(see Chapter 10, page 137), and the fact that the variance of a dif
ference is equal to the sum of the variances. 

Example. W. J. Martin, in The Physique 0/ Young Males previously 
quoted, found a mean weight of 136·4 lb . with standard devia
tion 16'1 lb. for 74,429 males classified as Grade I at medical 
examination, and a mean weight 129·2 lb. with standard devia
tion 20·6 lb. for 2,183 males classified as Grade IV. Is the dif
ference in standard deviations significant? 

Adopting the Null Hypothesis that the observed difference 
could have arisen by chance, we calculate a pooled estimate of the 
assumed common variance. 

6
2 

= n}s]2 +nZs22 = 74,429(16 '6)2 + 2, 183(20'6)Z 
nl +n2 74,429 +2,183 

(Bessel's correction being ignored in so large samples.) This leads 
to 62 = 263, and the standard error of the difference of standard 
deviations of samples is 

a .. = Ja2 (~ +~;) = J263(148~858 + 4,~66) 
= v263 x 0 ·000237 = 0 ,25 

The observed difference in standard deviations is w = 20·6 - 16·1 ~ 
4 '5. Hence, the observed difference is equal to no less than 18 
times its standard error, and must be regarded as extremely sig
nificant. This result will not surprise the reader, who will have 
spotted that the extremely puny and the extremely corpulent will 
not have been allocated to Grade I but most probably to Grade 
IV. 

We shall show later that we may test the significance of the dif
ference between sample averages using the F test instead of the t 
test, using the technique known as Analysis of Variance (Chap
ter 19). 
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NOW SEE IF YOU ARE A GOOD JUDGE 

1. Two people are having a chat and you are told the difference in 
their I.Q. is 90 units. Is it likely that they are a random sample from the 
population as a whole? Who might they conceivably be (especially as 
there is someone to tell you the range in I.Q.)? (Take the standard 
deviation of I.Q. as 13 units.) 

2. Fifty children are given a special diet for a certain period and a 
control group of fifty other children have normal meals. The two 
groups are of similar background and physique. Their gains in 
weight are recorded: 

Special 7·2Ib. average Controls 5·7 lb. average 

The standard deviation for weight gains may be taken as 2 lb. Is the 
evidence sufficiently strons: for us to assert that the special diet really 
promotes weight ? 

3. Taking the standard deviation for pulse rate in adults as 8, would 
you say a high pulse rate was diagnostic if in a group of fifty people 
suffering from a certAin disease the average pulse rate were 75 as 
against a normal rate of 70? Supposing this were to prove significant 
statistically, how significant would it be clinically to the doctor 
in practice? 

4. Two types of aircraft are on the same route and both fly all the 
year round, so that there is no question of weather affecting the results 
in such a way as to be indistinguishable from differences between the 
aircraft. One type develops minOt troubles four times in 100 flights, 
the other nineteen times in 150 flights. Investigate and comment on 
these data. 

5. The important thing about a navigator's watch is not whether it 
gains or loses but whether it makes a uniform gain or loss regularly. If 
the rate of gain or loss is consistent, it is easy to allow for. If it is 
irregular, the watch is useless for the job. The following show the daily 
losses and gains for two watches. Is one significantly more variable 
than the other? 

WATCH A GAINS 

(sec/day) 54 63 49 50 62 54 58 57 60 61 

WATCH B LOSSES 

(sec/day) 116 108 116 122 112 118 123 114 111 117 
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How to be Precise though Vague - Estimation and 
Confidence Limits 

'There is nothing more frightful than ignorance in action.' 
OOETHB 

Whenever we take a sample, we do so with the idea of learning 
something about the population from which the sample is drawn. 
Provided that the sample is drawn in an unbiased manner we 
believe that it may be taken as representative of the parent popula
tion. But representatives are not all equally authoritative. Spokes
men - even official spokesmen - do not always tell a reliable tale, 
and it is very necessary in retailing a story secondhand from such 
a source that we indicate the degree of confidence which may be 
placed in what the spokesman has said. Just as the journalist tries 
to emphasize for his readers the difference between tumour and 
• usually well informed sources', so too the statistician has to 
attempt a similar thing. 

The degree of confidence which we can rest in estimates of 
population parameters such as means, standard deviations, pro
portions, and so on is clearly tied up very closely with the size of 
the sample taken and with the standard error of the statistic in 
question. Since the average value of a sample, for example, will in 
general differ more or less from the true value for the population, 
we can see that our estimate for the latter should properly be 
quoted, not as a single figure, but rather as a range within which 
we are coflfident that the value lies. The reader will at once ask : 
How confident? Since the answer to this can only be in terms of 
probability, we see that our answer will have to be in terms of a 
range together with an associated probability which expresses the 
c;onfidence we have that the value lies within the range. 

Given large samples, the problem is easily enough disposed of 
intuitively. An average, standard deviation, or proportion based 
on a large sample will be an unbiased estimate - a best estimate, 
needing no correction of the type of Bessel's correction for the 
standard deviation of small samples. But, When the samples are 
small, we have to face not only the possibility of bias but also the 
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fact that the average, standard deviation, or proportion found in 
the sample may differ quite appreciably from the population para
meter it is sought to estimate through the sample. It is evident that 
there can be no possibility of finding a method of estimation 
which will guarantee us a close estimate under all conditions. All 
we can hope for is a method which will be the best possible in the 
sense that it will have a high probability of being correct in the 
long run. The formula we use to make our estimate we shall call 
the Estimator and the value reached by using the formula the 
Estimate. In general, the accuracy of an estimator increases with 
n the number of items in the sample data. A good estimator will 
be unbiased and will converge more and more closely (in the long 
run) on the true value as the sample size increases. Such esti
mators are known as consistent. 

But consistency is not all we can ask of an estimator. In esti
mating the central tendency of a distribution, we are not confined 
to using the arithmetic mean; we might just as well use the median. 
Given a choice of possible estimators, all consistent in the sense 
just defined, we can see whether there is anything which recom
mends the choice of one rather than another. The thing which at 
once suggests itself is the sampling variance of the different esti
mators, since an estimator with a small sampling variance will be 
less likely to differ from the true value by a large amount than an 
estimator whose sampling variance is large. In Chapter 10 we 
stated that the standard error of the means of samples dra wn from 

a population a is given by :n where n is the number of items in 

the sample, whereas the standard error of the median is given by 

1·25a Th . b' . h fi . . h h \7;;' ere IS 0 VIOUS mearung, t ere ore, In saymg t at t e 

mean is a more efficient estimator of central tendency than is tbe 
median. The formula given for the standard error of the median 
is strictly true only for large values of n, but it may be shown that 
even when n is small the efficiency of the mean as against the 
median still holds. The estimator which has a smaller sampling 
variance than other estimators is called the most efficient esti
mato" and the efficiency of other estimators is expressed by 
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taking the ratio of the sampling variance of the most efficient 
estimator to the sampling variance of the estimator in question . 
For example, since it may be shown that the arithmetic mean is 
the most efficient estimator of central tendency for Normal dis
tributions, the efficiency of the median as an estimator is given by 

. . Sampling Var. of Mean 
EfficJency of MedIan = S- r V fM d-'-amp IIlg ar. 0 elan 

(~n I 
= (I ' 25~1) = I .252 = 0 ·64 

1'1 

What is the practical significance of this '? It means that if we use 
the mean as our estimator, our sample need only be 64 % as large 
as the sample required using the median as estimator, in order to 
have the same sampling variance. Putting it the other way round: 
if we decide to use the median as estimator, it is equivalent to 
throwing away 36 % of our data from the point of view of ac
curacy of estimation. Given a very large set of data we might well 
be only too happy to throw some of them away in order to save 
ourselves the trouble of calculating the mean . Interpolation of the 
median from a grouped frequency table might give us ample 
accuracy for our purpose. The search for most efficient estimators 
is the intriguing task of the mathematical statistician and cannot 
be entered into here in detail. 

We now come to the more specific part of our problem, namely, 
the specification of the interval within which the true value we are 
estimating may be said to lie with a specified probability. We shall 
not enter here into the differentiation between Fiducial Limits and 
COI/fic/ence Intervals, the former associated with the name of R. A. 
Fisher and the latter with that of E. S. Pearson . There are matters 
of great interest in the arguments of the two schools of thought on 
the question of statistical inference. M. G. Kendall in the Preface 
of Volume II of his Advanced Statistics says : 'Some day I hope to 
show that this disagreement is more apparent than real, and that 
all the existing theories of inference in probability differ essen
tially only in matters of taste in the choice of postulates'. Such 
discussions are mainly matters for the professional statistician and 
would be out of place in the present introductory sketch of the 
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subject. There are cases where the two theories lead to different 
results. It is most likely that in such cases the two methods are 
asking and answering questions that are different, but difficult to 
distinguish. The reader must be satisfied that in the majority of 
practical cases the results are identical. 

We shall now deal with the method for getting what we shall 
call (pace both schools of thought!) confidence intervals, using 
this as a convenient term for our present purpose, without 
reference to the family squabbles of the statistical logicians. Let 
us take, first of all, the case of large samples. The simplest method 
is to take the unbiased estimate of the parameter, as given by our 
sample, and say that the population value lies within one standard 
error fairly probably, or within two standard errors probably, or 
within three standard errors very probably. One or two examples 
will suffice to illustrate. 
Example. A sample of 400 items yields a mean X = 47 with standard 

deviation s = 7. Find confidence intervals for the population 
mean. 
With so large a sample the sample standard deviation may be 

taken as the standard deviation of the population. The standard 

error of the mean of samples of n items is ;; ;,' and we may regard 

this as our standard error of estimate. In this case 
a 7 

vr, = v 400 = 0 ,35. 

Referring the distribution to the Normal scale, the prob
ability of a deviation of up to one standard deviation either way 
is 68 %. We may therefore say that the population mean lies in the 
range 47 plus or minus 0 ·35, i.e. in the range 46'65 to 47 ·35, and 
express our confidence in this claim by saying that in a long series 
of estimates of this type, if we were to use exactly the same kind of 
argument, we should expect to be correct 68 % of the time. 

If it were suggested that this was not a very high proportion of 
successes, we could modify our claim by stating that the popula
tion mean lies in the range 46'3 to 47·7, Le. by allowing two stan
dard errors on either side of the sample mean. Clearly with this 
more cautious estimate, we shall have greater confidence of being 
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correct. Referring to the Normal scale. we find that a deviation of 
up to two standard deviations from the mean can occur with fre
quency about 95 %, i.e. we could now hope that by arguing in this 
revised way. we should be correct in 95 out of every 100 such pre
dictions. 

Confidence intervals of this type are said to be symmetrical 
about the mean value. But we do not always want symmetrical 
confidence intervals. Suppose. for example, we were estimating 
the toxicity of some substance to be used for fJledicinal purposes
we should be less interested in overestimates of the toxicity than in 
underestimates. What we should want, in fact, is a confidence 
interval based on the upper limit of toxicity. a statement that we 
could be 99% sure that the toxicity did not exceed some specified 
value. On the other hand, if we were estimating the proportion of 
viable seeds in a sample, we should be mainly concerned with the 
lower limit which could with confidence be assigned to the pro~ 
portion. Such confidence intervals we may refer to as asymmetric. 

Example. A sample of 100 items gave a mean value 32 with stan-
dard deviation 5. Calculate (a) symmetric confidence limits 
within which we may have 95'5 % confidence that the true 
population mean lies and (b) an upper confidence limit which 
we may have a 99 % confidence will not be exceeded and (c) a 
lower limit above which we may be 96 % sure that the popula
tion mean lies. (See Table of the Area of the Normal Curve, 
Chapter 9, page 116.) 

The standard error of the mean of samples of 100 items drawn 
from a population whose standard deviation may be taken as 5 is 

:" -v:oo - 0 ,5. With a large sample, we may take this as the 

standard error of estimate. 

(a) Symmetric Confidence Interval. We may have 95'5% con
fidence that the population mean is not more than two standard 
errors away from the mean of our large sample on either side. Our 
confidence interval is therefore 32 ±2(0'5), i.e. the range 31·0 to 
33'0. 

(b) Upper Confidence Limit. Assuming symmetry, we may take 
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it that the population mean has a 50% chance of being less than 
the sample mean. Our problem reduces, therefore, to finding that 
number of standard errors which has a 1 % chance of being ex
ceeded. Referring to the Table of Areas of the Normal Curve, we 
find that the appropriate number of standard errors is 2·2.5, and 
so may say that we have 99 % confidence that the population 
mean value does not exceed the sample mean value by more than 
2·25 x 0·5 = 1 ·125. Our 99 % upper confidence limit is therefore 
32 + t·125 - 33 ·125. 

(c) Lower Confidence Limit. Assuming symmetry, as before, we 
argue that there is a .50 % probability that the population mean 
will exceed the sample mean, and this time our problem reduces 
to finding that number of standard errors by which the sample 
mean may differ from the population mean with a probability of 
4 %. Consulting the Table of Areas of the Normal Curve we find 
this number of standard errors to be 1·75, and set our 10vI'cr con
fidence limit at 32 -1·75(0·5) - 31·125. 

Turning, now, to small samples, the method is very little more 
difficult, the main difference being that we have to use the 
Student's t distribution instead of the Normal distribution. The 
method is best illustrated by an example. In Chapter 13 we dis
cussed the problem of two laboratories where it was alleged that 
a significant difference existed between their findings of fat con
tent in ice-cream. The average discrepancy between the lab 
analyses was 0·48 % and the standard deviation of the dis
crepancies, using Bessel's correction to get a best estimate, was 
0·99 %. Suppose now we wished to lay down a symmetrical con
fidence interval for the discrepancy, using a method which will 
satisfy us if it gives the correct result for the confidence interval in 
95 % of cases. In this case the number of degrees of freedom for 
Student'S tis 9 and tables of Student'S t show that for this number 
of degrees of freedom the value of t is 2·26 and the population 
mean will only differ by more than this number of standard errors 
with a probability of 5 %. We therefore lay down our confidence 
interval as 

fa - 0.48 2·26 x 0·99 
%:1: vii :I: vlO 

- 0·48:1:0·70 
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For all practical purposes, therefore, we may say that the dis
crepancy between the labs in the long run may lie anywhere in the 
range - 0'2 % to + 1 ·2 %. The minus result indicates that, while 
laboratory B seems so far to give the higher result, it might well 
prove in the long run that laboratory A tended to give the more 
favourable verdict as to fat content. 

We may round off this ice-cream problem now, by asking how 
many paired analyses would be required to establish a significant 
difference on the basis of an average discrepancy of 0·48 %. Refer
ring to Chapter 13, the significance of the difference was based on 
the value of t given by the formula 

IX- xl v II 
t 

(T 

where IX - xl =0'48 and (T = 0·99. So we may write : 

t = (~::~) Vn =0'48v n 

[fwe are prepared to work at the 5 % level of t, the problem boils 
down to finding the value of 11 which substituted in this formula 
will give a value for t which is significant at the 5 % level with 
(n - 1) degrees of freedom. If the reader will consult the graph of 
Student's t (page 230) he will see that we may immediately get the 
required value of n by writing t = 2, since as n increases t rapidly 
approaches this value. We get 

0'48vn = 2 i.e. 11 = (0~8 r = 17 approximately. 

Thus, if the apparent discrepancy were maintained (and we have 
no guarantee at all that it will be), some 17 parallel analyses 
would be required to establish the significance of the difference 
between the laboratories at the 95 % confidence level. The reader 
may care as an exercise to investigate for himself what number of 
samples would be required for various average discrepancies 
within the confidence interval we have calculated to establish a 
significant difference, asking himself, on commonsense grounds, 
how he would expect the number of samples required to change 
as the average discrepancy grew larger or smaller. 

The problem of laying down confidence intervals for the stan
dard deviation of the population when we ha_ye an estimate based 
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on large samples may be tackled in a manner precisely analogous 
to that for the mean, using the standard error of the standard 

deviation . ~- as our standard error of estimate. We may take it 
v2n 

that we may be 95 % sure that the population standard deviation 
will not differ from the large sample standard deviation by more 
than two standard errors. 

Example. Strength tests on 200 leas of yarn gave a standard 
deviation of 5'8 lb. Find the symmetrical 95 % confidence in
terval for the standard deviation. 
The standard error of the standard deviation is 

0' 5·8 
"/2~= v'400 = 0 '29 

We may be 9S % sure that the population standard deviation 
lies in the range 5·8 ±2 x 0·29, i.e. in the range 5·22 to 6'38. The 
problem of assigning confidence intervals to the standard devia
tion.from small sample results we defer to the next chapter where 
we deal with the X2 distribution. 

NOW TRY YOUR HAND AT ESTIMATION 
1. Out of a large consignment of screws you take a random sample 

of 200 and find two of them have not had the head slotted. Use Fig. 39 
to find a value for the percentage of screws in the consignment which 
have this fault such that there is only a 1 % chance that your estimate is 
below the true value. (Hint: The probability of three or more taken at 
p =0,99 means just the same as the probability of two or less = 0·01. 
Hence, using p = 0·99 find the expectation, z, corresponding to the 
curve c = 3. Then ask yourself what percentage defective will give this 
expectation in a sample of 200 screws.) 

2. For the same data of example 1, find a lower limit for the percen
tage defective in the consignment such that there is only a ]0% chance 
of the true value being less than the one you state. (Hint: Find the 
expectation, Z, corresponding to c=2 atp =0'1) 

3. Repeat analyses for the percentage of impurity in a chemical 
compound gave the results 3·4%, 3'7%, 3,5%. Set up a 95% confidence 
interval (symmetrical) for the percentage of impurity. (For 2 degrees 
of freedom Student's t =4·3.) 

4. A test on 100 ice-cream portions shows that the machine has been 
cutting with a standard deviation of 0·1 fluid ounces. Set up 95% 
confidence limits for the standard deviation (two sigma limits). 
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Association, Contingency, and Goodness of Fit -
The X2 Distribution 

'Entia non sunt multiplicanda praeter necessilalem.' 
WILLI A M OF O C CAM 

It very rarely happens that an effect is brought about by a 
single cause - rather do we find that a certain combination of cir
cumstances is necessary, and the absence of even one of them 
is enough to prevent the occurrence of the event. Take a very 
simple example : the case of a child contracting diphtheria. What 
causes this dis~se to develop? A much too simple answer would 
be that the child' caught the germ '. It is too simple because, in the 
first place, there are many people who carry the bacillus without 
having the disease at all. It follows that there must also be another 
cause. 1f we assume that the bacillus is the specific cause of the 
disease, we must also acknowledge that the bacillus must find in 
some but not all persons, at some not not at all times, suitable 
conditions for the success of its evil purpose. A person who is 'run 
down' will be more likely to succumb to an invasion than a person 
in good condition. Yet' run down' is very vague. Some people in 
poor condition may escape, whilst others who seem in excellent 
condition will be overcome . . This suggests that the catching of the 
disease is even more complex. How, then, did we get the idea that 
specific germs are the causative agents of certain diseases? The 
answer to this is that we find the germ in question associated with 
the particular disease. That is to say, we find the germ more fre
quently in people with the disease than in those not suffering 
from it. 

The careful reader will have noticed that we said the germ is 
found more frequently in people who suffer than in those who do 
not, implying not only that some people having the germ do not 
have the disease, but that some people having the disease do not 
have the germ. To the non-medical reader, relying on common
sense, this will seem a very queer kettle offish. The German bac
teriologist, Robert Koch (1843-1910), who was awarded a Nobel 
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prize for his pioneer work, enunciated certain postulates, one of 
which was that the organism must always be found in cases of the 
disorder. The difficulty of problems of association will be appre
ciated when it is realized that in a notable proportion of cases of 
diphtheria it is not possible to find the bacillus, although, 
clinically, there is no possible doubt that the patient is suffering 
from the disease. The physician has to think of many more things 
than bacteriological findings. It will be appreciated that, however 
great the difficulties, the research worker has to press on with his 
task of trying to piece together the whole story. Association and 
the theory of Dependence are at once great assets to him and 
dangerous pitfalls, especially when he is dealing with smaJI 
samples. In tilis chapter we shall try to show how the statistician 
goes about the job of steering a course through dangerous straits. 

In December 1897 there was an outbreak of plague in a jail in 
Bombay. Of 127 persons who were uninoculated, 10 contracted 
plague, 6 of them dying. Of 147 persons who had been inoculated, 
3 contracted the plague and there were no deaths. These data may 
be set up in the following way to show 

(a) the association between inoculation and contracting the 
disease and 

(b) the association between inoculation and mortality among 
persons who have contracted the disease. 

Infected Not 
infected 

Un inoculated 10 117 
Inoculated 3 144 

Died Recovered 

Uninoculated 6 4 
Inoculated 0 3 
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Considering the first table, if inoculation is of no avail we should 
expect that the proportion of infected persons among the in
oculated Ii..,. would not differ significantly from the proportion of 
infected persons among the uninoculated ",*. Since the propor
tion of infected persons among the inoculated is less than the 
proportion among the uninoculated, we may say that inoculation 
and infection are negatively associated . Had there been more 

. infected persons among the inoculated than among the unin
oculated, we should have said inoculation and infection were 
positively associated. Our second ta ble suggests a negative 
association between inoculation and death once the disease has 
been contracted. Overall, therefore, the impression is given that 
inoculated persons are (a) less likely to get the plague and (b) less 
likely to die if they do contract it. 

It will, of course, happen but rarely that the proportions will be 
identical, even if no real association exists. Evidently, therefore, 
we need a significance test to reassure ourselves that the observed 
difference of proportion is greater than could reasonably be at
tributed to chance. The significance test will test the reality of the 
association, without telling us anything about the intensity of 
association. It will be apparent that we need two distinct things: 
(a) a test of significan'ce, to be used on the data first of all, and (b) 
some measure of the intensity of the association, which we shall 
only be justified in using if the significance test confirms that the 
association is real. Before we go on to deal with these, there is one 
point on which the reader should be very clear, as it is absolutely 
fundamental to understanding what exactly we mean when we 
talk about association in Statistics. The word has a rather more 
restricted meaning in statistical methodology than in ordinary 
speech. The crux of the matter is that in statistics when we speak 
of association, there is always a comparison implied. In common 
speech, the simple fact that two things are found. frequently to
gether justifies us in saying that they are associated. In this sense, 
as a trivial example, we might say that drinking beer is associated 
with men. True enough, it is. But the statistician would be little 
interested in such an isolated statement. He takes an interest only 
when the statement is extended so as to make a comparison; if, 

- for example, we say that beer drinking is associated with maleness 
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rather than femaleness. Cancer of the stomach is associated with 
men - and also with women. The statistician, however, finds that 
men are more liable to get this disease than women, and when he 
says that cancer of the stomach is associated with men, he is im
plying that men - rather than women - get the disease; that is, that 
the disease, while attacking both sexes, has a preference for men. 

The danger of drawing the obvious conclusion from association 
has already been pointed out. The association between two things 
might be due, not to any direct causal relation between them, but 
to their joint association with a third factor. Cold weather in 
England is associated with high sales of blankets in canada. It is 
not that the Canadians buy blankets because English people feel 
cold in the winter. They buy the blankets because they feel cold 
themselves at the same time as we do. There is the linking factor 
of a common hemisphere. Pseudo-associations of this sort are 
very common. The number of wireless licences purchased over the 
last twenty years or so correlates extremely highly with the num
bers of people certified insane in the same years. They show a 
parallel growth. Who will be so bold as to say that the one phe
nomeoon is the cause of the other? These cases, where the associa
tioo is obviously not due to a cause and effect relationship 
subsisting between the two phenomena, should warn us against 
the too hasty assumption of a cause and effect relationship in 
cases where the idea is not so preposterous. A man who stands on 
the river bank while someone else rescues a drowning man can be 
said to be associated with the rescue, but he is not the cause of the 
effect. 

X2 • TEST 

The reality of associations of this sort is tested by using the X2 test. 
The X2 distribution is one of the most versatile in statistical theory. 
We cannot enter here into the mathematical theory which under
lies this test, but shall have to confine ourselves to a description of 
how X2 is calculated in given cases and how its significance is 
tested using the published tables. X2 tests essentially whether the 
observed frequencies in a distribution differ significantly from the 
frequencies which might be expected according to some assumed 

• Pronounced 'Keye square' (rhyming with ' eye') . Also written, some
times : 'Chi-square' . X is a Greek leller. 

9 
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hypothesis. Corresponding to each frequency predicted by our 
hypothesis there will be an observed frequency. If we denote the 
expected frequency by E and the observed frequency by 0, then 

. f l·k (0 - E)2 h . X2 IS calculated as the sum 0 terms I e - E--' t at IS to say, we 

may write 
",(0 - E)2 

X2 = L_.--E-

As the simplest possible example, suppose that a coin were tossed 
50 times and that heads occurred only 15 times, should we be jus
tified in asserting without more ado that the coin was biased or 
the man doing the tossing not as honest as he looked? 

In this case, we have an a priori theory as to what the relative 
frequencies for head and tail should be. We expect roughly 25 
heads and 25 tails, and 25 is our best estimate of the expected fre
quency. We calculate 

(0-E)2 (0-E)2 
x2 = - E-- +--X-

(35 - 25)2 (15 - 25)2 
~ 25 + 25 

(for tails) for heads) 
- =~r,o·+W= 8 

It will be evident to the reader that the expected value for X2 is 
zero, and the question now is whether the calculated value of X2 
is sufficiently great to refute a Null Hypothesis that the observed 
discrepancy between the frequency of head and tail could have 
arisen by chance. To answer this question we have to decide the 
appropriate number of degrees of freedom with which the tables 
for X2 should be entered. The number of degrees of freedom is 
obtained as the number of classes whose frequency may be 
assigned arbitrarily. In this example, for instance, we could arbit
rarily make the frequency of heads what we liked. But, this having 
bee,n done, the frequency of tails would then be automatically 
settled for a given number of throws of the coin. We may say, 
then, that the Goddess of Chance had only one degree of freedom 
in fixing the frequencies. Accordingly, we have to enter the table 
ofX2with one degree of freedom. * Doing this, we find that the 5 % 

• The reader may check what follows by using the chart of X2 in Fig. 82. 
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level of Xl appropriate for our problem is 3·84 and the 1 % level 
6,64. Since our calculated value for Xl exceeds the value given in 
the table for the 1 % level, we should be on strong ground in 
asserting that the coin-spinning experiment was not free from bias. 
Suppose, however, that it was vitally important that such a claim 
of bia's should not be made short of an extremely high degree of 
confidence, as, for example, if a false claim of 'this kind would 
result in our being prosecuted, we might test it at the 0·1 % level, 
i.e. demand a value of x2 so large that it would be exceeded by 
chance only once in a thousand similar experiments. This value of 
XZ is 10'83, so that under these circumstances while we should 
have our own opinion we should have to keep it to ourselves, not 
daring to make it public without further confirmation. 

Now the agreement between the expected and observed fre
quencies may be too good as well as too bad for it to have been a 
matter of chance. That is to say, we may come across values of X2 

that would almost certainly be exceeded by chance. Cases of this , 
sort make us suspect that possibly the data have been • cooKed' by 
someone with a very good idea of what the answer should be, For 
this reason, the published tables ()f X2 show not only the 5 %, I %, 
and 0 '1 % levels but also the 95 %,99%. and 99 ·9% levels. 

Consider, next, the following data, due to Coll and Jones of the 
Central Middlesex Hospital. They interviewed 4,871 men at ran
dom. The following table shows the numbers interviewed by age 
groups, and the numbers in each age group estimated to have, or 
have had in the past, peptic ulcers. 

Age group 14- 20- 25- 35- 45- 55- 65-
1-

Number seen 199 300 1,128 1,375 1.089 625 155 
-----------

P.U. cases 1 8 38 96 105 56 12 

Suppose that we wished to ask whether these figures are such as 
might have been observed by chance on the hypothesis that equal 
proportions would be found in each age group. The following 
table compares the numbers of cases found in each age group with 
the numbers which were to be expected on our hypothesis, the 
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expectations for each age group being based on the fact that a 
total of 316 cases were found in 4,871 persons interviewed, i.e. on 
an expectation of 6·5 % constant for each age group. 

Age group I 14- 20- 25- ~I~ 55- 65-
---- I-

C\lses cxpccted 13 19 ·5 73 89 71 40-4 10 

,- 8 ---;;-,-;-------
Cases seen I 105 56 I 12 

The total of the cases expected should be equal, of course, to the 
total of the cases seen. The value of X2 is then given by 

122 11 .52 352 72 342 15'52 22 
X2= TI + 19·5 + 73 +89+71+ 40 '5 +10 

i .e. X2 = 57 '6 
There are 7 age groups, the frequencies for 6 of which could be 
assigned arbitrarily, so that we enter the table of X2 with 6 degrees 
of freedom. We find that even the O·} % level of X2 is 22 '5 only, 
compared with our calculated value of 57'6, and conclude, there
fore, as we ought to expect in this particular case, that the ob
served frequencies in- the several age groups are Dot compatible 
with the hypothesis that the finding of peptic ulcer or a history of 
peptic ulcer is constant from age group to age group. 

But the obvious conclusion is not always the correct one neces
sarily. Consider, for example, the following table which shows the 
number of accidents occurring in a particular period of time on 
each of three eight-hour shifts in a factory, the working con
ditions and numbers of people exposed to risk being assumed 
similar for all shifts (example due to K. A. Brownlee). 

Accidents 
Shift in the 

period 

A 1 
B 7 
C 7 
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If we test the hypothesis that there is no significant difference be
tween shift and number of accidents the result obtained is quite 
unexpected. The expectation per shift is taken as 5, and we find 

42 22 22 
X2=S+S +5=4'8 

If the reader refers to the graph of X2 given in Fig. 82 he will see 
that with two degrees of freedom (one less than the number of 
shifts), even to reach the 5 % probability level we should need 

t-~ / 
~·~-+---f-t-++-7t-i1I'1-I-r---+----1 

21----t-- t--t-1 ~ ;"""~/+---+--i 
}f./I 
~ ~ll 

1~----+---~4~~6~8~I~O----'2~O~JiO 
DEGREES OF FREEDOM n 

Fig. 82.· Graphs ofX2. TheO·I%, 1% and 5% levels indicate suspiciously bad 
fit. The 95% and 99% levels are used to indicate suspiciously good fit. For 
degrees of freedom greater than 30, V2x2 is normally distributed with 
unit standard deviation about a mean value V2n-1 

X2 = 6. As a matter of fact, such a distribution of the frequencies -
or worse - might occur with a 10% probability. While we cannot 
deny that a difference between the shifts may exist, we are boupd 
to say that the evidence scarcely justifies us in regarding the exist
ence of a difference as established. We should adopt a wait and 

• See acknowledgements, p. viii. 
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see attitude until further experience enables the matter to be 
settled. 

Consider, now, a somewhat different problem, namely the in
oculation data already quoted earlier in this chapter. 

Infected Not 
infected 

Uninoculated 10 117 
Inoculated 3 144 

This is essentially a Binomial type of problem, since we are com
paring the Significance of the difference of proportions in two 
samples on the Null Hypothesis that they could have come from 
the same population. We may test the significance of the diffoI'l!nce 
in proportions by using the X2 distribution. A mathematical diffi
culty arises from the fact that the X2 distribution is a continuous 
distribution, whereas the Binomial distribution is not. This diffi
culty is overcome by applying a correction suggested by Yates 
which consists in decr.easing by t those values in our table which 
exceed expectation and increasing by t those values which are less 
than the expected value. On our Null Hypothesis the number of 
persons infected in the uninoculated group exceeds expectation, 
so that the number not infected in the same group must obviously 
be less than the expected frequency. The reverse conditions hold 
in the inoculated group. Applying Yates' correction, our table 
becomes: 

Infected Not Totals 
infected 

Uninoculated 9!- 117!- 127 
Inoculated 3t 143!- 147 

Totals 13 261 274 
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Tables of this type may be represented symbolically, as follows : 

Infected Not Totals 
infected 

Group 1 . a c tI 

Group 2 b d f 

Totals g h k 

We could, of course, calculate the expected frequencies in the 
usual way, but it may be shown that X2 is given by the formula 

(be - atf)2k 
X2 - efgh 

Applying this to our table, after Yates' correction has been ap
plied, we find 

2 (3t x 117t -9.,. x 143t)2 x 274 39 
X - 127 x 147 x 13 x 261 ... . 

We now need to know how many degrees of freedom are appro
priate for entering the tables (in our case, graph) ofX2• The num
ber of degrees of freedom, as before, is equal to the number of 
frequencies which could arbitrarily be entered into the table, with
out disturbing the totals. If the reader will consider the table of 
frequencies for a moment he will soon see that there is only one 
degree of freedom. Once any frequency is arbitrarily fixed, the 
rest are determined by this frequency and the marginal totals in 
the table. Thus, if we were to assign the frequency 7 for the num
ber of uninoculated persons infected, then the number of un
inoculated who were not infected must be 127 -7 = 120, the num
ber of inoculated who were infected must be 13 - 7 ~ 6, and the 
number of inoculated who were not infected must be 147 - 6 -
141. Consulting our graph for X2 we find that with 1 degree of 
freedom the 5% level ofX2 - 3·S and the 1% level 6·6. The cal
culated value for X2 just reaches the 5 % level therefore, and we 
may conclude that the observed discrepancy is probably sig
nificant, i.e. that it is probably true that the inoculated are less 
likely to contract plague than the uninoculated. The reader may 
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care to confirm for himself that the application of Yates' cor
rection makes a considerable difference to the value of X~ arrived 
a t. Without the correction we find Xl = 5·0 approximately. In 
cases of this type, where the sample sizes are relati"ely small and 
the Binomial distribution very skew, we should use Yates' cor
rection and the X2 test rather than test the signi fi cance of the dif
ference in proportions by the standard error method which can 
only give a crudc guide as to the proba bility of the observed dif
ference being due to chance. 

Frequency tables of this sort may be more complex. Consider, 
for example, the following table which shows fractional test meal 
results in a series of pathologically verified cases of ulcer and 
cancer of the stomach. 

Achlor- Hypo- Nom1al Hyper-
hydria chlorhydri a chlorhydlia 

Chronic ulcer 

I 
3 7 35 9 

Cancer 22 2 6 0 

These data are due to£tewart ofl.eeds University. The first matter 
to be considered is how the expected frequencies are to be cal
culated for each cell of the table. This is best shown schematically 
as follows . 

a b c d e 

Qs 
A 

B .......................... .................. ...... - ..................... . 

C 
D 

Totals I p q 

N 

r s 

Totals 

p 

Q 

R 
S 

N 

In the table, the grand total frequency for the whole table is N. 
The row totals are denoted by P, Q, R, and S. The column totals 
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are denoted by p, q, r, s, and t. We have, therefore, thatp +q + r + 
s + 1 =P + Q + R + S = N . The several cells in the table can be in
dicated by quoting the 'map reference', e.g. Aa, Cd, Be, etc. The 
expected frequencies are derived from the marginal totals, by ask
ing ourselves : What is the probability that a given patient will fall 
simultaneously in a given row and column ? Thus, for example, 
the probability that a patient will occur in the row B is given by 

~ . In like manner, ~he probability that a patient will occur in 

column d is given by N' Now, the probability for the joint occur

rence of two events is obtained by multiplying together the prob
abilities for their indivlJual occurrence. Hence, the probability 
that an individual will occur in. the cell Bd of the table is given by 

~'R= ~~. The probability of the occurrence of a patient in other 

cells may be arrived at in similar fashion. Now, for our X2 test, we 
do not want probabilities but expected frequencies. These latter 
will, of course, be obtained from the cell probabilities by multi
plying by the total number of patients dealt with in the table, viz. 

. Qs Qs 
N . The expected frequency for the cell Bd IS thus N2 x N = N' 

We see, therefore, that the expected frequency in a given cell is 
obtained by taking the product of the row and column totals 
appropriate to the cell and dividing this product by N, the total 
frequency for the whole table. 

If, then, we let A and B denote chronic ulcer and cancer respec
tively, and a, b, c, and drepresent achlorhydria, hypochlorhydria, 
normal and hyperchlorhydria, our table of observed frequencies 
with marginal totals becomes : 

I 
a b c d Totals 

A 3 7 35 9 54 
B 22 2 6 0 30 

Totals 25 9 41 I 9 84 
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And our table of expected frequencies will be 

Q b c d Totals 

A 16 s-s 26·4 5·8 54 
B 9 3·2 14·6 3·2 30 

Totals 25 9 41 9 84 

We then calculate the total value of X2 .for the whole table by 
squaring the difference between each observed frequency and our 
calculated expected frequency, and dividing the result by the ex-

. h 'b' f th II 2 ' (16 - 3)2 10 5 pectahon. T e contn ution 0 e ce Aa to X IS - 1-6- = " 

and totalling the contribution of all the cells we find >s.,2 = 42·9. 
Now in order to decide whether the observed difference in 

acidity conditions as between cancer and chronic ulcer cases 
might be due to chance, we have to know how many degrees of 
freedom to use in entering the tables for X2. The table we have 
been considering is called a 4 x 2 table, ' since there are 4 columns 
and 2 rows. If, in the general case, we let "1 and "2 represent the 
number of rows and columns in our table, then the number of 
degrees of freedom is given by (nl - 1 )(n2 - 1). In our case, there
fore, the number of degrees is 3 x 1 = 3. As the reader may confirm 
from the graph of X2 the 5 % level with 3 degrees of freedom is 
8, the 1 % level 12. The full tables show that the 0·1 level is 
only 17. We conclude then that beyond all reasonable doubt 
there is a significant difference in acidity conditions as between 
chronic ulcer and cancer of the stomach. 

In analysing the above case we deliberately avoided mention of 
an important fact, so as not to burden the reader with too many 
things at a time. The X2 test cannot safely be applied when the 
expected frequency in any cell is Jess than 5. In our table there 
were two cells, Bb and Ed, which did not satisfy this criterion. In 
an actual case in practice we should get over this difficulty by 
pooling together columns a and b, and columns c and d, so that 
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the contrast would be the less detailed one between hypochlor
hydria and its extreme case achlorhydria, on the one hand, and 
normal or hyperacidity on the other hand. Our table, in this case, 
would then degenerate into a 2 x 2 table of the kind met with in 
the inoculation data. Thus: 

(a + b) (c+d) Totals 

A 10 44 54 
B 24 6 30 

Totals 34 50 84 

The reader may check for himself that the expected frequency in 
all cells is then greater than 5 by the method a lready indicated. 
We calculate the value for X2 using the method illustrated in the 
inoculation data as: 

2 (24 x 44 - lO x 6)2 x 84 . 
X = 34 x 50 x 54 x 30 = 30 approxJmately. 

The appropriate number of degrees of freedom in this case is 1. 
The reader will find that the 1 % level of X2 from the graph is 6·6, 
and tables show that the 0·1 % level is only 10·8, so the conclusion 
previously reached is confirmed. 

Other exercises for the reader to try for himself are given at the 
end of this chapter. 

This distribution is also used for testing the goodness of fit of 
theoretical distribution and observed data. To some extent, test
ing the mean and standard deviation using the I test and the Ftest 
does the same thing, but the X2 test provides us with a much more 
-detailed approach since it considers, not simply a couple of para
meters, but the overall shape of the distribution. As an illustration 
of the use of the X2 test as a • goodness of fit test', let us take the 
data given in Chapter 8 for the number of goals scored per team 
per match at football. We there calculated the expected frequency 
for the different scores (a) using the Poisson distribution and (b) 
a modified form which allowed for fluctuation in the expectation. 
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Consider, first of all, the predicted frequencies given by the 
Poisson. 

Goals per match o I I 1_21_~_4 _ 5 _6 7 

88 150 I' 126 72 30 10 3 
-

Predicted by Poisson I 

~1~~~1-9 1-5-
-

Observed frequency 95 2 

(95 - 88)2 
We calculate x2 as the sum of terms such as 88 and find 

X2 = 8·25 . (The last three cells, for 5, 6, and 7 goals, have to be 
pooled together to ensure that the expected frequency is greater 
than 5 for all cells.) The appropriate number of degrees of free
dom here is one less than the number of cells, after the pooling of 
the last three cells, viz. 5. The 5 % level of X2 for 5 degrees of frl"e
dom is 11·1. We cannot, therefore, say with confidence that the 
Poisson distribution is a poor fit. However, the tables of X2 show 
that with 5 degrees of freedom the 10 % level is 9·24 and our cal
culated value for X2, though still less than this value, is getting 
near to it. If, therefore, we wished to be doubting Thomases, we 
might still keep our fi1Jgers crossed against the possibility that the 
Poisson distribution might prove a bad fit, given further evidence. 

Let us now consider the prediction we obtained using the modi
fied distribution which allowed for fluctuations in the expected 
value for the number of goals per team per match. Pooling the 
last three cells again, we get ; 

I 

Goals per match 0 1 2 3 4 ' 5,6, and 7 
----------- ---

Predicted freq uency 96 147 119 69 32 17 
--------

Observed frequency 95 158 108 63 40 16 

And the reader may check for himself that X2 = 4 '4 with 5 degrees 
of freedom. This is almost exactly the 50 % level of X2, Le. that 
value which is as likely as not to be exceeded, so there is absolutely 
no reaso.tl why we should not be pleased with the fit and attribute 
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any variations between predicted and observed values to pure 
chance in random sampling. This is a suitable point to comment 
on a matter which is sometimes puzzling to the novice. We have 
seen that either the Poisson or the modified distribution fits the 
observed frequencies sufficiently well for us to be able to regard 
them as workable forecasters . Which is correct? It is important to 
be clear that, although the modified distribution fits better ap
parently than the Poisson, there is as yet no really cogent proof 
of this. Probably there never is a mathematical function which 
fits a practical case absolutely perfectly. Nor is it at all necessary 
that there should be. What we seek is not a perfect description of 
a distribution but an adequate one ; that is to say, one which is 
good enough for the purpose we have in view. A simple mathe
matical distribution may well be chosen for its simplicity, al
though it fits the facts rather less well than a more complex dis
tribution, provided it fits well enough for our purpose. We should 
not ask : which is correct? but rather : Which is adequate? A J;l1an 
going on a journey may prefer a sketch map to an Ordnance 
Survey map on the grounds that it suits his purpose better, being 
sufficiently accurate and simpler to follow. On precisely the same 
grounds of adequacy and simplicity do we choose mathematical 
distributions. 

We have shown how the X2 test may be used to test the reality of 
association. Before passing on to measures of intensity of associa
tion we shall here mention how the X2 distri'bution is used to 
establish confidence intervals for the variance of a population 
from which a sample of n items had a sample variance .1.2, a matter 
which we left over from Chapter 14 as it could not be dealt with 
until we had introduced the X2 distribution. Suppose. for example, 
that a sample of 8 items gave a sample variance of 37. Let us say 
at once that the appropriate number of degrees of freedom for X2 
in what follows is always one less than the number of items in the 
sample - in this case 7. There are various questions about con
fidence limits that we might wish to ask, and we shall consider 
them in turn. 
(I) What is our estimate of the value of the population variance 

which has only a 5 % chance of being exceeded by the true 
population variance? 
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To find this we look up the 95 % level of X2 with 7 degrees of 
freedom, viz. 2'2, and our upper confidence limit is then given by 

~ ns2 8 x 37 
(72max = X2 = 2.2 = 134 

(2) What estimate of the population variance has only a 5 % 
chance of being in excess of the true value? 

To answer this we look up the 5 % value of X2 with 7 degrees 
of freedom, viz. 14'1, and our lower confidence limit is then given 
by 

~ ns2 8 x 37 
(72mIn~X2'" 14'1 -21 

I t is evident that we shall have a 90 % probability of being correct 
if we make the claim that the population variance lies in the range 
21 to 134, i.e. that the population standard deviation lies in the 

range v2l =4·6 to v 134 = 11·6. 

This is only one out of an infinite number of confidence intervals 
all having a 90 % probability of being correct. We could, for 
example, have got another 90% confidence interval by choosing 
the 98 % and 8 % levels of X2 to calculate a2max and a2min. Alter
natively, we could calculate the value of (72 which has only a 10 % 
chance of being exceeded, using the 90 % level of X2 =2'8, and we 
could then say that we were 90 % sure that (72 lay in the range 0 to 

ns
2 

8 x 37 106' th th d d d .. did X2- - 2:s - ,I.e at e stan ar eVlatlOn not exceed 

Vf06 - 10·3. 
The questions asked so far have enabled us to lay down a 

range for the variance for a given degree of confidence. We 
might well wish to know what confidence to place in a claim that 
the variance lay between certain specified limits. 

(1) What confidence may we have that the population variance 
lies in the range 25 to 235 ? 
To answer this, we calculate 

ns2 8 x 37 
X2 = &2 - ---g- -11'8 

and also 
ns2 8 x37 

X2 - - ... -- -1'25 u2 235 
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Reference to tables of X2 for 7 degrees of freedom show that 11 ·9 
is almost exactly the 10% level ( - 12) and 1'25 is almost exactly 
the 99 % level ( - 1'24). The probability that the variance lies in 
the range 25 to 235 is therefore 99% -10% ~ 89%. 

(12=0 25 235 
1--1,-------1-

p = 10% 

p =99% 
+-------------------------~ 

p - 89% 
~-----------------+ 

The reader will find exercises to try for himself at the end of the 
chapter. It is well to remember that 'for samples with n greater 
than 30 we can use the standard error of estimate method, the 

(1 
standard error of the standard deviation being given by y2n' 

Consider, now, the problem of finding measures of the intensity 
of association in our inoculation problem, where we had: 

Infected Not 
infected 

Uninoculated 10 117 
Inoculated 3 144 

Total frequency for the table-N=274 

All tables of this type may be typified by the schematic layout: 

I A notA 

B a b 
notB c d 

Total frequency for the table '" a + b + c + d - N 
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A coefficient of association, due to Yule, is then given by 
ad-be 

Q ~ ad+be 

for which the standard error is e -2 Q2) J ~ + b + ~ + 1 
For our inoculation data we find 

Q _ l0 x l44-3 x I17 =0.61 
10 x 144+3 x 117 

with a standard error 
(0'61)2 

1--2- v io+m + t+m = 0'21 

If we take it as reasonably certain (roughly 95 % probability) that 
the true value lies within two standard errors of the calculated 
value, we may claim with fair confidence that the coefficient of 
association lies in the range 0·61 plus or minus 0'42, i.e. between 
0 '19 and 1'03. The latter value, as we shall in a moment show, is 
impossible, since that coefficient cannot exceed the value unity. 
All we can say, then, is that the true value probably lies between 
0'19 and 1·0. Let us consider how the coefficient is to be inter
preted. This will best. be done by numerical examples, specially 
invented. 

Consider, first of all, the case where the proportions of persons 
infected are exactly the same for the inoculated as for the un
inoculated, as in the following table: 

Infected Not 
infected 

Uniooculated 2 5 
Inoculated 20 50 

It is evident that in all such cases the term ad - be must be zero, so 
tbat the coefficient will be zero. Hence, a zero coefficient occurs if 
the proportions are the same in the inoculated as in the un
inoculated. Next consider what happens to the coefficient if one of 
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the observed frequencies in the table happens to be zero. i.e. if one 
of the combinations does not occur at all. Suppose. for example. 
that we had the following table: 

Infected Not 
infected 

Uninoculated 0 5 
Inoculated 2 12 

Then the term ad in the formula for the coefficient would be zero 
and we should have 

ad - be -be 
Q =ad+be =Tc = - I 

This is the maximum negative value the coefficient can attain. It 
indicates that the incidence of infection is completely dis
associated from the uninoculated. i.e. that infection is found only 
in people who have been inoculated. A value such as minus 0 ·6 
would indicate that while infection was found among the un
inoculated, it was less prevalent there than among the inoculated. 

Next consider the following table: 

Infected Not 
infected 

Uninoculated 3 10 
Inoculated 2 0 

Here again the term ad is zero and the coefficient has the value 
minus 1. This time the value minus 1 indicates that while some of 
the uninoculated were infected. there were none of the inoculated 
who escaped infection. Thus the value minus 1 may indicate 
either that none of the uninoculated were infected or that none of 
the inoculated escaped infection - a totality in either case. 

The reader should satisfy himself that, if a zero frequency occurs 
either as the frequency b or the frequency e in our typical table, a 
similar pair of totalities arises, associated with the coefficient plus 
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I, which indicates either that none of the inoculated were infected 
or none of the uninoculated escaped infection. Thus, the sign, 
plus or minus, of the coefficient indicates the sense of the associa
tion, i.e. the direction in which it operates. The magnitude of the 
coefficient can never be greater than plus 1 or less than minus I. 

A second coefficient of association, also due to Yule, is the so
called coefficient of colligation, defined by 

I-J"§ 
Y ad 

l+J~ ad 
whose standard error is given by 

1 - Y2J!;-+-_·1-+7~-+-;;~ 
4 abc d 

If the reader cares to make the necessary substitutions he will 
find that for the inoculation data the coefficient 'of colligation 
comes out to Y =0·33, with a standard error of 0'15, approxi
mately. The reader will possibly be surprised that the two coeffi
cients give such different values, although they are both supposed 
to measure the same degree of association. He will be more sur
prised when he learns- - as he may easily check for himself along 
the lines followed for the coefficient of association - that the 
coefficient of colligation also has maximum and minimum values 
of plus and minus I, with similar Significance to those shown -in 
the first coefficient. He will remember, then, that the two coeffi
cients are not comparable. All comparisons should be made in 
terms of the same coefficient. 

We held forth at some length earlier on the danger of drawing 
the obvious conclusion of cause and effect from association. In 
1941 there was one death from diphtheria among 766,000 im
munized children in Scotland, whereas 418 children died out of 
the 389,000 not immunized. The obvious conclusion is indeed . 
obvious. Yet the National Anti-Vaccination League was far from 
satisfied. Their reply might be summarized as follows: 

(1) The great majority of these children were not immunized 
until after November 1940, when the immunization drive 
was commenced. 
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(2) In 1940 there were 675 deaths, as against 419 in 1941, so 
that evidently diphtheria was quite a menace before the 
introduction of immunization, this, presumably, being the 
reason for its introduction. 

(3) What saved the 766,000 children before they were im· 
munized? 

(4) The uninoculated are the very young, the very poor and 
undernourished, those living in overcrowded homes, and 
those who have been weakly since birth with heart trouble 
or some other physical defect. Any disease is likely to be 
more frequently fatal in a class weighed down by these dis· 
abilities. 

(5) The bulk of the deaths occur in the large towns such as 
Glasgow. 

(6) Even in Glasgow the risk of death from diphtheria is not 
worth all the heavy expenditure of time and energy which 
was put into the campaign .• What are 158 deaths in a child 
population of something like 200,000?' 

(This argument is summarized from a pamphlet copy of a letter 
sent by the Secretary of the League to the principal newspapers in 
Scotland.) It is elsewhere suggested that the method ofimmuniza
tion is the cheap way to avoid the cost of sanitation reform. 

The reader will find it a useful exercise to go through the above 
argument critically. Where are the points fair, if they are sub
stantiated? Where does emotion come in? Is there evidence here 
on which a reasonable person might reject immunization? The 
next step is to get information from your Local Medical Officer. 
Why does he recommend immunization? Is it because the Minis
try of Health has adopted it as a policy? What are the chances 
that immunization will finish up the same miserable fiasco as vac
cination? It is especially important that intelligent members of 
the community should have access to more than propaganda leaf
lets from the Ministry of Health. Can you get it? What evidence 
can you find that the valid points suggested by the Anti-Vaccina· 
tion League are seriously considered by the medical profession? 
How much of the basic research is in the hands of private com· 
mercial enterprise? It is an interesting topic and excellent exercise 
in solid thinking. 
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The reader will see that where we caD split' data into rational 
subgroups corresponding to possible differences, this should be 
done. Techniques are available for so many different possibilities 
that it is impossible to deal with them all here. The reader should 
refer to the texts quoted in the bibliography for further details . 
There are, however, two further points with which the reader may 
be acquainted. The first is the additive nature of independent 
estimates of Xl and, what is often associated with additions of Xl 
estimates, the method of deciding whether a value of Xl based on 
a large number of degrees of freedom is significant, the published 
tables going no higher than 30 degrees of freedom. We shall 
illustrate both points in one example. Suppose that 41 investi
gators try out a drug with a view to establishing its curative pro
perties, each investigator arriving at a table something as shown. 

Treated Not treated 

Cured 24 57 
Not cured 53 257 

Then each investiga10r could, independently, assess his own 
results using the Xl test with I degree of freedom . These indepen
dent values for Xl may be added together and the overall sig
nificance of the results judged by entering the tables for Xl with 
the total degrees of freedom. Suppose, for example, that the 
values for Xl obtained by 41 investigators totalled 72. Then, since 
there was 1 degree of freedom for each investigator, there were 
altogether 41 degrees of freedom, which is beyond the range of 
the tables. Now, it has been shown by Fisher that for more than 
30 degrees of freedom V2Xl forms a normal distribution whose 
mean value is v2n - I, where n is the number of degrees of free
dom (provided n be large) and whose standard deviation is unity. 

In our case, the mean is v2n - I ~ vSi = 9 
Andforv2x2wefind v2 x 72 ~ vl44 = 12 

Hence, the deviation of our observed value for V 2X2 from its 
mean value v2n - I is given by 12 - 9 = 3, i.e. since the standard 
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error is equal to unity the discrepancy is equal to three standard 
errors, which is undoubtedly significant. 

As a check on the accuracy of this approximation when the 
number of degrees of freedom is large, we may work out the value 
ofX2 which has a probability of only 5 % of being exceeded. Tables 
of the Normal distribution tell us that a deviation of more than 
1·65 standard devia tion 0 11 fire high side only occurs with a prob
ability of 5 %. Hence, since the standard deviation of this approxi

mate distribution is equal to unity, the value of v'2X2 will be 1·65 
greater than the mean value of the distribution, 

v'2n - -1 = v'39 = 7 ·67 

for 30 degrees of freedom. That is to say, the 5 % level of X2 will 
be given by 

so that 

v'2x2 =v'2n- I + f 
= 7'67 + ],65 = 9 '32 

X2 = 9'32; 9·32 = 43.5 

The true value of the 5 % level of X2 with 30 degrees of freedom, as 
may be checked from the graph of X2, is 43 'S, so the approxima
tion is very good even at n = 30. As the number of degrees o f free
dom increase, it gets even better. 

NOW SEE] F YOU CA N APPLY X2 TO TH ESE 
PROBLEMS 

1. In order to investigate whether hair colollr was associated with 
culture among the females of the species, I did a little experi ment. At 
a Bach concert I counted the number of blondes (real and a rtificial) and 
the number of brunettes. In the interests of science. I went to a Bebop 
session and did the same. The results were as shown in the table. The 
Question is: Would it be fair of me, on the strength of this evidence, to 
state that blondes prefer Bebop to Bach? 

Bach 
Bebop 

Blonde 
7 

14 

Brunette 
143 
108 

2. Two treatments were tried out in the control of a certain type of 
plant infestation, with the following results. May we conclude that 



1:70 FACTS FROM FIOURES 

Treatment B is superior to Treatment A in controlling this type of 
infestation? 

Treatment A: 200 plants examined and 24 found infested 
Treatment B: 200 plants examined and 9 found infested 

3. The following data on vaccination are purely imaginary. They are 
data such as might be collected in a hospital over a period of years 
and - if they were genuine - would serve to indicate whether vaccina
tion, apart altogether from whether it has any prophylactic effect, 
mitigates the severity of any actual attack of smallpox. 

Haemorrhagic 
or 

Confluent Abundant Sparse 
Vaccinated within 
10 years of attack 
Never vaccinated 

10 
60 

150 
30 

Use X2 to test the significance of the association. 

240 
10 
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Correlation, Cause and Effect 

'There is no more common error than to assume that, because 
prolonged and accurate mathematical calculations have been 
made. the application of the result to some fact of nature is 
absolutely certain.' A. N. WHIT EHEAD 

When the mathematician speaks of the existence of a 'functional 
relation' between two variable quantities. he means that they are 
connected by a simple 'formula', that is to say, if we are told the 
value of one of the variable quantities we can find the value of 
the second quantity by substituting in the formula which tells us 
how they are related. As a simple illustration, let us suppose that 
bananas cost 2s. per dozen. We can then write down a formula 
which will enable us to calculate the cost in shillings of any num
ber of dozens: 

Cost in shillings = 2 x number of dozens 

If we let C represent the cost, and n the number of dozens, the 
mathematical formula would take the form 

C=2n 

This formula would apply only as long as the price per dozen 
remained fixed at 28. The reader will see that, if the price rose to 
3s. per dozen, the formula would have to be changed to 

C = 3n 

We can generalize this formula to make it apply to any price per 
dozen as follows. Let p be the price per dozen, then 

C =pn 

The formula is now in its most general condition - all numerical 
values have been replaced by letters. Tn a given problem all we 
have to do is to replace the letters by the appropriate numerical 
quantities. The price may now be given in pence, shillings, or 
pounds for a single article, a dozen articles, or a gross of articles, 
and commonsense will then tell us whether n is to be stated as 
single articles, dozens, or grosses, and whether the value obtained 
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for C, after substitution for p and n, will be in pence, shillings, or 
pounds. 

Each of the equations C=n, C=2n, C=3n, C=4n, and so on, 
could be plotted as graph of C against n. If the reader cares to try 
it he will find that each of the graphs is a straight line, but that as 
the value of p rises the slope of the line increases. All this means, 
of course, is that the cost rises more steeply as the price is in
creased. The quantity p of our equation, which is a constant 
numerical value in any given problem, is called, for obvious 
reasons, the' slope' of the line. Constants of this kind are called 
parameters. Fig. 83 shows examples of the straight line C=pn, 

C'" COST C - pn 

~====~ ____________ ~n~=NUM8ER OF 
ARTICLES 

Fig. 83. The parameter p fixes the slope of the line. In our example p is the 
price per article 

with the parameter p set at different values. It will be noticed that 
in every case when n is equal to zero C is also equal to zero. When 
a graph is drawn showing both scales with their zero points co
inciding, the common zero point is called the origin - because it 
is the point from which our scales begin. We see then that the 
equation C - pn really represents a whole 'family' of straight 
lines, all of which pass through the origin. Mathematicians call it 
the equation of straight lines through the origin. 

Now of course there is no real reason why a straight line 
should always pass through the origin. Consider a practical ex
ample. Our equation C =pn might well represent the amount of 



CORRELATION, CAUSE AND EFFECT 273 

money it costs a manufacturer to produce n articles when the 
manufacturing cost per article is p. We may properly consider that 
the cost of manufacturing a number of articles is directly pro
portional to the number of articles. But not all of a manufac
turer's costs are direct costs of this kind. He has to bear certain 
overhead costs of a fixed nature whether he produces any articles 
in his factory or not. He must payout rents and other fixed charges. 
These charges simply push up his total costs by a fixed amount 

COST C 

.{'-------
o NUMBER OF ARTICLES. n 

Fig. 84. The parameter b fixes the point at which the line will eut the axis 
of C. In our example b is overhead costs . 

irrespective of the number of articles produced. There is a fixed 
burden to be carried, which we may denote by the symbol b. The 
effect of this burden of fixed overheads on the busin,ess will be 
very great if the volume of production is small (resulting in a high 
overall cost per article produced) and relatively small if the 
volume of production is large (since in this case the fixed over
head is spread over a large number of articles, thereby making for 
a lower overall cost per article). This is the fundamental idea 
which led to mass production. Fig. 84 shows the appearance of 
the cost of production graph when the burden, b, is allowed for. 
It will be seen that the straight line now cuts the Cost axis in the 
value b, thereby indicating that even if there are no- articles 
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produced there is still this expense to be met. It is evident that 
our equation for this straight line will be of the form 

C - pn+h 

The magnitude of the fixed burden, h, will vary from manufac
turer to manufacturer. Like p, the unit cost of production, it will 
be characteristic of a particular organization, and is the second 
parameter of the straight line. Parameters p and h, then, are 
characteristic constants, peculiar to a particular case. 

Quite generally, from a mathematical point of view, p and p 
may be either positive or negative, depending on the problem. In 
the illustration we have been using it is evident that they will both 
be positive in the normal course of events. The overburden, h, iI1 
these modem and enlightened days, is sometimes made into a 
negative quantity by the government granting a subsidy. The 
result of this will be to make the value of h markedly positive in 
the taxpayer's graph of operations. Someone has to carry the 
burden. Problems often occur in scientific research where one 
quantity decreases as the others increase. In such cases, the value 
of p would be negative. 

Not all functional relationships between two quantities are 
straight line laws, however. Most usually they are curves of some 
sort, and then the equations (formulae) connecting the varying 
quantities tend to become more complex. The equation which 
tells us the height of the Normal Curve, for example, has to de
scribe a fairly tricky shape, and we are not surprised that it is 
rather complex. We met this curve in Chapter 9 and learnt there 
that its equation is 

. 1 ::.(~.i)2 
y ~ . /_ e 202 

O"v 21T 

The characteristic constants or parameters of this equation are x 
and 0", which, as we know, represent the mean and standard 
deviation of the distribution being considered in any particular 
problem. We also learnt that the equation could be stated in a 
simpler form: 
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by shifting the origin of measurement for the variable, x, to the 
mean value, x, and by measuring deviations, not in terms of tbe 
original units, but in terms of the standard deviation. This trick of 
simplifying calculations by a change of origin to the mean value, 
x, is a common one and we shall meet it again. The reader should 
notice that the constant 27T in the above equation is nol a para
meter. It is always the same in every problem, and so is not 
characteristic of the data being dealt with - which is the criterion 
for a parameter. 

The mathematician is interested in functional relationships for 
their own sake. But he is also interested in them practically since 
very often these functionai relationships form a good enough 
approximation to practical cases. We have seen how the Bi
nomial, Poisson, Normal, X2, Student's t, Snedecor's F, and other 
mathematical functions derived from mathematical theory enable 
us to deal with practical problems in a very satisfactory way. We 
do not claim that a mathematical function will give a perfect de
scription of the behaviour of naturally occurring variable quan
tities ; nevertheless, we are in a very powerful position when we 
find one that is a good approximation. Problems that could only 
be tackled by sheer guesswork may be dealt with swiftly and con
fidently. The thing to be clear about before we proceed further is 
that a functional relationship in mathematics means an exact and 
predictable relationship, with no ifs or buts about it. It is useful in 
practice so long as the ifs and buts-are only tiny voices which even 
the most ardent protagonist of proportional representation can 
ignore-with a clear conscience. 

In cases where there are many factors which have a notable 
bearing on a problem, we find that for research to be tolerable at 
aU we have to restrict our investigation to the observation of 
relatively few of the factors. We shut our eyes to the rest, either 
deliberately because we just cannot cope with everything, or un
consciously because we just cannot name all the factors anyway. 
But the fact that we shut our eyes to factors does not mean tbat 
they cease to exist and to exert an influence. When we can name a 
factor which we are going deliberately to ignore, we can often do 
something to minimize the disturbing effect of its existence on our 
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results by experimental design before the experiment is put under 
way. We can arrange for the factor to be held constant during the 
course of the experiment, or, failing this, we take steps, such as 
randomization or paired comparisons (see Chapter 18 and else
where), to ensure that such a factor shall not introduce bias into our 
data which would lead to misleading conclusions. When we are 
ignorant of the nature of disturbing factors we just have to let 
them do their worst and hope that they Will not introduce such con
fusion into our data that we can never find anything significant in 
them. In a word, we shall have to expect a large experimental error. 

When an investigation is carried out in the presence of many 
disturbing factors, we find that there is no simple relation between 
the factors on which the experiment was based . We plot graphs of 
one thing against another and find that, instead of the nice func
tional relationships so dear to the heart of the mathematician and 
the student at college, instead of nice straight lines and elegant
looking curves, we get plum puddings, the points in our graph 
being scattered very much at random. This is always a bad sign. 
It means that the disturbing factors have been more important 
than we had hoped. The student will either shrug his shoulders 
and say: 'It doesn't make sense', or he will try to draw in a trend 
line, if there is any suggestion ofa relationship between the factors 
plotted against each other in the graph. The mathematician, how
ever, looks on this as a challenge. His attitude is that we are un
doubtedly in a pretty bad position on the face of it. He takes the 
view, however, that since we have gone to a lot of trouble collect
ing the data in a fairly sensible way, there should be some con
clusions which are possible. These conclusions will be surrounded 
by a halo of greater or lesser uncertainty. He sees what he can do 
to extract those conclusions with an indication of the degree of 
confidence which may be p·laced in them. He looks at the graphs 
of the experimental results. This one suggests that, in the absence 
of disturbing factors, it might have been a straight line of the form 
C - pn +b. This other suggests to him (possibly because he has 
some a priori notions as to the form of the relationship which is 
likely between the two quantities in the graph) that there may be 
an underlying law of the type y =ax2 + bx + c, and so on. In other 
words he will try to form some idea of the type of underlying 
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mathematical law - if there should be such a thing. For reasons 
both theoretical and practical, when the problem is one in plum 
puddings he most commonly thinks of trying to get a straight line 
law out of it. The straight line law is the easiest to deal with of all 
possible laws - so much so that if we cannot get a straight line 
without jiggery pokery we have special mathematical dodges 
which enable us to throw a set of data into an approximately 
straight line trend. We might, for example, plot the logarithms of 
one set of values, or the square roots . These are professional tricks 
which must be got from textbooks by those who are interested . 
For our present purpose it is sufficient if the reader will take it 
that analysis of straight line trends is the commonest problem. It 
is this basic type of probiem which we shall cover in this chapter. 

If two quantities, y and x, are related by a straight line law, the 
equation expressing the relationship will be of the form 

y = mx +c 
where m is the parameter expressing the slope of the line, and c is 
the parameter which tells us at what value the straight line cuts the 
axis of x. The slope, m, tells us by how much y increases for an 
increase of unity in the value of x. Whenever there is a straight 
line trend between two quantities, y and x, we shall be able to find 
values for the two parameters m and c, which give us the equation 
of the straight line which is the best fit to the points in our graph. 
The best fit may be a good or bad one. but there always will be 
some straight line which is a better fit than all other straight lines. 
In Fig. 85, for example, it is clear that, while the line is a good fit 
with regard to slope, it is a poor one with regard to the intercept 
on the y axis. On the other hand, in Fig. 86 we have a straight line 
which seems to get the intercept on the y axis fairly well, but is 
obviously hopeless as regards slope. Our problem is to get the 
best slope and best intercept. What do we mean by best? 

There are many criteria by which we might define what we 
mean by a best fit. The generally accepted criterion is the ' least 
squares' one. What do we mean by. 'least squares'? There are 
three least squares criteria, each of which leads to a different 
straight line, as we shaH now see. To illustrate the procedure of 
fitting a line by the method of least squares, we shall take an 
example. 
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~l 
O~--------------------------~x 

Fig. 85. A good fit for slope. A bad fit for intercept on y axis 

• • • . . -. 

H o~--------------------------------~x 
Fig. 86. A good fit for intercept on the y axis. A bad fit for slope 

Suppose an investigation were made into the relationship b 
tween two quantities y and x. Let the following table represent tl 
values of y observed for several values of x. 
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A graph of these data is shown in Fig. 87. Although the points do 
not lie on a straight line exactly, they do suggest that such might 
have been the case were it not that some disturbing factors had 
entered in. We may therefore take it as a reasonable proposition 
that the relationship between y and x can be expressed in the form 
of a straight line y - mx+c. Our problem is to determine the 
values of m and c which will enable us, given a value of x, to make 
the best possible prediction of the value of y. If the law is of this 
type, then when x is equal to lour formula predicts that we shall 
have y ~m+c. When x =2 our formula predicts that we shall 

o o 
® 

® 

I 4 5 X 

MEAN DAilY TEMPERATURE 

Fig. 87. Points which might have lain on a straight line had not some 
disturbing element been present 

have y - 2m + c. When x ... 3 the formula predicts y - 3m + c, and 
When x ~ 4 we should expect y = 4m + c, and so on. Of course, we 
could draw in a straight line on our graph of the data and make 
our predictions that way. Fair enough in the present case, where 
the points lie reasonably well on a pretty obvious line. Not much 
use, however, if the points were roughly scattered. Remember 
that what we are after is a technique to give us the best prediction 
even when the points are crudely scattered. so that fitting a line by 
eye is a chancy affair. 
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Let US now draw up a table of predicted values for y and actual 
values observed, and see what the discrepancies are. 

Value of x Predicted y Observedy Discrepancy 

I m+c 5 m+c - 5 
2 2m+c 8 2m+c - 8 
3 3m+c 9 3m+c-9 
4 4m+e 10 4m+c - 10 

The discrepancies shown in the last column are the differences 
between predicted and observed values for y. On the least squares 
criterion of a best fit, we find the values of m and c which make 
the sum of the squares of these discrepancies as small as possible, 
There must always be a discrepancy overall, unless the points of 
our graph lie exactly on a straight line. Squaring out the dis
crepancies, we get : 

m2 + c2 + 25 + 2me - 10m lOe 
4m2 + c2 + 64 + 4me - 32m 16c 
9m2 + c2 + 81 + 6mc - 54m - ISc 

(m +c -5)2 
(2m +c - 8)2 
(3m +c -9)2 
(4m +e - 10)2 16m2 + c2 + 100 + 8mc 80m 20c 

Total of squared -
discrepancies = 30m2 + 4c2 + 270 + 20mc - 176m - 64c 

If now we can fmd the values of m and c which rna ke this alge
braic expression have the minimum value possible, our problem 
will be solved. We could do this very clumsily by trial and error, 
choosing values for m and c and working out for each case the 
value of the sums of the squares of the discrepancies from the long 
formula we have just calculated. No one will be very keen to do 
this, for the simple reason that it is unsystematic, and we should 
never be sure that we had got the real minimum value. More 
systematic would be to set m at some value suggested by our 
graph of y against x.lnspection of the graph shows that m, which 
is actually the amount by which y increases for unit increase in x, 
must certainly be approximately equal to 2. We can also make a 
fairly decent guess that c, which is the value of y at which the Hne 
cuts the axis of y (the y intercept) must be about equal to 3. We 
might then try a more systematic investigation by trying values of 
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x and y in these regions. Such a method could not be mathe
matically exact, however. Moreover, trial and error would be very 
crude if the points were badly scattered in the graph, since then 
we could only make very rough guesses at the values of m and c. 
This difficulty has been overcome by the mathematicians, who 
have found a simple and exact way of determining the values of 
m and c, by the so-called -differential calculus. 

Suppose we have an expression of the type 

S =pm2 +qm+c 

where p and q are numbers, e.g. 6, - 8. If we wish to determine 
what value of m makes S:; minimum, we proceed as follows . Put 

2pm = - q 

so that 
-q 

m = 2p 

Then this is the value of m for which S is a minimum. Take a 
simple example. 

Let S =7m2 -21m +4 

In this case we have p = 7 and q = - 21. So that the minimum 
value of S occurs when 

m =---.!l = - ( - 21) - H =t 
2p 14 

The minimum value of S will then be found by substituting this 
value of m in our equation for S, thus: 

S =7m2 -21m +4 

and Minimum S is given by 

S=7(W-21(i)+ ~ -111 
No matter what value we try for m, we shall never get SIess 
than -lIt. 

Let us now return to our least squares problem. The sum of the 
squares of the discrepancies between observed and predicted 
values of y is given by 

S-30m2 +4c2 +270+20mc -176m -64c 
10 
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Consider, first of all, m. The equation for S may be arranged as 
follows: 

S - 30m2 + (20c - 176)m +(270 - 64c +4c2) 

which is exactly similar in form to 
S - pm2+qm +c 

where p =30 and q =(20c -176) 

From this point of view, therefore, we shall expect S to attain its 
minimum value when 

i.e. when 

-q 
m- 2p 

- (20c - 176) 
m - 60 

This reduces to the condition that we must have 

6Om+20c - 176 - 0 

This is our first condition. 
But the expression for S may also be arranged as an equation in 
c thus : 

S - 4c2 t (20m - 64)c+ (270 - 176m + 30m2) 

This is exactly the same sort of thing as we had before with c re
placing m and now we have 

p - 4 andq - (20m - 64) 

From this point of view, therefore, we shall expect that Swill 
attain its minimum value when 

i.e. when 

-q 
c - 2p 

- (20m -64) 
c - 8 

This reduces to the condition that we must have 

20m+8c-64 - 0 

In addition, as we have already seen, we must have 

6Om+20c -176-0 
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All we have to do then is to find values of m and c which satisfy 
these two conditions simultaneously. Let us make the coefficient 
of m equal to 60 in both equations by multiplying through by 3 
in the equation where the coefficient of m is equal to 20. Our two 
conditions then are 

and 

60m + 24c - 192 =0 

6Om+20c-176 = 0 

by subtraction, it is clear that we must have 

4c-16 - 0, i.e.c - 4 

We may then find the value of m by substituting this value for c 
in one of the equations. We get 

6Om+80 -176 - 0 
6Om-96 - 0, i.e. m- l·6 

The equation of the line which best fits our points is therefore 
y "., mx+c 

i.e. y= 1'6x +4 

Most things in this life are harder to explain than do. There is 
always with us the efficiency expert, who finds quick and un
interesting ways of doing what was previously slow but interest
ing. So it is with this matter. We have two alternative procedures, 
which are as follows . 

First Procedure. Draw up the following table, working from the 
original values of x and y 

x y 

-
1 5 
2 8 
3 9 
4 10 ----

Totals 10 32 

Symbols for totals Ex Ey 

xy 

5 
16 
27 
40 

--
88 

Exy 

X2 

1 
4 
9 

16 
-

30 
-

Ex2 

Number of pairs 
of x, y values = 
N = 4 
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The values of m and c are then given by 
:Exy _ (Ex)(Ey) 

N 
m = _(EX)2 

Ex2-_o
_ 

N 
which gives, on substitution, 

lO x 32 
88 --4- 88 - 80 

m = IO x lO - 30-25 -!-l o 6 
30- - 4 -

(:Ex)(Exy) - (Ey)(Ex2) 
and c ~ (EX)2 _ N(Ex2) 

which gives, on substitution, 
c ~ 10 x 88 - 32 x 30 = 4 

100-4 x 30 
So the required equation for the best fitting straight line is 

y=mx+c 
i.e. y = 1 '6x + 4 
Which is the same result as before, obtained much more rapidly. 

Second Procedure. This is done in three steps as follows. 
Step 1. In the equation y = mx + c, substitute each of the ob

served pairs of values ~for x and y . Then add the resulting equa~ 
tions. 

Step 2. Form a second similar set of equations, by multiplying 
through each of the equations of step 1 by its coefficient of m. 
Add this set of equations. 

Step 3. Steps I and 2 will each have produced an equation in m 
and c. Solve these simultaneous equations for m and c. 
Applying the methoQ to our data, we get: 

5 = m + c multiply through by 1 and get 
8 = 2m + c multiply through by 2 and get 
9 = 3m + c multiply through by 3 and get 

10 = 4m + c multiply through by 4 and get 
32 = IOm+4c 
We then solve simultaneously the two equations 

30m + JOc=88 
and 10m+ 4c=32 

5 = m+ c 
16= 4m+ 2c 
27= 9111+ 3c 
40=16m+ 4c 
88 = 30m+lOc 

and again find that m = 1·6 with c =4, i.e. y = 1'6x + 4 
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SinceEx=10 and Ey=32 for N=4 we have 
Ex 

X= N =¥=2'S 

_ Ey 
Y= :N = ¥ = S'O 

If we substitute these values in the regression equation we get 
S'O = 1'6x2'S+4 

which proves that our regression line passes through the point 
(x, P). This is a very useful rule for which we shall find use later. 
Its value lies in the fact that, having calculated x and p, we only 
need to calculate m, the slope, and our regression line is com
pletely determined. 

The reader will be wondering how certain we may be of the pre
diction given by a trend line. He will say that, since the predicted 
value is almost certain to be wrong, it is important to have some 
idea of just how wrong it is likely to be. In a given case, in fact, is 
the trend line of any use whatsoever for making predictions? It is 
to such questions that we must now tum our attention. We must 
get some clear ideas as to what we mean by correlation and how 
it may be measured . . 

As a preliminary we must introduce the reader to the very 
simple idea of the Cartesian co-ordinate method of plotting curves 
and points, so as to have a graphical representation of the relation 
between two quantities. The main idea will be familiar already 
under the name 'graphs'. All we have to do is to make clear how 
negative quantities are plotted. In graphs most frequently met 
with, all the quantities are positive. We deal with negative quan
tities by extending the axes beyond the origin, as shown in Fig. 
88. Any point falling to the ight of the vertical line yyl has a 
positive x value. If it falls to the left of the line yYI it has a 
negative x value. In similar fashion, any point falling above the 
horizontal line XXI has a positive y value, while if it falls below 
the line it has a negative y value. We may indicate any point by 
quoting its 'co-ordinates', just as in giving a map reference. The 
co-ordinates are the value of x and the value of y which cor
respond to the point, expressed in that order. The general symbol 
for a point in the xy plane is therefore reasonably taken as (x, y). 
In the figure several points are plotted, their co-ordinates being 
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quoted beside them. If now we have a set of points (x, y) plotted 
and we find that they show a trend, we say that the variable quan
tities x and y are correlated. By this we mean that, although there 
is not a strictly functional relation between them, we are able to 
make some sort of prediction of the value of y, given a knowledge 

.+-4 ~ 

+3 

x - -3, Y-+2 
® +2 

·OR.IGIN" OF 
+1 /MEASUR.EMENTS 

x' X 

-4 -3 -2 - I +1 +2 +3 +4 

- I 

X--3. 'J- - 2 X· +', 'J-- 2 
® -2 ® 

- 3 Y' 
Fii . 88. Cartesian co-ordinates 

of the value of x . When, as in Fig. 89, increasing y is associated 
with increasing x, we say that the two variables are positively cor
related. When, as in Fig. 90, an increase in x results in a decrease 
in y, the variables are said to be negatively correlated. Crude scat
tering of the points about the trend line is indicative of low cor
relation, while a set of points none of which is far from the trend 
line is highly correlated. 

The degree of correlation is measured by the so-called product 
moment correlation coeffiCient, which is defined as 

!. E(x - %)(y - j) r _ N:...;_ ____ _ 
O'P, 

where % and y are respectively the mean of all the x values and the 
mean of all the y values, and 0'. and 0', are respectively the stan
dard deviations of all the x values and all the y values. The pro-

duct ten:n NE(x - %)(y - j) is called the covariance of x and y. 
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.. 
x x 

" Fig. 89. POSitive correlation. An increase in y Is associated with an increase 
inx 

. .... . . 
.:. .. . . . . 

. . 
~' 

Fig. 90. Neptive correlation. A decrease in y is associated with an increase 
inx 

Since, therefore, u~2 and ui are the variances of x and y, we may 
remember this formula as 

covariance of x and y 
r-

V[Var(x)] x [Var(y)] 

It may be shown that the correlation coefficient, r, cannot exceed 
+ 1 or be less than - 1 in value. A value of + 1 denotes perfect 

functional relationship between y . and x, an increasing x being 
associated with an increasing y. When r is equal to -1, we again 
have a perfect functional relationship, but this time an increasing 
x is associated with a decreasingy. When r=O, there is no relation 
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at all between x and y (Fig. 91). They are not correlated. Other 
intermediate va lues of r indic~te that, while there is not a strictly 
functional relationship between the variables, there is a trend. If 
the coefficient is positive, increasing x tends to be associated with 
increasing y, while, if the coefficient is negative, increasing x tends 
to be associated with decreasing y. It may also be shown that it 
does not matter what value of x or y we choose as our origins of 

(0) PERFECT FUNCTIONAL 
RELATIONSHIP 

r - A 

(b)COUELATION 

r_1 

x' 
• 

FRACTION 

X' • 
• • 

~ 
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~. 

~ 

• • • 
• 

•• • • 

~' 

OJ 

r - 0 • • • • • • • • 
(t) COMPLETE x' • • 

DISASSOCIATION • • • 
• • 

• 
t( 

Fig. 91 
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measurement, nor what units the quantities x and yare measured 
in. The value of r remains constant for a given distrib.ution 
throughout all changes of this type. These properties enable con
siderable savings to be made in the labour of calculation. 

To illustrate the way in which the origin and units of measure
ment may be fixed arbitrarily for the calculation of the product 
moment correlation coefficient, we shall use the following data, 
quoted by W. W. Sawyer in his excellent popular book Mathe
matics in Theory and PracTice (Odhams Press) whose attention 
was drawn to the figures by A. B. Lowndes, Head of the School of 
Commerce, College of Technology, Leicester. 

District Proportion of Proportion of 
open spaces accidents to 

%=x children as 
percentage of 

~V / all accidents = 

Bennondsey ~5-;' 46·3 
Deptford 2·2 43-4 
Islington 1·3 42·9 
Fulham 4·2 42 ·2 
Shoreditch 1·4 40 ·0 

Finsbury 2·0 38·8 
Woolwich 7·0 38·2 
Stepney 2·5 37 ·4 
Poplar 4 ·5 37 ·0 
Southwark 3·1 33 ·3 

Camberwell 5·2 33 ·6 
Paddington - 7,2 33 ·6_ 
Stoke Newington 6-3 30-8 
Hammersmith 12-2 28 ·3 
Wandsworth 14 '6 23 ·8 

Marylebone 23 ·6 17-8 
Hampstead 14·8 17·1 
Westminster 27 '5 10-8 
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Let US choose as an arbitrary origin for the percentage of all 
accidents which are accidents to children, the figure 35 %. To each 
district there will then be a plus or minus figure which tells us how 
that district stands in relation to the arbitrary origin. Berrnondsey 
will be + 11·3 % and Westminster - 24'2. To cut out decimals, we 
multiply all these differences by 10, and enter them in the follow
ing table, under the heading v. In like manner, we choose an 
arbitrary origin 5 % for the proportion of open spaces and again 
find for each district a plus or minus figure which tells us how the 
district compares with this arbitrary origin. These differences, 
mUltiplied by 10 to eliminate decimals, are entered in our table 
under the heading u. Thus u is a 'transformed' version of the 
values x of our original table, and v is a transformed version of the 

u v uv 112 v2 

+ - + + -_ 
- +113 0 0 12,769 
- 28 + 84 2,352 784 7,056 
- 37 + 79 2,923 1,369 6,241 
- 8 + 72 576 64 5,184 
- 3(i . + 50 1,800 1,296 2,500 

- 30 + 38 1,140 900 1,444 
+ 20 + 32 640 400 1,024 
- 25 + 24 600 625 576 
- 5- + 20 100 25 400 
- 19· + 3 57 361 9 

+ 2 - 14 28 4 196 
+ 22 · - 14 308 484 196 
+ 13 · - 42 546 169 1,764 
+72 - 67 4,824 5,184 4,489 
+ 96 -112 10,752 9,216 12,544 
+186 -172 31,992 34,596 29,584 
+ 98 -179 17,542 9,604 32,041 
+225 -242 54,450 50,625 58,564 

Sums +546 -327 - 129,350 + 115,706 + 176,581 

~I XU Xv Xuv XII2 Xv2 
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values y. For calculating the correlation coefficient we need not 
record the names of the districts, though for convenience we have 
put them in the same order as in the first table. 

The correlation coefficient between x and y is then given by 
1.... _ 
- "'"'uv - Qv r _ N ___ _ 

where N -18 - the number of (x, y) pairs in our original table. 
We have 

.Ell 546 . _.Ev - 327 
Q - N -W-30'3andv = N -~- -18·2 

so that Qv ",, 30'3( -18'2) - - 550 

1.Euv= -1;~,350 - -7,180 

1 115,706 
O'i " Jv.Eu2 - (Q)2 - -18- - (30'3)2 - 5,500 

.. 0'.==v5,500 - 74 

0',2 =~v2 _ (v)2"" 17~'i81 -( -18'2)2 - 9,490 

.. 0', ... 97.4 

We get, therefore, 

r= 

1.... _ 
'N"'"'uv -uv 

_ -7,180-(-550)_ -6,630_ -0,92 
74. x 97'4 7,200 

r - -0'92 

This is a high degree of negative correlation. The negative sign 
indicates that as the percentage of park space increases, the pro
portion oral! accidents which are accidents to children decreases. 

As always, there is the question of the significance of the cor
relation coefficient. We must ask ourselves whether so high a 
value of the correlation coefficient could easily have arisen by 
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chance. This is a matter we shall take up a little further on. Yet 
again, having established the significance of the coefficient, we 
have to discuss its relevance to what action should be taken. As 
Sawyer points out, the objection might be raised that the exist
ence of much park space in the areas where there are few acci
dents to children may be unrelated in a causative sense with that 
happy condition. In well parked areas there may be relatively 
fewer children in the population and a high proportion of nurse
maids. It is right that such objections should be raised before 
money is spent. It is important that the statistician foresee them 
and be prepared to counter them with concrete evidence, if there 
is danger of false economy in matters of vital importance. 

Suppose, now, having calculated our correlation coefficient, 
we wished to set up the equation of the regression line for the 
problem, that is to calculate an equation between y, the propor
tion of accidents to children as a percentage of all accidents, and 
x, the proportion of open spaces. This is quite easy if we think 
carefully of the meaning of our u and v units. If the reader will 
consider how the u and v values were arrived at he will find that 

u = 10(x - 5) and v= 10(Y - 35) 

A little rearrangement of these equations gives us 

u+50 v+350 
x - IO Y= - 1-0-

so that the averages are related by the equations 

u+50 30·3+50 x ~ ]() = 10 - 8 (very nearly) 

_ ii+350 -18·2+350 
y =""""1O= 10 = 33 (very nearly) 

We also have that 

au 74 
ax - iO ~ IT> = 7·4 

a. 97 ·4 
a, =iO =w - 9·7 

(It will be recalled that the x and y values were each multiplied by 
]0 to get into the scale of u and v.) 
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With this information we can at once write down the equation 
for the regression equation for y on x as 

y - y=r(~)(x -x) 

that is: y-33= -O.92(;:~)(X-8) 
y-33= -1·21(x-8) = - 1·21x+9·2 

REGRESSION LINE OF ~ ON X 

~--------------------------x 

REGRES SI ON LINE OF X ON ~ 

$-------------------------x 
Fig. 92. Estimating y from x is not just the reverse of estimating x from y 

When we estimate y from x using the regression equation we make the 
sum oftlhe squares of the quantities d a minimum 

When we estimate x from y using the regression equation we make the 
sum of the squares of the quantities d' a minimum 



294 FACTS FROM FIGURES 

Which reduces approximately to 
y - 43 - 1'2Ix 

This is the appropriate equation to use if we wish to estimate the 
accident percentage from the open space percentage. The prob
lem might, of course, be stated the other way round: Given the 
accident percentage, to estimate the open space percentage. In 
this case the appropriate regression equation is 

(x - .t) =r(~)(y - .0 

(x - 8) ... - 0 '92G:~)(y - 33) . 

(x - 8) - - 0'7(y - 33) - - 0'7y+23'1 
Which reduces approximately to 

x - 31 -0'7y 

The reader will think it strange that there should be two regres
sion equations, depending on which quantity is to be estimated 
from which. He may be used to the ordinary functional equation 
of mathematics of the type y = mx + b, where it is a matter of in
difference which of thC?,. variable quantities is given. The thing to 
be clear about here is that we are not dealing with a functional 
relationship, but a correlation. What we are after is the ' mini
mum uncertainty ' estimate of one quantity, given a value for the 
other. We arrive at this best estimate in accordance with the least 
squares criterion. If the reader will refer to Fig. 92 he will see that 
when we estimate y from a given value of x, it is the sum of the 
squares of the discrepancies in y which have been minimized. 
When we estimate x from y it is the sum of the x discrepancies 
which have been minimized. In each case, it is the residuals in tW 
dependent variable whose sum of squares is made as small as pos: 
sible by appropriate choice of the constants of the regression line. 
The quantity ml = r(cr~/cr.) is the regression coefficient of y on x, 
and the quantity m2 =r(cr./cr,) is the regression coefficient of x on 
y. It will be seen that the correlation coefficient r is the geometric 
mean vmlm~ of the regression coefficients, and that the two 
regression lines intersect at the point (x, ji), i.e. (8, 33) in our 
example. This example, too, brings out clearly that extrapolation 
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can be nonsensical. Jfwe were to ask what the percentage of open 
space would be to make accidents to children 50 % of all accidents. 
we find that we get a negative value for the percentage of open 
spaces. The regression applies within the range of the observed 
data, and we extrapolate at our peril, always. 

The regression line gives only a • best estimate' of the value of 
the quantity in question. We may assess tbe degree of uncertainty 
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Fig. 93. Regression of y on x wi th conlrol limits placed at two standard 
errors of estimate. Sv. on either side of the regression line 

in tbis estimate by calculating a quantity known as the Standard 
Error of Estimate, given by 

Sy=O'yVl -,2 
or S. - a.Vl _,2 
according as we are estimating y or x. We may explain the mean
ing of the standard error of estimate from our example. We have 

Sy=O'yv'1-,2 - 9·7v'1- (0 '92)i = 9'7v'0'154 - 3'8% 
S. - O'.v'l - ,2 - 7·4v'1 - (0'92)2 "" 7'4v'0'154 - 2'9% 



296 FACTS FROM FIGURES 

In about 95% of the cases, the actual values will lie within plus or 
minus two standard errors of the estimate values given by the 
regression equation ; and almost without exception actual values 
will be found to depart from the estimated value by not more than 
three standard errors. Thus we should be correct 95 times out of 
100 in making the claim that actual values lay within 2 x 3·8 = 

7 '6% of the estimated value given by the regression equation in 
the case of estimates of y; or scarcely ever wrong if we claim that 
actual values lie within 3 x 3·8 = 11-4% of the estimated value. A 
similar statement holds for estimates of x. 

Suppose, for example, we wished to estimate what proportion 
of accidents are accidents to children in an area where the per
centage of open spaces is 10%. We have y =43 - 1'2 Ix= 30% 
approximately. Since the standard error of estimate is S, = 3 ·8%, 
we should expect that of all places with the stated 10% open 
spaces 95% would show that children's accidents accounted fur 
between roughly 22% and 38 % of all accidents, and we should be 
almost certain that children's accidents were not less than about 
18% or more than 42% of all accidents in that place. 

The reader will think this is very crude estimation. He is right. 
It is only when the corr elation coefficient is very high that estima
tion can be at all precise. Yet the reasonableness of the rule for 
calculating the probable range within which the estimated quan
tity will lie is shown in Fig. 93 where we have the regression line 
of y on x, together with lines set at plus and minus 2S, from the 
regression line. It will be seen that while the limits thus indicated 
contain the points plotted reasonably well, there could be no 
question of narrowing the limits. 

Very often correlation analyses have to be carried out on very 
large samples. In such cases we may considerably lighten the work 
by an extension of the grouped frequency table which we met in 
Chapter 6, that is to say, by working with a grouped frequency 
correlation table. Since the method of correlation analysis is 
primarily used in cases where it is not possible to control the 
experimental conditions, but we have to analyse such data as we 
can collect as they occur - the usual condition in biometry and 
economic analysis, we shall illustrate the correlation table method 
by an example from the field of biometry. To simplify illustration 
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of the computational procedure, the figures given are quite 
imaginary. 

Suppose the question were whether there is a correlation be
tween the height of girls and the height of their fathers. The fol
lowing table might then show the numbers of girls whose heights 
fall within the stated ranges, for the stated heights of the fathers. 
To simplify the arithmetic, we nOw make the following changes . 
We choose arbitrary origins at 67·5 inches for the heights of 
fathers, and 63·5 inchcs for the heights of daughters. The reader 
should note that in this example the class interval for heights of 
both fathers and daughters is J inch. We then have: 

u = Height of father - 67·5 = X - 67·5 

l/ = Height of daughter - 63·5 = y - 63·5 

Working in the u, v units, the correlation coefficient is given by an 
expression which involves the sum of UI' products, Ii, ii, au, ay, and 
N as before. But whereas previously we had our data given as 
individual (x, y) pairs, now we have a grouped table and the com
putational formulae have to be modified to allow for this. The 
following table shows the customary layout. 

The square section, in the upper left-hand portion of the table, 
will be seen to be our original table with u and v replacing x and y. 
The column and row labelled J. and ftl are respectively the 
columns showing marginal totals , as in the original table. It will 
be seen that the lower extension corresponds exactly to the right
handed extension to the table, with Ii and v interchanged . It will 
therefore suffice if we explain the meaning ·of the remaining 
columns at the right of the table, since the reader will then be 
able to follow the meaning of the bottom of the table for himself 
along the same lines. 

The values in the column headed v.f. are obtained by multi
plying the values in thel. column by the value of v to which they 
correspond. The values in the vZ.j. column are obtained by mul-

o tiplying the values in the v.j. column again by the value 3f v to 
which they correspond. The reader will recognize this as essen
tially the same procedure as was adopted in Chapter 6 for the 
grouped frequency table for a single variable, and will see that 
from the totals of these columns we shall be able to compute Ii 
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and 0'. - two of the qUantities which enter into the computation of 
the correlation coefficient. From the corresponding row totals at 
the foot of the table we shall be able to compute a and 0'., which 
are also needed to get r. The value of N, the total number of 
original X,Y pairs, will be given by the total of either the!. row or 
the.r. column, in this case 100. All we now need is the term in
volving the sum of the uv products. 

It is for this purpose that the columns headed U and V.U are 
used. The corresponding rows Vand u. V at the foot of the table 
do exactly the same job by a different route, and so lead to a 
check of numerical accuracy. Each value in the U column is ob
tained by multiplying each frequency entry in that row by the 
value of u to which it corresponds and adding together all these 
products. Thus, the first entry in the U column is obtained as 
1.( - 5) + 1.( - 4) = - 9. The second entry as 1.( - 6) + 2.( - 5) + 
1.( - 4) + 2.( - 3) + J.( - 2) + 1.( - ]) + ].( + 3) = - 26. These entries 
multiplied by the value of v to which they correspond give us the 
·entries for the V.U column. All the columns at the right of the 
table, with the exception of the U column, are totalled as shown. 
When the same procedure has been gone through for the rows at 
the foot of the table, all the necessary quantities for the computa
tion of the correlation coefficient are at the bottom right-hand of 
the table. We now extract and label them. 

N = I Ev.ffl'= I Ev2.f. = I EU= 
]00 -38 560 - 30 

E/l2 .fu = 
608 

l:V= 
- 38 

EuV= 
428 

EvU= 
428 
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We then get: 

Since our arbitrary origin is chosen at xo =67 ·5, )'0 = 63 ·5, and 
since the class interval, c, is equal to unity for both x and y 
variables, we get 

Also 

Whence 
so that 

And 

Whence 
so that 

~ = CI2+ XO = 1.( - 0 ·30) +67·5 = 67·2 
ji = cii + Yo = ].( - 0 ·38) +63·5 = 63·12 

u2• =Eu~f· __ u2 =m_ (-0 .3)2=5.99 

uu = 2·45 
u. = c.u. = 1.(2·45) = 2·45 

u.2 .", Ev~r. _ ji2 =ffi - ( -0·38)2 = 5·46 

u. = 2·34 
u, = c.u. = J .(2·34) = 2·34 

The correlation coefficient may be calculated 
1 _ 
jjIv.U-u.v 

either as r = ----

or as r = 

In either case we get 

tn - (-0·30)( - 0 ·38) 
r = 2.45 x 2.34 = +0·73 approx_ 

, 

As before, the regression of y on x may be expressed by the 
equation 

that is 

(y - ji) = r(~)(x - x) 

(
2-34) (y- 63·1)=0-73 - (x -67-2) 
2·45 

which reduces to 

y=16-9+0·69x 
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And the Standard Error of Estimate of y will be 

S, -«7yVl-r2~ 2 '34Vl-(0'73)2 - 1'6inch 

The total variability of the y values is measured by the quantity 
«7, = 2'34. The standard error of estimate S, is a measure of the 
variability in the y values which remains unexplained by the fact 
that there is a true regression between y and x. In other words, if 
the correlation coefficient were not significant, then, whatever 
value of x we were given, our best estimate of y would always be 
ji with a standard error of estimate «77 , since with r not proved sig
nificantly different from zero S, = «7,. But if the correlation is 
established by testing the significance of r, we can account for 
some of the variability in height of the daughters on the grounds 
that their fathers were not all of the same height, and the taller 
fathers tend to have taller daughters. We have here a case of the 
partitioning of the total variance into two parts, (I) the variance 
component due to regression and (2) a component of valiance 
which, not being explained by the regression, is due to other 
causes. Other causes in this case would include, for example, the 
height of the mothers and environmental factors by which in
herent tendencies might be assisted or thwarted. It is variance, not 
standard deviation, Which is the additive parameter. So we may 
write: 

Total variance ~ Variance due to + Variance not explained 
regression by regression 

«7,2 «772.r2 + «77
2(1 - r 2) 

The critical reader will have noticed that through all this we 
make the assumption that the regression is a straight line type. He 
will ask whether we ought not to test whether an actual regression 
departs significantly from this assumption. There is a rough test 
which we may do from the correlation table: namely, to calculate 
the average value of v for each of the columns and see whether 
these column averages lie reasonably well on a straight line. There 
is a more exact test, depending on the calculation of the quantity 
known as the correlation ratio. It should be remembered, always, 
that unless the means of the columns lie reasonably on a straight 
line, the use of the correlation coefficient may be very misleading, 
for the reason that a value r - 0 indicates that there is an absence 
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of linear correlation. There may, however, be correlation of a 
high order without the straight line regression which is funda
mental to the methods described in this chapter. The correlation 
ratio referred to not only leads to a criterion for the testing of 
linea~ity of regression, but also to a measure of non-linear regres
sion. Readers interested in non-linear regression should refer to 
standard textbooks quoted in the bibliography. 

Before introducing the reader to more complex cases of regres
sion analysis, we wish to emphasize that at no point are statistical 
methods more of a sausage machine than in correlation analysis. 
The problem of interpretation is always very much more difficult 
to deal with than the statistical manipulations, and for this side of 
the work there is no substitute for detailed practical acquaintance 
with every aspect of the problem. The statistician can only help 
out the specialist in the field, not replace him. The man who plays 
carelessly with sharp tools is asking to be cut. 

In the fields where controlled experimentation is usually more · 
or less impossible. such as economics or social research, it is also 

I true, unfortunately. that in any problem under discussion we have 
to take account of several factors at the same time. Under these 
conditions we may calculate the correlation coefficient between 
any pair of the variables. But the obvious conclusion is not always 
the correct one, as is clearly seen in a very interesting investiga
tion by Ogburn in the United States. He found a correlation of 
- 0'14 between crime rate as measured by the number of known 
offences per thousand inhabitants and church membership as 
measured by the percentage of church members among the age 
group 13 years and over. Taking this at face value, we should infer 
that religious belief makes a person less liable to commit crimes. 
There seems nothing inherently unlikely about this, but a more 
detailed analysis which took account of other factors showed the 
obvious conclusion to be incorrect. It was found that when the 
effect of the proportion of young children was excluded the cor
relation between crime and church membership was positive. 
Moreover, when the effect of the proportion of foreign immi
grants was excluded, the correlation between crime and church 
membership was again positive. Since both foreign immigrants 
and large families are associated with the Catholic faith, a crude 
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correlation coefficient between church membership and crime 
showed up as negative. It appears that if we look for a low crime 
rate we should look for law-abiding foreigners with large families, 
rather than churchmen. In the rest of the population church-going 
and crime seem to be positively associated. Is this a happy or sad 
thing? It is probably a good thing. Certainly a church that cao 
only attract the respectable is failing to get at the people most in 
need of assistance. A reasonable case may be made out that the 
church should be the place where sinners feel at home, in accord
ance with the well-known story of the hard-bitten sinner who 
dropped into church just in time to hear the parson saying: ' We 
have done those things which we ought not to have done, and 
left undone those things which we ought to have done' - and 
said: 'Thank God. I've found my crowd at last.' The best advice 
that we can give to the man who finds a correlation and starts to 
say 'It's obvious' is: Think again. Ten to one there's a catch in it. 
The reader has been well enough warned by now unless he is 
'invincibly ignorant', as the theologians have it. We shall there
fore explain, bnefly, the routine for analysis with several factors, 
making at once the proviso that it is usually profitless to apply the 
methods to cases involving more than four variables. 

As an example, con~ider the following figures which show the 
marks scored during the year, the Intelligence Quotient, and the 
marks obtained in the final examination by each of ten students. 

Student Exam % .I.Q. Year's % 
Xl X2 X3 

A 35 100 35 
B 40 100 50 
C 25 110 30 
D 55 140 75 
E 85 150 80 
F 90 130 90 
G 65 100 75 
H 55 120 50 
J 45 140 35 
K 50 110 50 
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It will be evident that we can calcutate simple correlation coeffi
cients between the pairs of these three variables, viz. for Xl and 
X2, for XI and X3, and for X2 and X3, ignoring in each case the 
third variable. As a result of these three correlation analyses, we 
should be able to set up six regression equations enabling us to 
predict Xl from X2, Xl from X3, and X2 from X3, respectively, or 
vice versa. 

Suppose we were predicting Xl, the examination percentage, 
from X2, the intelligence quotient, then anyone with any sense 
would feel that a more reliable prediction could be made if the 
student's preparation for the examination, as measured by X3, 

were included. Teachers have got on very well without I.Q.'s, 
using the student's class marks as their basis for prognostication. 
Hard work goes a long way towards overcoming deficiency in 
native genius. Brilliance without application shows little profit in 
examinations. Nevertheless, it is undoubtedly true that the bright 
child often gets away in the examination, even if he has slacked 
during the year. We feel that the optimum system of prediction 
would include both the year's mark and the I.Q. Most people will 
agree that by and large the year's mark is likely to prove a better 
prophet than the l.Q. This means that we shall wish to give more 
weight to the year's mark than to the I.Q. They could be weighted 
by guesswork, but this is not very satisfactory. The old-fashioned, 
but excellent teacher, who regards I.Q.'s as a lot of tommy-rot, 
might think his assessment on the basis of the year's mark to be 
fifty times as reliable as any fancy psychological test. The young 
teacher, just out of college, might think the scientifically stan
dardized I.Q. test every bit as reliable as his amateur judgement 
based on inexperienced marking. Both views, in their respective 
circumstances, might well be right. It follows that the weighting 
will depend on the circumstances of ·the particular case - what 
suits an experienced teacher could well be a poor weighting 
system applied to the circumstances of a novice. 

This should be a warning against the mixing of non-homo
geneous data for correlation analysis. The results of this type of 
analysis always apply to a particular set of circumstances. Once 
these are materially changed, a fresh analysis becomes necessary. 
In our case, we may suppose that our ten students have been 
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assessed, both for I.Q. and for year's mark under the same con
ditions. Our regression analysis will tell us how - so long as these 
conditions remain substantially the same - to make a best esti
mate of the students' examination marks. The first step is to put 
the magnitudes into' code' form. 

Let us write U1-X1 - 50 

For n -10 students 

14, 14, 14, 14,' I 142' 14,' I 
UJ U2 "1"3 "1"1 ---------I-

-IS -20 -IS 225 400 225 300 225 300 
I--- ------I-

-10 -20 0 100 400 0 200 0 0 
---- ---I-

-25 -10 -20 625 100 400 250 500 200 
1-

5 20 25 25 400 625 100 125 ~oo 

35 30 30 1,225 900 900 1,050 1,050 900 

40 10 40 1,600 100 1,600 400 1,600 400 
I----I-

IS -20 25 225 400 625 -300 375 -SOD - -------- ---I----r---o s 0 0 25 0 0 0 0 
I--- 1- --5 20 -15 25 400 225 -100 75 -300 
I---

0 -10 0 0 100 0 0 0 0 
I-------f---

+45 0 +70 +4,075 +3,200 +4,600 +1,900 +3,950 +1,500 
1-=--- ---------

Xu, I Xu, Xu, Xu,, X",, XU3' Xu,u, X"'''3 Xu"" 

Our first calculation . from the table of coded data is to get the 
means and corrected sums of squares and products. It will be 
convenient to introduce the symbol E' to denote a corrected sum. 
We find: 

Means 
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, (L'uI)2 45 X 45 
1: UI2- 1:u12--

n
- -4,075 ----w- -3,875 

, (L'ui)2 0 X 0 
1: Ui - 1:u22--n- - 3,200-]0 -3,200 Squares 

, (1:uJ)2 70 x 70 
1: uJ2 -1:u32 - -n- -4,600 - ----w- - 4,110 

, (L'uI)(L'ui) 45 x 0 ) L' UIU2 - 1:UIU2 - n -1,900 -""""I() -1,900 

, (1:UI)(L'UJ) 45 x 70 
1: UIUJ - 1:Ulu3 - n - 3,950 - -w - 3,635 Products 

, (L'u2)(1:uil 0 x 70 
1: U2U3 - 1:U2U3 - n = 1 ,500 -to ... 1,500 

Let us now suppose that Ul is best predicted from U2 and U3 by a 
formula of the type 

(Ul - QI) -a(u2 - Q,) +b(U3 - Q3) 

This is known as a partial regression equation, and it is now our 
problem to determine the partial regression coefficients a and b. 
The constant a tells us how much Ul increases when U2 increases 
by one unit, U3 being held constant meanwhile. Likewise, if U2 is 
held constant, b tells us the amount by which UI is expected to 
increase for each unit increase in U3' The two unknowns a and b 
are found by solving two simultaneous equations, and there is a 
simple dodge by which we may find out what these two equations 
are. 

Step 1. Call Q .. Q2, and 113 each zero and write the regressioD 
equation as 

Ul-auZ +bu) 

Step 2. Multiply right through by U2, and we have 

UIU2 -au22 + bU2U3 

Then insert the sign L" before the U squares and products to set 
the first of our simultaneous equations; 

1:'lIlu2 -a1:'u22 +b1:'uzu3 (I) 

which, when we put in numerical values for the 1:'s, becomes 

1,900-3,2000 + 1,500b (1) 
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Step 3. Next, multiply through the regression equation of step 1 
by U3, getting 

UIU3 = aU2u3 +bU32 

Then insert the sign 1:' before the U squares and products to get 
the second equation: 

1:'ulu3 = a'E'U2U3 +b1:'u32 (2) 
We next insert numerical values for the 'E's, for simplicity in this 
illustration correct to two significant figures, and find 

3,600 = 1,500a +4,I00b (2) 

Dividing right through each equation by 100, we get: 
320 + 15b = 19 (1) 
15a+41b = 36 (2) 

Equate the coefficients of a by multiplying through the first equa
tion by 15 and through the second by 32, thus: 

480a + 225b = 285 (1 ) 

480a+1312b = 1152 (2) 
Subtract 1087b =867 : . b - 0'8 approx. 

and it follows by substitution of this value: a - 0 ·24 approx. 

Our regression equati,pn is therefore 

(UI - al) =0'24(U2 - ih) +0'8(U3 - 03) 
i.e. (UI - 4 '5) =0'24(U2 - 0) +0'8(U3' - 7'0) 

which reduces to 
III =0'24u2 +0'8U3 - 1·1 

We now translate the code regression equation to the original 
units by writing 

al = (XI - 50) U2 =(X2 -120) U3 = (X3 - 50) 
and fiod 

(Xl - 50) - 0'24(X2 - 120) +0'8(X3 - 50) - 1'1 
which reduces to 

XI =0'24x2 + 0'8X3 - 20 
This is the equation to be used in predicting final examination 

results from I.Q. and the students' marks during the year.- As an 
exercise (and a check on our working) let us try to predict ooe of 

• The question of testing significance in partial regression is referred to at 
the end of the chapter. 
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the examination results in the original data. Student A had I.Q. = 

100 and a mark for the year of 35. We predict his examination 
result as 

XI = (0 '24)(100) + (0'8)(35) - 20 
24 + 28 -20 - 32 

His actual score was 35. 
Again, Student E had I.Q.-lSO with year's mark ~ 80, and we 
predict 

X I = (0'24)(150) + (0 '8)(80) - 20 
36 + 64 - 20 = 80 

His actual score was 85. 
The reader should be clear that this partial regression equation 

is suitable only for predicting examinatioll results. If we wished, 
for example, to estimate LQ. from a knowledge of year's m~rk 
and examination mark, we would have to calculate the most appro
priate equation for this entirely different job. We would assume 

(U2 - U2) = a(ul - 141) + b(U3 - U3) 
and go through the whole process again to find the best values for 
a and b in this situation. 

It will be evident to the reader that, since the values predicted 
from a partial regression equation - while approximating actual 
values - differ somewhat from them, we should find a correlation 
existing between actual and predicted values. Such a correlation 
coefficient is called a Multiple Correlation coefficient, and we shall 

'now calculate ,it for the case where examination scores are pre
dicted from our partial regression equation. 

Student Actual x Predictedy 

A 3S 32 
B 40 44 
C 25 30 
D 5S 74 
E 8S 80 
F 90 83 
G 65 64 
H S5 49 
J 4S 42 
K 50 46 
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It will be convenient to work with the data in a coded form by 
writing u - x-55, v - y-SS. The correlation coefficient is, of 
course, unaffected by coding. The calculation is as follows: 

u V u1 v2 uv 

-20 -23 400 529 460 
-IS -11 225 121 165 
-30 -25 900 625 750 

0 19 0 361 0 
30 25 900 625 750 
35 28 1,225 784 980 
10 9 100 81 90 
0 - 6 0 36 0 

-10 -13 100 169 130 
- 5 - 9 25 81 45 

Sums - 5 - 6 3,875 3,412 3,370 

1:u 1:v 1:u2 1:v2 1:uv . 

Covariance oj u and v 

l~,uv _ _!1,'uv - (Eu) (1,'v) _ 3,370 _ (- 5) ( - 6) - 337 approx 
If N N N 10 10' 10 • 

Variance oJu 

1, 1 (1,'u) 2 3,875 ( - 5)2 irX u2 
- R1,'u2 

- N - 10 - 10 - 387 approx. 

Variance oj v 

1, 1 (1,'v) 2 3,412 (- 6)2 j,l: v2 - N1,'v2 - N - 10 - 10 - 341 approx. 

. Covar (u v) 
Correlation CoeffiCient - v' ' 

Var(u).Var(v) 
337 

- "'341 x 387 - 0·9 approlt. 
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Armed with a knowledge of the Multiple Correlation Coefficient, 
we may compute a standard error of estimate, exactly as in the 
case of simple correlation. It is given by 

SXl ~O'xl vI - r2 

We know that 'r~O'9 and that the variance of u is 387. Since, in 
getting u, we simply changed the origin of reference without in
troducing any scale factor, the variance of Xl is also 387. Hence 
0'%1 = V387 => 19 approx. It follows that the standard error of 
estimate is 

SXI =19vl-(O·9)2 ~ lOvO·19-8·5 approx. 
Whenever we make a prediction, therefore. we shaH be correct 95 
times out of 100 if we say the examination score will be within 
2 x 8·5 = 17 on either side of the value arrived at by using the 
partial regression equation. Evidently, there is a considerable 
margin of uncertainty in predicting from these data. We shall now 
deal with methods for testing the significance of correlation 
coefficients, and ways of pooling independent estimates of cor
relation. 

Most commonly we wish to know whether the observed cor
relation coefficient could have arisen by chance with fair prob
ability in a sample of the size dealt with. This may conveniently 
be tested using tables of the distribution of Student's t, by cal
culating 

rvN-2 
1----,== 

vl-r2 
and entering the tables with N - 2 degrees offreedom. 
Example. In our problem of accidents to children in relation to 

park space, we found r'" -0'92. based on N-18 districts. So 
far as the significance, as distinct from the meaning, of the cor
relation coefficient is concerned, we may ignore the minus sign. 

We find 
0'92v16 

I .. VI_(O'92)2-9'32 

with N -18 - 2 -16 degrees of freedom. The tables show that at 
the S% level 1-2'12, and at the 1% level 1-2·92. We conclude, 
therefore. that the observed value of the correlation coefficient is 
extremely significant. 
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Provided that the value of N is large (say, not less than 1(0), 
and provided also that the value of r is small, we may regard the 
standard error of the correlation coefficient as 

1 - r 2 
S. E. of r = VN 

Suppose, for example, in a particular case, we found r = 0·2 with 
N = 400. Then the standard error of r is obtained as 0·048. Thus, 
the observed value of the coefficient is four times its standard 
error, and so definitely significant. We could always use the 
Student's t method, however. The labour is little more. 

When we have independent estimates, and can show them not 
to differ significantly, we shall want to pool them together, so as 
to get a pooled estimate based on the whole available information. 
It is not permissible to add all the independent estimates together 
and divide by the number of them to get an average correlation 
coefficient. A special procedure has to be followed which takes 
proper account of the number of items used in computing each of 
the estimates. 

It is at this point that we introduce Fisher's z transformation, 
by which we write 

• Z= I'1510gIOG ~ ~) 
Whatever the sign, plus or minus, of our correlation coefficient, 
we first of all calculate z calling r positive. Then if our r was 
originally negative, we prefix the negative sign to the final value of 
z; but if r was positive originally, we leave z positive. In order to 
pool several independent estimates of r, we first of all transform 
them to z values. Each z is then multiplied by (N - 3) where N is 
the original number of pairs in the corresponding value of r. The 
products are then summed and divided by the total of the (N - 3) 
terms, to give us a mean value of z, which is then transformed 
back to give us our pooled r. 

Example. Three independent estimates of r were 0·25 with N = 23, 
- 0'14 with N = 28, + 0 '17 with N - 43. Find a pooled estimate 

(
1'25) r ~0'25 gives z - H510g10 0'75 - 0'255 
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r = - 0'14 gives Z = - H5loglO (~:!:) = - 0,141 

r = 0'17givesz = 1 ' 1510glO(~:!~) = 0 '172 

and we then get the following table: 
r N z (N - 3) 

0·25 23 0·255 20 
- 0'14 28 - 0' 141 25 

0·17 43 0'172 40 

85 
E(N-3) 

z(N-3) 
5'100 

-3 '525 
6'880 

8·455 
£z(N-3) 

8·455 
Pooled z = -ss- ~ 0 ·1 (very nearly) 

Now, since z = 1'151oglO G ~~) 
we have (

1 +r) z 0·1 
loglO r=r = m = H5 = 0'087 

~=1'222 
l - r 

1'222-1 '222r = 1 +r, i.e. 2·222r =0·222 
0 ·222 

r = 2'222 =0·10 

and this is the required pooled value of r. The reader should 
notice that, if the pooled value of z had been negative, the minus 
sign would have been ignored in decoding z back into r, and the 
value of r would finally have been given the negative sign. 

This transfonnation may also be used for testing the signifi
cance of a correlation coefficient. It may be shown that z is dis-

tributed with a standard error _ / 1 . As an example, the acci-
vN - 3 

dents to children problem gave us r = -0·92, with N = 18. The 
reader may easily check for himself that this leads us to z = 1 '6, 

apart from sign. Now the standard error is )15 = 0 '26, so the 

observed value of z is about six times its standard error, and there
fore highly significant, as we found previously. 

11 
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We may use the z transformation to test the hypothesis that the 
observed sample was drawn from a-population with a specified 
value of r. Suppose we had other grounds for believing that the 
correlation coefficient for accidents to children in relation to pro
vision of park space were - 0'5. and it was desired to know 
whether the London figures differed significantly from - 0 -5. On 
the assumption that the figure 0'5 is based on a very large sample, 
we proceed as follows. The value of z corresponding to the pos
tulated value -0'5 for r is computed as Z = -0'549. The dif
ference between this postulated value and the London figures 
(since both z values are negative, and we may ignore sign) 
1·6 - 0'55 - 1'05. But the standard error of z is, for the London 
figures, 0'26. Since the difference between the hypothetical value 
and the London value for z is four standard errors, we should 
have to conclude that the London case showed a significantly 
higher correlation than that indicated by the figure r = - O' 5. 

If we have two independent estimates of a correlation coeffi
cient, and wish to test whether they differ significantly, it is 
absolutely asking for trouble in the case of small samples to rely 
on using the standard error of the correlation coefficient itself. 
The distribution of r is very far from the Normal distribution 
which is tacitly assumed as a good approximation when we use 
the standard error approach. It is, however, safe for most prac
tical cases to transform to z values, and refer the difference of 
these values to the standard error of their difference, namely 

J 1 1 
Nl -3+ N 2 -3 

Suppose, for example, we have two independent estimates of a 
correlation coefficient r - 0'39 with N - 23 and r-0·47 with 
N - 53. Is the difference significant? When r-0'39, we get 
z - 0·412. and when r-0'47 we find z-0·511. The difference be
tween the z values is therefore 0'511 - 0'412 - 0'099. The standard 
error of the difference is 

JN11_3 + N
2

1
_3 -v't6+n--v'0'07-0 '265 

Since the difference is much less than one standard error, it is not 
significant. 
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Fisher's z transformatioD may be used in testing the significance 
of partial regression coefficients, illustrating the method by using 
the data obtained earlier in this chapter on the prediction of 
examination marks from I.Q. and year's marks. It will be recalled 
that, in coded form, the regression equation was 

Ul =0'24u2 +0'8U3 -1·1 
where Ul = examination score, U2 - I.Q., and U3 - year's marks. 
Consider, first, the partiaJ regression coefficient for U1 and U1.' We 
may convert it to the corresponding partial correlation coefficient 
as follows: 

)
'1:'U22 J3,2oo r - a - - - 0 ·24 -- - 0·2 approx 
£ ' U1 2 3,900 • 

Hence (
1 +r) (1'2) z - 1-1510g r=r - 1'1510g 0.8 - 0·2approx. 

There were N - 10 pairs of UhU2 values and we have eliminated 
m - 1 variable, viz. U3 . Hence the standard error of z is 

1 1 1 
a - V "" V ~ . // =0,4 approx. 

N-m-3 10-1-3 v6 

Since z is only half its own standard error, it has not been proved 
significant by these data and it appears that l.Q. is of very little 
value for prediction purposes. 

Considering next the partial regression coefficient for U1 and U3, 

we get 

)
'1:1U3

2 J4 ioo r - b £I
UI

2 - 0·8 3:900 =0·8 approx. 

and z - I'1510g G ~;) ... 1-15 log (~ :~) - H approx. 

As before, the standard error of z IS 0'4. In this case, since z is 
almost three times its standard error, we may consider its sig
nificance well established ahd conclude that a student's year's 
marks have been demonstrated to be of value in predicting his 
examination performance in this case. 

It is a remarkable fact that many apparently quite different 
problems all have the same best computing technique and lead to 
Snedecor's F for a significance test. Discriminatory Analysis 
affords one example where the computations follow those of cor
relation. Consider, for example, the case of the archaeologist who 
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wishes to determine the particular race of men to which a skull or 
portion of a skull probably belongs. It is well known that the skull 
configuration is broadly characteristic of race; but within each 
race any length or angle we measure will be a variable quantity, so 
that the individual skull, while conforming as a whole to its family 
shape, will have individual measurements such as are commonly 
observed in skulls of other families. Since it is not the individual 
measurements but the set which is the basis of discrimination, the 
problem of weighting and combining the individual measure
ments to get a single figure which will give the most sensitive 
diagnosis naturally arises. Problems of this type are common in 
technology. For example, rubber cements are easily recognizable 
in use as good, bad, or indifferent. There is no defined unit for the 
measurement of adhesion, which is too complex a phenomenon to 
be forced into a simple definition. All we can say is that it is 
recognizable and that certain tests can be carried out whose results 
correlate with it. It might well be useful for such tests to be 
assembled in a statistical discriminant function to forecast the 
operational quality of various manufactured batches. 

Yet another example of computations following the correlation 
model is Hotelling's T2 test, which we now iIIustrate by means of 
an example. Suppose a certain examination is taken by two types 
of student attending a technical college : part-time day release 
students and evening students. Suppose that the marks received 
by students in the three subjects of the examination are as shown 
in the following table, where X, Y, and Z d~note scores in the 
different subjects. To keep the arithmetic simple, we have made 
the marks out of ten instead of out of the customary hundred . It 
will be seen that in the table we have calculated sums of squares 
and products as already explained for regression analysis. 
Our first step is to pool together the' within set' corrected sums 
of squares, for each of the three subjects, X, Y and Z, in turn. 
Thus for X we get 

l:x2 =l:lX2 +l:2x2 = (308 _ 4~2) + (86 _ 1 !2) = 19 

In similar manner we find: 
l:y2 ~ 30 
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x Y Z X2 y2 Z2 XY XZ Y2 
1--------1--------- - ------1-

Part-time Release 
7 9 8 49 81 64 63 56 72 
9 8 7 81 64 49 72 63 56 
4 10 5 16 100 25 40 20 50 
7 7 7 ® ~ ® ~ ® ® 
8 5 5 M ~ ~ ~ ~ ~ 

7 9 4 49 81 16 63 28 36 
-------\----------------1-
_T_o_t_al_S _____ \ __ 42_1,~ 36 308 400 228 327 256 I~ 

Evening 
N2 =4 

:S 6 6 25 36 36 30 30 36 
6 8 3 36 64 9 48 18 24 
4 3 6 16 9 36 12 24 18 
3 7 5 9 49 25 21 J 5 35 

--------1---1--------------1-
Totals 18 24 20 86 158 106 III 87 113 

Our next step is to do the same thing for the' within set' sums of 
products: 

Exy = L'I xy +L'2XY = (327 _ 42 ~ 48) + (111 _]8; 24) = _ 6 
And likewise: 

L'xz = 1 and L'yz = - 7 
Suppose. DOW, we wished to test the hypothesis that the marks 
for the two sets of candidates are samples from the same popula
tion. The group averages by subjects are 

Part-time Release 
Evening 

Differences 

X Y 
7 8 
4 '5 6 

2·5 2 

Z 
6 
5 

The true values of these differences, which we shall call dx• d, and 
d" are by hypothesis zero. A departure from hypothesis due, for 
example, to part-time release students having a better perform
ance than evening students would mean that the subject dif
ferences were not zero. A test of the hypothesis may be obtained 
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by working out a certain function, known as Hotelling's 1'2, of 
the differences d., d~ and df , and finding whether this exceeds some 
critical value which would be obtained, at a chosen probability 
level, were the hypothesis true. Our next task is to describe a 
convenient way of calculating T2. We first set up three linear 
equations in three unknowns, the multipliers on the left being the 
sums of squares and products, while the right-hand members are 
the differences, d .. d, and df , multiplied by (NI + N 2. - 2) - (N - 2) 
- (10 - 2) - 8. Thus: 

aJ:x2. + b};xy + cIxz - (N - 2)d. 
aJ:xy + bl:y2 + cl:yz - (N - 2)d, 
aJ:xz + b};yz + C};Z2 - (N - 2) d, 

Substituting, we get 
19a - 6b + c - 20 

-6a+30b- 7c - 16 
a- 7b+18c- 8 

Solving these equations gives us 
a - I ·320, b =0·972, c - O·749 

Hotelling's 1'2 is then obtained as 

4 NJNz 
1'2 - NI +N2. (ad:t + bd, + cdJ 

_ 61~ 4[ 1·320(2·5) +0·972(2) +0.749(1)] 

=2·4 x 5·993 - 14·38 

To test for the significance of 1'2 we must convert it into a quantity 
F following Snedecor's F distribution. To do this we multiply 
T2 in general by 

N-p - l 
p(N-2) 

where p is the number of separate tests in the examination, in this 
case, 3. For N - 10 the multiplier becomes 

IO-3-1 _~_~ 
3x8 3x8 4" 

so that Fis J4·38/4 - 3·60. We enter the tables of Fwith degrees 
of freedom p and N - p - I, i.e. 3 and 6, and find that the value 
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corresponding to a probability P=0·05 is 4·76. We conclude that 
T2 is not significant, so that either the data are compatible with 
the hypothesis that both sets of students have equal performance 
as judged by these three tests, or the samples ,are too small to 
demonstrate the significance of the differences which exist here 
in favour of the part-time release students. 

There seems to be very little application in industry of Discri
minatory Analysis; yet one would imagine that it should prove 
extremely useful in many situations. Quite apart from ppssible 
technological applications, there seems to be a case for trying it in 
personnel selection for the pooling of selection test results. In the 
hope that some readers may be tempted to try practical applica
tions (if only to stimulate the theoretical statisticians not to lose 
interest !), we shall indicate briefly how the process works, though 
anyone interested in application would be well advised to take 
advice from a statistician or at least get a more detailed account 
from one of the standard textbooks. 

In the example just considered, we concluded that the evidence 
was insufficient to establish a diffefence between our two groups of 
students. Obviously, then, we have no real grounds for bothering 
with a discriminant function except for the purposes of iUustra
tion. If, however, we had found persuasive evidence that the two 
groups of students were characterized by different examination 
results and if we wished to play the role of Sherlock Holmes and 
find from a student's examination marks whether he was a Part
time Day Release student or an Evening student, we should pro
ceed as follows. 

First, it would be necessary to have average scores in the three 
subjects for representative groups of the two kinds of student. In 
our example, the averages by subjects were: 

x Y Z 
Part-time Release 7 8 6 
Evening 4·5 6 5 

We should also need to know the values of a, b and c, found by 
solving our three linear equations, which were: 

0-1·320 b-0·972 c-0·749 
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The typical value for the Discriminant Function is then easily 
found as 

D =aX+bY+cZ 
Thus, for the Part-time Release students, the typical value is 

Dp = 1'320(7) +0'970(8) +0 '749(6) = 21'494 

and for the Evening students it is 
DB ~ 1'320(4'5) +0·970(6) +0'749(5) = 15'505 

Now let us suppose that we are told that a certain student scored 
as follows: 

X =6 Y~ 6 Z=7 

Is he most likely to be a part-time or an evening student? We 
calculate the value of the Discriminant Function for his scores : 

D = 1'320(6) +0,970(6) +0'749(7) = 18 ·983 

Since this is nearer to the typical value for Part-time students, 
we should conclude that he belonged to that group. It should 
be noticed that this system does not rely on simple averaging of 
the students' marks, but applies weighting in the form of the co
efficients a, band c so as to get the maximum discrimination. 

SEE IF YOU HA.oVE LEARNED ANYTHING ABOUT 
CORRELATION 

1. In an experiment to measure the stiffness of a spring, the length 
of the spring under different loads was measured as follows: 

X = Load (lb.) 0 I 2 3 4 
Y= Length (in.) 8 st 10 lOt lIt 

Find regression equations appropriate for predicting (0) the length, 
given the weight on the spring; (b) the weight, given the length. Draw 
these regression lines on a graph showing the original readings. 

2. Find the correlation coefficient for the data of question I and use 
Student's 1 to test whether it is significant. 

._ 
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Time Series and Fortune Telling 

. It is never possible to step twice into the same river.' 
HERACLITUS 

Fashions change in nonsense and superstition no less than in 
ladies' hats. There was a time when popes and kings had astro
logers at court to help them plan for the future. Nowadays 
government departments have statisticians for the same purpose. 
One day they will be relegated to the Sunday newspapers to dis
place the astrologers from their last refuge. I can well understand 
the cult of the astrologer at court. After all, the astrologer was an 
astronomer, and if a man has success in predicti'ng eclipses by 
star-gazing why should he not have equal success in predicting the 
course of more mundane matters by taking cognizance of the dis
position of the heavenly bodies? But for much of the statistical 
work that is done by government departments I can see little 
excuse.· It is a vile superstition beyond anything imaginable in 
the middle ages. Whereas astrology at least encouraged men to 
look at the beauty of the heavens and be glad, this later mumbo 
jumbo encourages men to look at themselves and be miserable. It 
simply caonot be chance that the gentlemen engaged on this work 
are always making gloomy forecasts with never the slightest sug
gCbl:ion that things will grow better. Never, never has the Regis
trar-General spoken of the future of an individual child, promis
ing it fame and riches and the affection of the poor when it grows 
up. It is a very sad thing. 

The reader will guess that my views on time series are as biased 
and unsympathetic as they were in the case of index numbers. 
When I think of these curses on modem civilization I feel in me 
the spirit of St George and I long to dash into battle with this 
dragon of superstition which ensnares so many young maidens in 
the pit of idle computation. All you can hope for is a bald account 
of the obvious mechanics. There are many who believe in the 

• Measuring exports of machinery by the ton weight, irrespective of its 
value. ' 
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efficacy of these things who have written about them at great 
length. You may read their books. I hope you do - provided you 
constantly test the value of what they preach by asking: Is this 
really any good? Read them for fun and I promise you a jolly 
time. Read them for practical profit and I promise you a loss. 
What a sad thing it is that the popular superstition in any age is 
80 popular! I tremble to think of the hordes of students of com
merce and economics who at preliminary, intermediate, and 
final examinations are tested in their proficiency at sorting out the 
seasonal variation and long-term trerid. This is the sort of thing 
that any competent ice-cream manufacturer does in a flash with
out statistics. Only where the effect is very marked is it worth the 
doing. In that case it is so obvious that there is no need to do it 
statistically. 

J can think of no better illustration of the ideas in time series 
analysis than the ice-cream business. There we have a seasonal 
effect with a vengeance. Moreover, being a luxury trade, it is very 
sensitive to changes in the general level of prosperity. Given a full 
pocket of money people will often treat themselves to an ice
cream. But as soon as money begins to get tight they will cut down 
on ice-cream consumption. From a time of boom to a time of 
slump there will be a steady downward fall in the takings of an 
ice-cream manufacturer year by year. He will go higher in the 
boom and lower in the slump than any other business man. He 
is, in fact, an ideal barometer for the others to watch if they wish 
to detect the beginning of harder times to come. But, since he will 
be one of the last to climb out of distress, he will look to other 
more basic industries to spot when better times are coming. 
Superimposed on the long term up or down trend, there will be a 
seasonal fluctuation, high in each summer, low in each winter. 
The reason is, of cou.rse, that in summer ice-cream advances to 
the position of a near necessity, but in winter it rapidly recedes to 
the status of a luxury. In winter, the people's spending pattern 
changes in favour of something hot like fish and chips. 

Now the avowed purpose of time series in the commercial 
world is to predict what is possible in the coming year. Unfor
tunately, no one ever really foresees the beginning of a slump. 
This may sound a foolish re~ark when we have an army of 
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statisticians chanting the lamentations of Jeremiah, but it is true. 
Do you remember the story of the shepherd boy who kept crying 
wolf? No one wants to believe in hardship. Yet we like to have the 
appearance of realists. Hence the statisticians who are employed 
at great public and private expense to sing the lamentations while 
the rest of us, having paid lip service to reality, go off and enjoy 
ourselves. Now it follows that men who spend their life predicting 
disaster must at all proper times be in the position ofbeiag able to 
say: I told you so. But where is the good in that ? Tell me : When in 
all your experience have statisticians engaged in this sort of work 
promised us fine things to come? Never. I prefer men who sell 
ice-cream in the hope of fine weather to come than dismal jimmies 
who sell raincoats with the slogan : It will rain . By the same token, 
I dislike time series and index number men. The plain truth is that 
we can never - except by an act of great faith - say that an existing 
trend will be maintained even for a short time ahead. Those 
financiers who have the best advice and who most pride them
selves on their ability to predict what is going to happen are the 
very ones who jump out of the highest windows of skyscrapers 
when the storm breaks. Economic forecasting, like weather fore
casting in England, is only valid for the next six hours or so. 
Beyond that it is sheer guesswork. 

To illustrate the ideas we have invented the following takings 
for an imaginary ice-cream company. We comment in passing 
that, although it is a standard thing to train students of economics 
in these techniques, the whole business is particularly suspect on 
the grounds that any such series is certainly to some extent auto
regressive in the sense that economic prosperity in one year will 
tend to promote economic prosperity in the succeeding year 
(within certain limits, and subject to very many qualifications) . 
Putting the matter simply, let us suppose that a boom were due to 
a single cause, e.g. a gold rush or something of the sort. Then the 
effect will be that even when the cause is removed the prosperity 
boom will take some time to fade. There is a tendency for a boom 
to be self-supporting, as it were. There is an equal tendency for a 
depression to support itself, since trade can, to some extent, only 
get going when people have the money to order goods - which 
they won't have until they already have jobs making the goods. 
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What a pity that politicians see this and think they can do 
something about it without taking away people's freedom to 
starve. 

Example. An ,ice-cream manufacturer divides his year into four 
quarters as follows: . 

1st quarter: December, January, and February (worst 
quarter) 

2nd quarter: March, April, and May (t~ade picking up) 
3rd quarter: June, July, and August (peak months) 
4th quarter: September, October, and November (trade 

falling off) 

Over a period of four successive years his takings (in thousands 
of pounds) were : 

1st 2nd 3rd 4th 
quarter quarter quarter quarter 

Year 1 I 2 5 2 
Year 2 I 3 6 2 
Year 3 J 3 6 4 
Year 4 2 2 8 4 

The data are shown plotted in a graph in Fig. 94. For the purpose 
of analysis, we shall number the sixteen quarters in order and 
regard quarter number as our independent variable (Q). The 
takings we shall denote by the symbol T. For ease in computation 
we shall code the data according to 

q = Q-8 I = T-3 

The first seven columns in the next table are concerned with 
fitting a regression line to the data by the method of least squares 
with which we are already familiar. The remaining columns are 
for a purpose which we shall explain after we have the trend line. 
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Q T 'I , '12 ,2 'II " (T-T'>- 1" (T;:"}OO 
(I-I') 

I--- ---
I I - 7 -2 49 4 14 -1·22 - 0·78 1·78 -44% 
2 2 - 6 - 1 36 1 6 -1'04 +0·04 1.96 +2% 
3 5 - 5 2 25 4 -10 -0·87 +2-87 2·13 +134% 

• 2 - 4 -I 16 1 4 - 0·70 -0·30 2·30 -13% 
5 I -3 - 2 9 4 6 - 0 ·52 - 1-48 2·48 -60% 
6 3 -2 0 4 0 0 -0,35 +0·35 2·65 +13% 
7 6 -I 3 1 9 -3 -0'17 +3-17 2·83 +112% 
8 2 0 - I 0 1 0 0·00 -1'00 3·00 -33% 
9 1 I -2 I 4 -2 0'17 -2'17 3·17 -67% 

10 3 2 0 4 0 0 0·25 -0,35 3·35 -10% 
II 6 3 3 9 9 9 0·52 +2'48 3·52 +70% 
12 4 4 1 16 I 4 0 '70 +0·30 3·70 +8% 
13 2 5 - I 25 I -5 0·87 -1·87 3·87 -48% 
14 2 6 - I 36 I - 6 1·04 -2·04 4·04 -51% 
15 8 7 5 49 25 35 1·22 +3·78 4·22 +90% 
16 4 8 I 64 I 8 1·40 - 0,40 4·40 -9% 

- - --
Totals 8 4 344 66 60 (or n - 16 quarteR 

Computation/or trend line in coded values 

1- r: - * - 0'25 q-~ --h=O'S 

The trend line passes through the point (ti, I) so this point may at 
once be marked in on our graph (Fig. 94) by using the coded 
scales on that graph. The regression coefficient of t on q is 

.E.ql _ Eq.Et 60 _ 8 x 4 
n 16 

b - (Eq)'}."" SxS - HlS ... 0·17 
Eq2_-

n
- 344-16 

Hence, for unit .increase in q we expect I to increase by 0·1 7. 
If, then, we let q have the value ti + S ... S '5, the new value of I pre
dicted by the trend (regression) like will be 1+(0'17)8 - 1·6. This 
gives us a second point on our trend line which we can mark in 
the graph: When q - S·S, 1- 1'6. The trend line may then be · 
drawn, as shown in the figure. 

In coded Units, the equation of the trend line is 
(I' -I) - b(q - q) 

(We write I' to denote predicted takings based on the trend line.) 
i.e. (I' -0·25) ... 0·17(q-0·5) 
or t' - 0'17q+0'165 
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In the original units, since t' - T' _ 3 and q - Q _ 8, we get 
T'- 3 ~0'17(Q _ 8} +0'165 

or T' =0'17Q + I '80 

Given our trend equation, it is a simple matter to insert the values 
in the eighth column of our table, which shows the trend values 
corresponding to each value of q (working in the coded values). 
The ninth column of our table shows the difference between the 
actual takings T and the takings predicted by the trend line T'. 
The last but one column shows the trend takings in actual units, 
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Fig. 95. Takings by quarter within the year as percentage of the current 
trend value 

and the final column shows the difference between the trend and 
actual takings expression as a percentage of the trend value in the 
original units. 

There is very good reason for showing the seasonal effect in the 
last column as a percentage of the trend, as the reader will soon 
spot for himself if be is anything of a business man, namely that 
the seasonal effect is not likely to be a constant number of 
thousands of pounds, but dependent on the general volume of 
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takings at the period in question - roughly speaking at any rate. 
The last column measures not simply the seasonal effect but in
cludes other causes of variation, such as good and bad weather in 
different seasons (using' season' in the sense of a trading year - a 
common way of speaking in trades which are largely confined to 
one of the four seasons of the year). It would also include other 
irregular effects of a 'non-regular type, such as the holding of a 
special festival or a Trades Union conference by which sales 
were increased because of an abnormally large population tem
porarily in the trading area. 

Having got our long term trend, our next step is to analyse the 
seasonal and residual variation as contained in the last column of 
our table. The cycle has a yearly periodicity, and we collect the 
relevant data together as in the following table which shows the 
data of the last column of our table laid out in a way suitable for 
investigating the periodic effect. 

1st 2nd 3rd 4th 
quarter quarter quarter quarter 

Year 1 - 44% + 2 % +134% -13% 
Year 2 - 60% +13 % +112% -33 % 
Year 3 - 67% -10% + 70% + 8 % 
Year 4 - 48% - 51 % + 90 % - 9% 

Totals - 219 -46 +416 - 47 

Quarterly 
Averages - 55% -12% +104% -12 % 

The first quarter, on average, is 55% below the trend value. It 
may therefore be calculated as 45% of the trend value. Likewise, 
the other three quarters, in order, may be calculated as 88%, 
204%, and 88% respectively of their trend values in the year in 
question. Fig. 95 shows the pure seasonal effect as represented by 
these percentages, taking the trend value as constant from season 
to season at 100. We have plotted in the same graph the takings 
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for each of the four years covered by our data, so that the dis
crepancy caused by residual sources of variation may be seen. 
Provided that economic conditions affecting ice-cream were to 
remain stable, we should now be in a very happy position to pre
dict future sales, allowing both for seasonal and long term trend 
effects. It is precisely because it is all so easy to do, and so nice to 
contemplate when it is done, that this sort of thing is done so 
often. Particularly when the trend is upwards, J am prepared to 
bet that in times of boom this kind of forecasting is very much 
more indulged in than in times when the long term trend is down
wards. It is a gorgeous way of counting one's chickens before they 
are hatched - a basic characteristic without which you have no 
chance of prospering in business. It is often called' insight' or 
• acumen ' and all sorts of other things which show how close it is 
in spirit to astrology. 

Within anyone quarter, each year will have takings which differ 
from the average for that quarter. These' within quarters' dif
ferences enable the forecaster to get an idea of the uncertainty 
which attaches to any prediction he makes for the future, i.e. the 
uncertainty which will still be present even if there is no change in 
the general trend and seasonal pattern of trade as represented by 
the four years considered in the analysis. It is convenient again to 
work in percentages of the trend value. Looking back to the last 
table where we calculated the seasonal effect as a percentage of 
the trend, we find that in the first quarter the worst year showed 
takings which were 67% below trend and the best year only 44% 
below trend. Thus a sample of four years gave us a range of 
67 -44 = 23 % of trend . The other quarters gave us 64%, 64%, 
and 41 % of trend as the range in samples of four. The average 
range in samples of four is thus found to be H23 + 64 + 64 +41) = 

48. Now we learnt in the chapter on Control Charts how we 
might estimate standard deviation from mean range. We leave it 
as an exercise to the reader to satisfy himself that our mean range 
suggests a standard deviation of 24%. Provided, then, that there 
is no serious change in conditions, we are not likely to be more 
than two standard deviations (say 50% of the trend value) in 
error if we use our regression equation to find the trend, and then 

. multiply the trend value by the seasonal factor. This is a very 



330 FACTS FROM FIGURES 

0 0 

r<: ~ 
w ~ .... 
r<: c:: 
-< ·s ::l 
0 -0 

0 s:; 
N os 

~ .[ 
.., ,., 

,_ ~ ...... 
0: !::: " 

-< e 
wO-

'" oD C;; 
Ow 

j ZV 
-<Z 
rt:::l 

::! 8 
CI 

" ~ -0 

~ 
!:::! g 

oS 
.~ 

Q 0 
N 

~ ~ 
00 

'" ,.: -
'" 

U 
~ 

'" CI' .. 
.... 02 

:l 
.... ~ .~ 
N ~ .!! 

e ~ 
';: "t) 

Ul"E 
!::! Q .,. .... 0 ..o~ 

o:~ 
SONI)lVl S.OOOJ .... u: 



TIME SERIES AND FORTUNB TELLING 331 

considerable margin of possible error .. In practice there is very 
real danger that we could be very much rurther out. 

As an illustration of the technique of prediction, we shall show 
how we might go about predicting the takings for the four seasons 
in the year immediately following the four years on which the 
analysis is based. Our quarters would have the numbers 17, 18, 

13 

12 
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10 

'" q \,) 

?: 
8 "" -< ... 
7 

'" 0 b 
0 
0 s ... 
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Fig. 97. Graph of three monthly moving takings total, moving within 
predicted confidence belt based on regression analysis 

19, and 20 respectively. The regression equation for getting the 
trend is 

T' =0·17Q+l·80 

Substituting the Q values in turn gives us 

Q 
T' 

17 
4·69 

18 
4·86 

19 
5·03 

20 
5'20 

The seasonal factors are 45%, 88%, 204%, and 88% of trend 
value respectively. The uncertainty is in each case measured by 
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50% of trend. Applying these, we get the following (takings in 
thousands of pounds): 

Quarter 
Estimated takings 
Plus or minus 

17 
2-l 
2'3 

18 
4-l 
2·4 

19 
10'3 
2'5 

20 
4'6 
2'6 

Fig. 96 shows these predictions following on the data of the first 
four years. The wide margin of uncertainty is rather discouraging, 
so it is not common practice to indicate this so brazenly. 

We shall close this chapter by showing how this type of analysis 
could be made to provide a rough control chart based on a three
monthly moving total, which would indicate significant changes 
when they appear. There might be some application for this in 
some cases, but we are doubtful whether they are many. The psy
chology of business men is in any case too predatory in the main 
for them to keep the necessary degree of calm to watch a control 
chart. Anything under average with most business men means one, 
any, or all of three things: (a) the staff are slacking and must pull 
up their socks, (b) the government is deliberately robbing hard
working business men of their just rewards, (c) 'It's a devil '. Any
thing above average jDeans (a) now is the time for the staff 
to pull their socks up and back up the lead the boss has given, (b) 
the government is coming to its senses, and (c) 'God's in His 
heaven (to which all hardworking business men go) and for the 
time being all's right with the world, if only the government would 
reduce income tax instead of robbing the poor businessman whose 
hunch has proved right after all'. What hokum it all is! Now for 
our control chart. 

Suppose the actual takings for the months in the stated quar
ters were as shown below. 

Quarter I 16 17 18 19 

Month in quarter a b c n b c a b c a b c 

Monthly tnk.inas '\0. "~"~'/ ' '7''''' ' 
3.mootbly total ·0 3·3 2-l 2 '3 2~~4 S'8 S·l 9'S 



TIME SERIES AND FORTUNE TELLING 333 

These three monthly totals could then be plotted in our rough 
control chart as shown in Fig. 97. The technique is rough - but so 
is the whole business. 

NOW TRY YOUR HAND AT TIME SERIES 
ANALYSIS 

The folJowing table shows the death rate per thousand living persons 
as given in the Registrar General's Statistical Review for England and 
Wales. 

1841 /50 
1851 /60 
1861/70 
1871 /80 
1881/90 
1891 /1900 
1901/ 10 
1911/20 
1921 /30 
1931/40 

Quarter ended 
March June September December 
24·7 22·0 21 ·0 21 ·7 
24 ·: 22 ·1 20 '3 21 '9 
25·2 21 ·8 21·0 22,] 
23·7 20·9 19 '6 21 '3 
21 ·6 18·7 17-3 19'1 
20·7 ]7 '6 17-0 17 ·7 
17·7 14'6 13-8 15-4 
17·2 13 '6 I 1·8 14·9 
15'5 11'7 9·5 11·8 
15·8 11·6 9'8 12·0 

Fit a trend line suitable for estimating the annual dea th rate from the 
date of the decade. Make a seasonal analysis and so get seasonal 
factors expressed as a percentage of the current trend death rate and, 

• finally, estimate the uncertainty of prediction under stable conditions 
as a percentage of the current trend value. See if you can set up a rough 
control chart for the quarters of the year in the decade 1941/50, which 
would indicate any significant changes in tbe trend of the death rale. 
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Ranking Methods 

'You have only to take in what you please and leave out what 
you please; to select your own conditions oftirne and place ; to 
multiply and divide al discretion; and you can pay the 
National Debt in half an hour. Calculation is nothing but 
cookery.' LOllD BllOUGHAM. 1849 

Very frequently we are interested in being able to draw con
clusions from the order in which things occur. There are several 
types of problem of this kind, and we shall deal with them in this 
chapter. They are usually problems in which we can place things 
in an order of merit, without necessarily being able to give a 
numerical measure of the intrinsic worth of each individual. A 
teacher, for example, might rank ten children in order of merit 
without assigning an actual mark to each child. A judge in a 
beauty contest might rank the contestants in order of merit with
out committing himself to any indication of how much better the 
winner is than the runners up. Ranking arises naturally in cases 
where for lack of time, money, instruments, or reasonably de
fined units, measuremertt of the characteristic being judged is im
possible. We sometimes have recourse to ranking methods even 
where measurements have been made in order to reduce the . 
labour of computation or to get a rapid result.· 

The best known technique in this field is Spearman's Rank Cor
relation Coefficient. Suppose we have ten pupils ranked in order 
of ability by two schoolmasters. Let us suppose that the ten pupils 
are denoted by the letters A, D, C, ... L, and that the two teachers 
are denoted by X and Y. The ranking results were as follows: 

Student 

ABC D~~ G ~ K 

L · 

Ranked by X 2134658710 9 
Ranked byY 3 2 1 4 6 7 5 9 10 8 
Rank difference = d 11 -2 0 0 2 -=3 2 0 - 1 

Square of difference =d~ 111

4004940 

• Special mention should be made of Friedmann. who first developed 
much of the theory of rankina. 
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The problem is: do the teachers show evidence of agreement 
among themselves in regard to ranking? We solve this problem 
by calculating Spearman's Rank Correlation Coefficient which is 
defined by 

, 6Ed2 
R~ I- --n3 - /I 

where Ed2 is the sum of the squares of the rank differences, and 
n is the number of students ranked, viz. 10 in our example. We 
find Ed2 equal to 24 with n equal to 10, so that the rank correla
tion coefficient is 

6 x 24 4 
R = l- [000 _ lO = 1-ffi= 0·85 

The rank correlation coefficient has been designed so that when 
the two rankings are identical the rank correlation has the value 
plus 1; when the rankings are as greatly in disagreement as pos
sible, i.e. when one ranking is exactly the reverse of the other, the 
rank correlation coefficient is equal to minus I . Apparently, then, 
our teachers show a fair agreement between one another as to the 
order of merit of the students. How may we be sure that this 
measure of agreement could not arise by chance ? In other words. 
how do we test the significance of the rank correlation coefficient? 
Provided that n, the number of items ranked, is not less .than 10, 
we may calculate 

Student's t - RJ n - 22 
l-R 

with n - 2 degrees of freedom. Making the necessary substitutions 
in the formula we find 

Student'S 1- 0·85 Jl -~'72 - 0·85 ~ 
= 4,55' 

and this is greater than tbe 1 % level of 1 with 8 degrees of free
dom, so that we conclude that the degree of agreement between 
the two observers is significant. 

This does not of course mean that the two observers are really 
placing the students in the correct order approximately. It is pos
sible that though they both agree they are both wrong. They 
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might, for example, be pulling our legs and calling the duffers the 
bright boys and vice versa. 

If we have other exact means of knowing the correct ranking 
we can use Spearman's rank correlation coefficient to test 
whether an individual is a good judge. Suppose we have ten 
weights, very finely graded, and we wish to test how good a judge 
a man is of weight. The ranking he gives might be as follows : 

Weight A B C D E F G 
- - - - --- - - - - -

True rank 1 2 3 4 5 6 7 
Given as 3 2 4 1 7 5 10 

1-1 
------- -

d2 = 4 0 9 4 1 9 

which gives us L'd2 = 36 with n = 10 

6L'd2 
R = I - - )- = 1 -H~ = 0'78 n - n 

from which we get 

H 
- -

8 
6 

--
4 

J----;r::z J8 Student'sf"= R l _ R2=0 '78 0'4 = 3'5 

J K 
- -I-

9 10 
9 8 

--I-
0 4 

The 1 % level of Student's I with n - 2 = 8 degrees of freedom is 
3 '36, so we conclude that the man's ranking correlates signi
ficantly with the true ranking. 

Spearman's rank correlation coefficient may also be used as a 
test of efficiency in the shuffling of cards. Each card is given a rank 
number for its position in the pack. The pack is then shuffled and 
the new rank of each card recorded. The calculated value of the 
rank correlation coefficient should not be significantly high if the 
shuffling is adequate. 

Very often, we are not concerned simply with the agreement 
between two judges, but have several judges and wish to know 
whether there is a significant measure of agreement between the 
judges as a whole. Suppose, for example, there were m = 5 judges 
tasting n = 7 makes of ice-cream, as might be the case where a 
large cinema circuit carries out palatability tests on ice-cream 
from several suppliers. Let us suppose that the judges assign the 
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following ran kings to the different makes and it is desired to test 
whether there is evidence of overall agreement between the judges. 

Make of ice-cream I A B C D E F G 
- - ------[-

Ranked by judge P 2 4 3 7 5 1 6 
Ranked by judge Q 4 5 2 3 6 1 7 
Ranked by judge R 1 3 2 4 6 5 7 
Ranked by judge S 3 1 4 2 7 6 5 
Ranked by judge T 1 3 5 7 6 2 4 

------- - - - [-
Total of ranks 11 16 16 23 30 15 29 

I 

The total of the ranks for each judge is 1 +2 +3 + 4 +5 + 6 + 7 = 28 
and, in general, when there are n items to be ranked, the total of 
the ranks for each judge will be the sum of the first 11 natural num 

bers, which is given by the formula lI(n; I). Clearly, if there are m 

judges the grand total of the ranks will be m times this quantity, ' 

. mn(lI+l) 'th d I f 
VIZ. 2 . In our case WI m = 5 an II = 7, the grand tota 0 

the ranks will be 140, and this figure may be checked by adding the 
rank totals in the bottom of the table. 

Now, if the judges were able to exert no real discrimination, we 
should expect each make of ic~-cream to have a rank total of one-

seventh of the grand total of r~nkS, viz, in general, m(l~ + I) = 20. 

On the other hand, if our judges were in perfect agreement as to 
the order of merit, we should expect the rank totals to form the 
series 5, 10, 15,20,25,30, and 35 (though not necessarily in that 
order), i.e. in general the rank totals would form the series 

m, 2m, 3m, 4m, Sm, 6m, ... nm 

in the case where there were n kinds of ice-cream and m judges. It 
is natural to regard the difference between the observed rank 
totals and the expected rank totals as a measure of the agreement 
between the judges. Now it can be shown that when the expected 
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rank totals, on tlie hypothesis that the judges have no agreement 

m(n+l) . 
at all, are - -2- ' the sum of the squares of the differences be-

tween observed and expected rank totals is given by 

m2(n3 -n) 
SrNU. - 12 

This is the maximum possible sum of squares, since when the 
judges are in complete agreement we shall have the maximum dis
crepancy between observed rank totals and their expectation on 
the Null Hypothesis of no agreement between judges. In any case 
where the judges show only partial agreement, the sum of squares 
will be less than this amount. It is convenient to use the ratio 

w-~~ S .., 12S 
S""", [m2(~32 - n)] m2(nL 11) 

as a measure of the degree of agreement between the judges. This 
ratio is known as the Coefficient of Concordance. 

In our example. the rank totals were II, 16, 16, 23, 3D, 15, and 
29. On the Null Hypothesis, the expected value was 20. We get 
then the sum of squared differences between observed and ex
pected rank totals as 

S - 92 +42 +42 +32 + 102 +52 +92 

-81 + 16 + 16 +9 + 100 +25 +81 - 328 

and since m - 5 and n - 7, the coefficient of concordance is 

12S 12 x 328 
w- m2(n3 -n) -25(343 -7) -0'47 

The coefficient is designed so that it can vary from 0 signifying 
complete randomness in the allocation of ran kings to 1 signifying 
complete agreement among the judges. (A little reflection v.:m 
convince the reader that there can be no such thing as complete 
dis-agreement between more than two judges.) The calculated 
value for W in our example appears high: The question arises: 
Could so high a value arise by chance with anything but a remote 
probability? 
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It may be shown that W may be tested for significance, using 
Snedecor's distribution for F, as follows. 

Step 1. A • continuity correction' must be applied in the calcula
tionof W: 

(a) subtract unity from the calculated value of S 
m2(n3 -n) 

(b) increase the divisor 12 by 2. 

Then calculate W. 
(m-1)W 

Step 2. Calculate Snedecor's F as F - 1- Wand enter the 

tables of F with: 
Degrees of freedom for the greater estimate 

2 
= (n-l) - m 

Degrees of freedom for the lesser estimate 

~ (m-1)[(n-l)-~] 
In general the numbers of degrees of freedom will not be whole 
numbers and we have to estimate the value of Fby interpolation. 
This test is good at the 1 % level, better at the 5% level, but of 
doubtful reliability at the 0'1 % level. 

Consider, now, our example. We found S - 328, so the cor
m2(n3 - n) 

reeted value will be 328 -1 - 327. For 12 we got 

25(343 -7) 
12 = 700. The corrected value then becomes 700 + 2 ... 702, 

so that we have, finally, the correction here being negligible, 
W=;U - 0·47 

We then calculate Snedeeor's Fas 

F _ {m-1)W _ 4 x 0·47 - 3'5 
1 - W 0'53 

Greater estimate degrees of freedom 

- (n-l)- ~ = 6 -,- 5'6 m 
Lesser estimate degrees of freedom 

-(m -1)[{n -1) -~] - 4 x 5·6 - 22·4 
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Entering Snedecor's tables for F with these degrees of freedom, 
we estimate 

5% level of F = 2·7 1 % level of F~ 4·1 

We are thus left with fair confidence that our judges do exhibit 
a notable degree of agreement in their judgements of the palata
bili ty of the ice-cream from the different manufacturers - not
withstanding that individual judges disagree very markedly in the 
ranking assigned to the different makes, as inspection of the 
original table of rankings makes plain. 

It will have occurred to the reader that we might have used 
Spearman's rank correlation coefficient between every possible 
pair of judges, and then have averaged the values of R . The num
ber of ways of picking two judges from five, to do a rank correla-

tion test, is 5C2 = 
5

; 4 = 10. This would have been a lengthy 

procedure, then . As a matter of fact, there is a simple relationship 
between Wand Ra"" namely 

mW - l 
Ra"' =rn=T" 

In our example, theref~re, 

5 x O·47 - J 1·35 
Ra", = 5 - I =4 = 0·34 

Having established that there is a significant measure of agree
ment between our judges, we are at liberty to estimate a 'true 
ranking' which is based on the combined estimates of the judges. 
To do this, we use the obvious method of ranking the makes in 
order of the rank totals, thus getting the following result: 

Make of ice-cream A 

I 
B C D E F G 

----- - I-
Rank totals 11 16 16 23 30 15 29 

I 
-----51-7 

--;-
Final Rank I 3 = 3 = 2 6 

The example just dealt with leads us nicely into the next point 
we wish to make, namely, that it is often questionable whether 
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ranking is a legitimate procedure at all. It can often be the case 
that we sensibly have a preference for one item rather than another 
without being able to show logical justification for a ranking pro
cedure. In our ice-cream example there were many factors which 
might influence the several judges differently. One man may be 
influenced by taste, another by colour, another by the attractive
ness of the wrapper or a fancy for the maker's name, and so on. 
We call judgements of this sort • multidimensional'. Charac
teristic of all such cases is inconsistency of judgements expressed 
by the same observer. The problem is seen clearly in the followin g. 
We might say to a' man : Which do you prefer, orange or apple ? 
The man will reply: apple. We then ask him: Which do you pre
fer, orange or banana ? The man replies : orange. We then ask 
him: Which do you prefer, apple or banana ? Illogically, he replies : 
banana. What has happened is that the ' dimension' in which he 
makes his judgement has changed. Appearance, for example, has 
become less important than taste. There is no reason at all why he 
should not make this switch over if we have not specified the 
dimension in which judgements are to be made - and, even if we 
have, it is not always easy for the man to know what complex of 
factors and what balance of them is operating at any given instant. 
Many products in industry are judged by their customers on this 
basis. A man will open a tin of rubber cement, for example, and 
after a most cursory test announce that he likes it or that it isn't 
quite up to scratch. He claims, possibly with some right, that this 
is experience. Not infrequently it is nothing more than the result 
of uncontrolled psychological factors . A tin which is looked at 
askance today, tomorrow may be accepted without a murmur. 
The truth is that in multi-dimensional judgements of this sort we 
are always more or less out of our depth. To ask a man to arrange 
a set of items in a ranked list under such circumstances is artificial 
and inappropriate. We are asking the impossible. 

It is well known that direct comparison between two items is 
far mOre sensitive and discerning than actual measurement on a 
scale of values. We can tackle the problem of multi-dimensional 
judgements on the basis of paired comparisons, rather than 
straight ranking. We present the judge with every possible com
bination of two items from the set to be evaluated, and leave him 
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scope for inconsistent judgements, where formal ranking would 
obscure them. 

In general, given II items, we can choose pairs for comparison 

in nC2 ways, i.e. n(1I
2
-1) ways. Suppose we have 7 items, A, B, C, 

D, E, F, and G, then we can compare the following 21 pairs: 

AB AC AD AE AF AG 
BC BD BE BF BG 

CD CE CF CG 
DE DF DG 

EF EG 
FG 

In the theory, as so far developed, the judge is not allowed to 
declare himself unable to decide between one item of a pair and 
another. He must decide either way, at least to the extent of say
ing which he will choose, even ifhe·thinks the other just as good. 
He will have the sympathy of women who like four hats equally 
well but can only afford to buy one. We might record his choices 
as between the'21 pairs in the form ofa table: 

A B C D E F G 

A 0 0 

B 0 (0 0 

C 0 1 1 
D 0 0 

E 0) 0 

F 

The notation used in this table is as follows. The result of the 
comparison of A with B was that A was chosen as superior. This 
is denoted by the symbol!. On the other hand, A was rejected in 
favour of D. This is denoted by the symbol O. Thus, in general, 
the symbol! indicates that the item denoting the row of the table 
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was preferred to the item denoting the column. The symbol 0 
indicates that the item denoting the row of the table was rejected 
in favour of the item denoting the column. It is evident that, since 
no item is compared with itself, the diagonal of the table will be 
blank, and that the lower left-hand side of the table can be filled 
in from the results recorded in the upper right-hand section of the 
table. We have shown only one complementary record of this 
kind. Since B was preferred to E (denoted by entry 1 in upper 
right of table) it follows that E was rejected in favour of B (de
noted by 0 in the lower left of table). 

We must now do a little thinking. Let us denote the fact that A 
is preferred to B by the notation A--+B, or alternatively by B-A, 
that is to say, the direction of the arrow indicates the direction of 
decreasing preference. Then, if the judge makes the choices A-+B 
and lJ-+C when presented in turn with the pairs AB and Be, we 
should logically expect that when presented with the pair AC he 
would make the choice A-+C, and would regard the choice A-C 
as inconsistent with his previous two choices. We may illustrate 
these two possibilities diagrammatically in the form of preference 
triads, as follows: 

Consistent choices give 
a Resultant Triad 

Inconsistent choices give 
a Circular Triad 

Consider, first of all, the consistent choices illustrated in the left
hand part of the diagram. Starting at A, we read off that A was 
preferred to B, and proceeding we find that B was preferred to C. 
So far, the arrows have led us in a clockwise direction. The con
sistent choice, namely A preferred to C is denoted by the arrow 
head in the anticlockwise direction. 

Next consider the inconsistent choices illustrated in the right
hand part of the diagram. It will be seen that in this case all the 
arrows have the same clockwise sense. We have called this type of 
diagram a Circular Triad. Thus, Resultant Triads denote consis
tent choices, while Circular Triads denote inconsistent choices. 
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Complex cases are dealt with as polyads broken into their 
component triads. The results of our original table, for example, 
could be shown in the following form. 

or 

B 

o 

F 
Fig. 9g. Preference potyad 

Two important facts may be shown by mathematical analysis: 
(I) With n items under consideration, the maximum number of 

circular triads which can possibly occur is given by 
1/3 - n 
24 if n is an odd number 

n3 - 4n 
24 if n is an even number 

The minimum number of circular triads is of course zero, this 
being the case when all the judgements are consistent, so that we 
then have the equivalent of ordinary ranking. 

(2) There is always some set-up of preferences which will attain 
the theoretical maximum number of circular triads. 
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We test the consistency of the judge by calculating the Coeffi
cient of Consistency, as follows: 

24d 
K = 1 - -3-- for n an odd number 

n - n 

24d 
or K = 1 - - 3--4 for n an even number n - n 

where d is the number of circular triads observed in a given set-up 
of choices. The coefficient of consistency. K, attains the value 1 if 
there are no inconsistent triads of judgement, otherwise it is less 
than 1. When K = I, we are justified, of course, in setting up an 
ordinary ranking for the items, but not otherwise. The coefficient 
becomes zero when the number of inconsistent triads of judge
ment reaches the maximum possible for the number of items being 
compared. 

How is the value of d, the number of inconsistent triads, arrived 
at ? We can, of course, draw out all the triads from ollr data and 
count up the number of circular triads obtained. In a complex 
case this might prove tedious - though possibly interesting, if it 
were important to investigate where the inconsistencies arose. 
There is, however, a rapid method of computing the value of d 
from the original table of results, which we now indicate. 

The first step is to complete the table by filling in the comple
mentary results. We then calculate the row totals for the symbol I. 
Now, if we make no assumption as to how the symbols 1 and 0 
will be spread over the table, or rather assume that they are dis
tributed at random, there will be an expected number of occur
rences of the symbol 1 in each row. The judge is presented with 

nC2 = n(n; I) pairs for judgement. It (ollows that this will be the 

total number of times the symbol I will appear in the table. Since 
there are n rows in the table, it follows again that the expected 
number of times the symbol 1 should appear in each row will be 
n(n - I) n - 1 --z;- =2-' We denote this expectation by E. Each row sum is 

subtracted from the expectation, E, and squared. Finally, the sum 
of these squared differences is obtained, and this is denoted by T. 
The maximum possible value for T can be shown to be 

12 
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n3 -n 
Tm .. = 12' and it may be demonstrated that the value of d, the 

number of inconsistent triads for the table, is given by 

T""", - T 
d--

2
-

Knowing d, we can at once get the coefficient of consistency, K, 
using the formula already given. We shall now take an actual 
example and work it through. 

Example. In an experiment to determine whether a judge exer
cised significant discrimination in sorting leathers according to 
a particular quality which was, in fact, a complex of several 
factors, he was presented in turn with every possible pair from 
seven samples and asked to choose between them. His judge
ments were recorded in the following table. Calculate his coeffi
cient of consistency and comment on the significance of the 
results. 

A B CD E F G Row ($ _ £)2 

sum . 
is 

A - 1 1 1 0 1 1 5 4 
B 0 - 0 1 1 0 1 3 0 
C 0 1 - 0 1 0 1 3 0 
D 0 0 1 - 1 1 1 4 1 
E 1 0 0 0 - 1 1 3 0 
F 0 1 1 0 0 - 0 2 1 
G 0 0 0 0 0 1 - 1 4 

Total = T= lO 

With n - 7 items to be compared, the expected frequency of the 

symbol 1 per row is E = n; I - 3. This is used in the last column of 

the table. Now the maximum possible value of Tis given by 
n3 - /I 73 - 7 343 - 7 

T .... - 12 - ]2 -'}2 ~28 
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and the number of circular triads (inconsistent judgements) is 
then given by 

(N.B. As a check on the arithmetic, the number of inconsistent 
judgements must obviously be a whole number, even though, as 
will sometimes happen, the arithmetic in the table involves us in 
fractions.) 
To calculate the coefficient of consistency, since n = 7, we use the 
formula for n = an odd number, and get 

K = 1 _ 24d = 1 _ 24 x 9 = 1 _ .v~ 
n3 - 1l 73 - 7 3 3 

i.e. K =0'36 

This certainly indicates a measure of consistency, but we shall 
expect, as usual, to have a significance test to determine whether 
so great a value is likely to have arisen by chance. The reader 
might think we could use the X2 test to compare the observed and 
expected frequencies in our rows, but since the row totals are not 
independent of each other (nor, for the mathematicians, linearly 
dependent on each other), the x2 test is not applicable. The prob
lem of a significance test for the coefficient of consistency is not 
yet completely solved, nothing having been done beyond the case 
n = 7. This is not very satisfactory, si~ce for n ~ 5 even d = 0 is not 
sufficient for us to be really sure that the observed degree of con-· 
sistency could not have arisen by chance. For n = 6 the chance of 
getting d =O is only one in fifty, and the probability of getting d 
not greater than 1 is about one in twenty. When we come to the 
case of n = 7, d = 4 or less is probably Significant of real con
sistency, the chance of getting such a result by chance being about 
7%. The chance of getting 2 or less for d is about one in fifty, of 
getting 1 or less, less than I %, and of getting d = 0 by chance only 
about one. in five hundred. In our exam pie we found d =9, so 
there is a very good chance that the degree of consistency ob
served could have arisen by chance, so that, while the judge may 
in fact show significant consistency in his judgements, it is not so 
marked as to have shown up in this experiment. Until such time 
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as tables are published for higher cases, we can of course take it 
that, for n greater than 7, if the value. of d is sufficient to reach sig
nificance in the case of n = 7, then it will have even higher sig
nificance for the greater value of /I. 

We should note that the existence of significant consistency in 
an observer does not necessarily guarantee that his judgement is 
sound. A man may well be consistently wrong. Even a group of 
observers may be consistently and jointly wrong. Such is often the 
case where we are dealing with what the writer calls the mythology 
of industry . Anyone with experience of industry knows how many 
fairy tales keep in circulation year after year, until some indepen
dent spirit establishes by careful research that they are fairy tales. 
It may be believed, for example, that a certain material must not 
be used if it exhibits a certain appearance. Once the myth gets a 
hold it has little chance of being exposed, since no one will take 
the chance of using such material. The dog has been given a bad 
name, and the bad name sticks. Shortage of materials in war time 
often forces the use of inferior materials, and sometimes the exist
ence of myths is thus brought to light. 

An obvious extension to the previous case is to increase the 
number of judges doipg our paired comparison test. It is felt, 
naturally, that a panel of judges will do a better job than a single 
judge, other things being equal. The question then arises as to the 
degree of agreement between the judges (whether or not they are 
right in an absolute sense). Suppose we have m judges doing the 
paired tests. Then in our table of results we could record, square 
by square, the number of judges stating the preference in question. 
In this way each ccli in our table might contain any number from 
m (when all the judges state the preference A-+B) to zero (when 
all the judges state the preference B-+A). When some judges pre
fer A and some prefer B, the number entered into the cell will take 
some intermediate value between 0 and m. Given 11 items to be 
compared, there will be nC2 paired comparisons. If all the 
judges are in perfect agreement, there will thus be nC2 cells in 
our table containing the score m, and nC2 cells containing the 
score O. 

The next point to consider is the number of agreements between 
pairs of judges. Suppose, for example, that a particular cell in the 
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table contained the score), to indicate that) judges had agreed in 
making that particular choice. These) judges could be arranged 
in jC2 pairs all agreeing about the judgement in question. We 
could carry out the same calculation for the number of agree- . 
ments between pairs of judges for every cell in the table, getting 
for each cell a term of the type )C2, where) is the number of 
judges in the several cells. Adding up all these )C2 terms for the 
whole table, we should have the total number of agreements be
tween pairs of judges for the whole experiment as 

J =};)C2 

With n items to be compared, there would be l1(n - I) cells in the 
table (the diagonal being ignored, of course). With m judges and 
11 items being compared, we then define a Coefficient of Agree
ment as 

A 2J - 1 
mC2.nC2 

It will be noted that the maximum number of agreements occurs 
when nC2 cells each contain the number m, and that the maxi
mum possible number of agreements between judges will then be 
mC2.nC2. Only in this case will the coefficient of agreement reach 
the value 1. As J, the number of agreements between pairs of 
judges, decreases, so also the value for A, the coefficient of agree
ment, decreases. Again, we have the condition that between more 
than two judges there cannot possibly be complete dis-agreement 
in paired judgements. With only two judges, complete disagree
ment is possible, and in this case the coefficient can attain the 
value minus I. In general, with m judges, the minimum possible 
value for the coefficient of agreement, A, is 

-I 
Amln = m _ 1 for m an even number of judges 

-1 
or Amln =m for m an odd number of judges. 

Example. Five judges were presented with every possible pair 
from a series of six dogs and asked to ~ay which dog of the pair 
was the better. 
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The following table shows the numbers of judges expressing the 
various preferences: ' 

A 

B 

C 

D 

E 

ABC 'J) E F 

2 

32310 How to read the table 302 

200 

._ Two judges said they preferred dog 
B to dog D; So it follows that: 

o 
5 

o ---Three judges preferred dog D to 
dogB o 

F S 4 5 S 5 

The number of cells in the table is n(n - 1) = 6 x 5 = 30. (Check by 
counting). Our next step is to calculate the number of agreements 
between pairs of judges about a given judgement, i.e. to calculate 
the value of jC2 for each cell, where j is the number of judges 
recorded in the cell as having given that judgement. Thus, for the 
top row in the table the results are 3C2 = 3. 2C2 = 1, 3C2 =3, 
IC2 ... 0 (since with only one judge expressing this opinion there 
cannot be any agreements between pairs of judges), and OC2 - 0 
(for the reason just giv7!n). The number of agreements between 
pairs of judges for the whole table may itself be laid out in tabular 
form as follows: 

A B C D E F 
1 300 
3 1 1 0 

A 
B 1 
C 3 
D 1 
E 6 
F 10 

3 

1 100 
3 3 
3 10 10 

o 0 
o 

6 10 10 10 

Note: 

}C2 =j(J -1) 
2 

Adding up over the whole table, we find the total number of 
agreements between pairs of judges for the whole investigation to 
beJ-..rjC2 ~ 100. 

We then calculate the coefficient of agreement as 
2J 2)( tOO 

A = -1 - - -- -1 mC2.nC2 5C2 x 6C2 
2 x 100 

=]0 x 15- 1-1-33-1-0'33 
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This suggests a measure of agreement between the judges. ,Could 
this value of the coefficient of agreement have arisen by chance 
with fair probability? The answer depends on the number of 
items being judged and the number of judges expressing an 
opinion. Tables for small values of m and n appear in M. G. 
Kendall's Advanced Statistics, from which it appears that in our 
example, where n = 6 with m - 5, we are outside the range of the 
published tables. In such cases, the expression 

Z =- [(_j!__) -m(m - 1)(m - 3)n(n -1)] 
m -2 2(m-2)2 

is distributed as X2 with degrees of freedom equal to 
m(m - 1)1I(n - 1) 

2(m - 2)2 

In our case, we have m - 5, n ... 6, and J - 100, so we ,find 
4 x 100 5 x 4 x 2 x 6 x 5 

Z ----s=y - 2(5 _ 2)2 

-~-W"" 133'3-66'7 
i.e. Z - 66 ·6 

with 
5x4x6x5 . 

2(5 _ 2)2 = 33· 3 degrees of freedom. 

The tables for Xl do not extend beyond 30 degrees of freedom, but 
we know that V2X2 is distributed about a mean value V2n -1 
with unit standard deviation, when the number of degrees of free
dom is n. (N.B. This n, for the number of degrees of freedom, 
should not be confused with the n in the problem we are discuss
ing, which stands for the number of items being compared.) 

For 33 ·3 degrees of freedom for x2 we then have a mean value 
v2n-l-v65·6=8·1. With a calculated value for X2 - Z =- 66'6 
we have V2X2 = v2Z = vf33'2 = I] ·6. The difference 11 '6 - 8·1 = 

3'5, being equal to 3·5 standard errors, is highly significant, and 
we conclude that our judges show a degree of agreement between 
themselves which .is extremely unlikely to have .arisen by chance. 
With the significance established we may now set up an estimated 
ranking based on the overall opinion of the judges. Two alter
natives are open to us here. We may base our estimation either on 
the rows or on the columns of the original table. The dog with the 
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largest row total will have won in the greatest number of paired 
comparisons, and so will be the best dog. The dog with the second 
highest score will be ranked the second best dog, and so on. Alter
natively, we may establish the ranking on the basis of the column 
totals, in which case, since the column total tells us the number of 
times a dog was rejected in a paired comparison, the dog with the 
least column total will be the winner, and so on. It is evident that 
the row total plus the column total must come to 25, the number 
of judgements passed on each dog, being comparisons with each 
of (/I - I) other dogs at the hands of m judges, i.e. m(n - 1) = 
5 x 5 = 25 judgements. Either method will lead to the same rank
ing. The reader may confirm for himself that the ranking in order 
of decreasing merit is F, E, B, A, D, and C. 

Yet, again, we may argue that the merit of a particular dog 
might be estimated by the number of times there was agreement 
between pairs of judges that it should be accepted minus the num
ber of times there was agreement between pairs of judges that it 
should be rejected. We can get this from the row and column 
totals of the table of jC2 values (page 350). We leave it to the 
reader to confirm the following results of doing this: 

I I 
Dog Row Column Row Rank 

total total minus 
, column 

A 7 21 -14 4 
B 6 16 - 10 3 
C 5 27 -22 6 
D 7 25 - 18 5 
E 29 11 + 18 2 
F 46 0 +46 1 

I 

The ranking comes out the same as before. 
The levels of probable significance (corresponding to a prob

ability of about 5%) may be calculated for low values of m and n, 
using the following expressions which give the values of J which 
will be exceeded in only about 5% of trials by chance. 
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For m = 3, and n ranging from 3 to 8 

J is probably significant if it equals or exceeds 

For m = 4, and /I ranging from 3 to 6 
J is probably significant if it equals or exceeds 

For m = 5, and n ranging from 2 to 5 
. J is probably significant if it equals or exce.eds 
For m = 6, alld n ranging from 2 to 4 

J is probably significant if it equals or exceeds 

353 

The following expressions may be used to get a rough guide as to 
the 1 % levels. 
Form m = 3, and n ranging from 3 10 8 

J may be taken as significant if it equals or exceeds n2 - 2n + 8 
For m = 4, and n ranging from 3 to 6 

J may be taken as significant if it equals or exceeds n2 + 5n - 8 
For m = 5, and n ranging from 3 to 5 

J may be taken as significant if it equals or exceeds n2 + 1211 - 21 
For m = 6, alld II equals 3 'or 4 

With n = 3, take J significant at 34. With n = 4, take J significant 
at 59. 

For cases of m or n outside these ranges, use the X' distribution, as 
explained in the example. 

We now tum to other applications of ranking, with particular 
attention to the rapid evaluation of experimental results. Such 
preliminary evaluations are often extremely useful. True, they do 
not utilize all the information in the data collected, yet they are 
surprisingly accurate and give a very good guide as to whether 
full scale analysis by more detailed methods will be worth em
barking on, as well as giving a good picture of the main con
clusions which are likely to result from the full scale analysis. 
Moreover, the procedures do not require an assumption that the 
data follow the Normal distribution, as is the case in Analysis of 
Variance which we shall be considering in the next chapter. 

A common type of problem is the one where we are comparing 
two sets of data-and wish to know whether the difference between 
the sets is such as to warrant a conclusion that the difference is 
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significant of a real difference in the sources from which the data 
were drawn. We have already met this kind of problem in our con
sideration of Student's t test. Let us now tackle it from the point 
of view of ranking. We shall take an actoal example, so as to 
make the ideas concrete. 
Example. Two blocks of land were each divided up into ten plots 

of equal areas and sown with corn. The two blocks were in 
every way treated identically, except for the amount of phos
phate applied as fertilizer. Is there a significant difference be
tween the mean yields of the blocks? 

YIELDS IN BUSH EL S PER AC RE 

Plot 1 2 3 4 5 6 7 8 9 10 Mean 

Block A 5-8 6·0 6·0 5·7 5-8 6·2 5·7 6·5 6·0 6·3 6·0 

Block B 5·S 5·7 S·S 6·0 5·7 S·8 5·6 5·9 5·6 5·7 5·7 

There is, of course, no reason for comparing similar plot num
bers of the two blocks, since it is assumed that all the plots within 
a block are replicates, i.e. rePeats under the same controlled con
ditions, so that any bet.ween-plot differences within a block are to 

. be attributed to those random factors which constitute experi
mental error. 

To test the significance of the difference by ranking technique, 
we assign to each yield a rank number, tied values being given a 
mean rank. The lowest rank number is given to the highest yield, 
and the ranks are assigned from 1 to 20, i.e. ignoring the block 
differentiation. 

The 20 plot yields may be arranged in order of size, thus : 
1 2 3 4 5 6 7 8 9 ]0 11 

'----.....,...----1 '-----y------J 
6·5 6·3 6·2 6·0 5·9 S·8 

12 13 14 15 16 17 18 19 20 
'--- ----.. "----v-~ '--..r----J 

5·7 5·6 5·5 
Thus the plots with a yield of6·0bushels per acre are given a rank-
. 4+5 +6+7 5 . . ti 109 ---4--'" ·5, and sImIlarly or other ties. We then set up 

the following table showing the rankings within blocks: 
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Plot I 2 3 4 5 6 6 8 9 10 Rank 
totals 

Block A 10 S'S S'S 14 10 3 14 1 S'S 2 70'S 

Block B 19·5 14 19 ·5 5,5 14 10 17 ·5 8 17 ·5 14 139,5 

. Check Grand Total = 210 

The grand total of the ranks should, of course, be equal to the 
sum of the numbers 1 to 20. The sum of the first II natural num-

bers is given by the formula n(lI; 1). In this case, II ~ 20, so we 

have 20 ; 21 = 210; thus we may have confidence in the arithmetic 

so far . 
. Now we ~ay make the lower rank total the basis of a sig

nificance test. The question is what is the probability of getting a 
rank total as low as the observed value 70'5, when the expected 
rank total is lfJl. = 105 on a Null Hypothesis that the ranks are 
randomly distributed between the two blocks ( = treatments)? It 
may be shown that, for a problem of this type, where we have N 
replicates (the number of replicates in our data is 10 since there 
were 10 repeats in each block), there is a probability of approxi
mately 5% of getting a lower rank total (70 '5) as small as or 
smaller than 

9N2 _ 3N +3 
10 2 

and roughly a 1 % chance of getting a lower rank total as small 
as or smaller than 

4N2 
5- 9 

These expressions, then, enable us to calculate the 5% and 1 % 
significance levels for the lower rank total in aoy problem of this 
kind. In our case, with N = IO, we have: 

9N2 3N 
5% level for lower rank total =""1"0 - '2 + 3 = 90 - 15 + 3 = 78 

4N2 
1% level for lower rank total ... S -9 = 80- 9 = 71 
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Since our observed lower rank total is 70,5, we conclude that it is 
significant at the I % level, so that there is a real difference be
tween the blocks (treatments). The reader may care to repeat the 
analysis, using Student's t test, so as to confirm that the same 
conclusion is arrived at, with the same degree of confidence, as 
indicated by the probability level. 

We now propose to give the reader a simple account of the way 
in which the significance levels for problems of the above type are 
arrived at, so that he will appreciate the nature of the test more 
fully. We shall illustrate the ideas by taking a very simple case. 
The reader may then care to amuse and instruct himself by taking 
successively harder cases, with a view to trying to spot how the 
system grows. 

Suppose we had two blocks in our experiment with only three 
replications in each plot. Then the six yields would be ranked 
with numbers 1 to 6. Each plot would contain three rank num
bers, and the basis of the significance test is the total of the rank 
numbers within one plot. The grand total of all the rank numbers 

. n(n + 1) 6 x 7 
would be the sum of the numbers 1 to 6, I.e. -2- ~ 2 = 21, 

so, on the hypothesi that the rank numbers were assigned at 
random to the plots, we should expect the rank total for each plot 
to be ¥ - 10·5. A chosen block would have three rank numbers 
and each of the ranks from I to 6 would be equally likely to appear 
in that plot. How many ways are there of selecting a combination 
of three rank numbers from 6 to appear in the chosen plot? The 

. 6 x 5x4 . 
answer IS 6C3 ~ 3 x 2 x I = 20. Let us lIst them out: 

123 124 125 126 
134 135 136 

145 146 
156 

234 235 236 
245 246 

256 
345 346 

356 
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The above layout may strike the reader, at first sight, as a little 
eccentric. But there is method in the madness. The top section 
contains all the combinations which contain the rank I , the first 
Hne showing all the combinations that include I and 2, the second 
line all the combinations that contain I and 3, the third line all the 
combinations that contain 1 and 4, and the last line the only pos
sible combination containing 1 and 5. By 'contain' in this con
nection we mean 'contain as the leading or first terms of the com
bination' without prejudice to the fact that other combinations 
may contain the two terms named in other positions than the first 
two. The reader may check for himself by counting that (a) the 
table does show the proper number, 20, of combinations, and (b) 
no combination is repeated twice. It should be kept clearly in 
mind that ·we are here concerned with combinations as distinct 
from permutations. From the point of view of the rank total for 
the treatment block, the arrangement of the ranks in the block is 
immaterial, i.e. 123, 321, 213, etc., are all equivalent, in giving the 
same total. The major eccentricity of the table lies in the way the 
entries are staggered. The reason for this arrangement is that we 
have put aU combinations givIng the same rank total in the same 
column, and the rank total characteristic of the columns increases 
by one unit as we pass frpm the left to the right of the table. Thus 
in the fourth column from the left of the table we have the entries 
126,135,234, all of which have a rank total equal to 9. 

We may now draw up the following table which shows the fre
quency with which each rank total might occur on the basis of 
pure chance, by finding the rank total for each column and the 
number of combinations recorded in that column. Thus in the 
fourth column from the left we learn that the frequency of occur
rence of rank total 9 is 3. 

Rank total 6 7 8 9 10 11 12 13 14 15 
- - - - - - - - - ---- ---I-

Frequency 1 1 2 3 3 3 . 3 2 1 1 
--I---- -I---- -I-

Probability % 5 5 10 15 15 15 15 10 5 5 

The probabilities shown in the bottom line are easily arrived at by 
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noticing that the total frequency of occurrence, i.e. the total num
ber of combinations of 3 ranks chosen from 6, is equal to 20. Of 
these 20 combinations, one gives a rank total 6, one a rank total 
7, two a rank total 8, three a rank total 9, and so on. Since all 
combinations are equally likely, the probability of the occurrence 
of a given rank total is obviously the value shown for that rank 
total in the last line. 

The reader will notice that with only three replications, even the 
lowest rank total possible, 6, can occur by chance with a prob
ability of 5%, so that at very best we could not draw a conclusion 
of more than' probably significant' with so few replications. If the 
reader will work out the case of four replicates for himself he will 
get the following table. In this case the ranks for the two blocks 
will range from 1 to 8, and the number of ways of choosing a com
bination of four ranks from 8 to appear in a chosen block will be 

8 x 7x6 x S . . 
8C4 - 4 x 3 x 2 x 1 -70. This figure may be checked by domg a 

cross tot of the line labelled Frequency. The probabilities in this 
case are obtained by dividing each frequency by 70. 

Rank total 

-f': "~~ 
14 15 ~~!~~~~::__:: ~~ 26 

-
Frequency 123 5 S 7 71 8 7 7 5 5 3 2 I I 

Here we are better off. True, even the lowest rank total of 
10 can occur with a probability of 1 in 70, but this almost reaches 
the 1 % level. The 5% probability level corresponds to a frequency 
of occurrence of 3'5 in 70. From the table we see that a rank total 
of 120rless occurs with a frequency of4in 70, i.e. 5,7%. We could 
therefore take this value as our level of probable significance. The 
reader whose mathematical equipment does not extend much 
further than commonsense and arithmetic of the simplest variety 
will find in this problem a source of great fun, as he builds up the 
cases of four, five, and so on replicates. The amount of work 
rapidly increases as we proceed, but there is in it all the fun that 
mathematicians get from their work. He will find that there are 
patterns of behaviour, so that very soon he will be able to write 
down whole sections of his tables at a time without having to 
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think out every entry. It is the sort of problem we might suggest 
for a hobby over the winter, to be picked up and laid down at 
leisure. That is how the mathematician joins work to pleasure, 
making no distinction between what is highbrow or lowbrow, toil 
or frolic. We should, in fairness, advise readers that all cases up to 
n = 20 have been worked out already. It is on this basis. that we 
were able to give formulae for calculating the 5% and I % sig
nificance levels. Given a set of values we can find a formula for 
calculating them, approximately at any rate. The formula re
places a set of tables, by summarizing their essence, as it were. 

In the previous problem we had the case of • unpaired repli
cates', that is to say there was no point in contrasting the plots of 
the two blocks which had the same plot number. All plbts within 
a block were undifferentiated. Very frequently, however, the 
replicates are paired. This is done deliberately in experimental 
design, so as to eliminate certain disturbing factors. Suppose, for 
example, it were decided to make a pilot survey to find out 
whether a particular manurial treatment increased yield of com. 
The experiment, we shall suppose, is carried out on one farm in 
two blocks of land. Suppose that an analysis of the results showed 
block A to give a significantly higher yield than block B. What 
have we established about the treatment 1 Nothing for certain. 
Several criticisms of the design of the investigation may be made. 
For example: the difference established is a difference between 
blocks. Who is to sa)t that there were not other differences be
tween the blocks apart from our manurial treatment 1 One block 
might be more fertile than the other, even if we had never applied 
our manurial treatment to it. It is notoriously difficult to get two 
patches of ground, even in the same field, which are equally good. 
Again, even supposing that our two blocks in absence of the 
manurial treatment are equally good, they might both be ab
normally deficient in the substances we have added as manure, so 
that a repeat of the experiment in another locality where the 
deficiency was not so pronounced would produce an entirely 
negative result I 

To overcome the possibility of such criticism, we should have 
to replicate our experiment, i.e. repeat it several times at different 
places. At each place there would be two plots chosen, and the 
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manurial treatment would be applied to one of the plots onfy. 
How should we choose the block to receive the manurial treat
ment? To.avoid bias, the best procedure would be to toss a penny. 
In this way, over the whole of our investigation, we might reason
ably expect that differences in natural fertility of the soil between 
plots would be averaged out. Our criterion of the value of the 
manurial treatment in question would then sensibly be the excess 
yield obtained from the manured plots over the yield from the un
treated plots. The significance of the excess would have to be 
decided in terms of the probability of getting an excess as great as 
that observed. We shall see how this type of experiment is tackled 
by exact methods when we come to the chapter on the Analysis 
of Variance. Meantime, we can show how the problem might be 
tackled on a ranking approach. 

The essential of the method of experimentation we have just 
indicated is that we should be making comparisons between pairs 
of replicates. If the experiment were tried out at 10 different 
localities, we should have two plots at each locality and the com
parison would lie between the 10 pairs of plots. Let the following 
table represent yields in bushels per acre. 

-
Site 1 _ 2 ___ 3 _ _:._s_~I __ '_ 8 9 10 Mean 

1-
Treated plot 6 ·3 5·8 4·3 6·4 '·3 5·5 I 5·8 6·0 5·4 5·8 5-86 
Control 4·9 5'9 5 ·2 5 ·4 4·8 5·4 6 ·1 5·' 5·' 5" 5·48 -----l- -
Difference 1·4 -0·1 -0·9 1·0 2'5 0 ·1 -0,3 0·3 -0,3 0·1 
Rank of dill'. 9 - 2 - 7 8 10 2 - 5 5 - 5 2 

Lower Rank Total = 19 

The line labelled Difference is obtained by subtracting from the 
yield of the treated plot the yield of the control plot. Then, ignor
ing the signs of the differences, we assign rank numbers to them as 
in the last line, giving ties a mean rank in the way explained in the 
previous example. Finally, these ranks are given signs correspond
ing to the signs of the original differences. We then total the 
positive ranks, total the negative ranks, and see which gives the 
smaller total. In our example the negative ranks have the smaller 
total. The question then is: could so small a total of ranks have 
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arisen by chance with fair probability, or must we accept the dif
ferences in yields as indicating that the manurial treatment is of 
definite value? 

We may calculate the approximate significance levels for the 
lower rank total by using the following formulae: 

. N 2- 7N+I0 
5% level for lower rank total is given by 5 

I % level for lower rank total is given by 1 ~~2 - 2N + 5 

Where N is the number of replications. 
In our example there were N = 10 replications, so we have 

100 - 70 + 10 
5% level for lower rank total ~ 5 ,;" 8 

It is at once evident that our lower rank total is too large even for 
the 5 % level, being equal to 19. There is no point, therefore, in 
computing the 1 % level. We conclude that the treatment has not 
been proved to have any effect. As usual, in all significance tests, 
the verdict is • not proven ' rather than ' not guilty ' . Further evi
dence might suffice to establish the significance of the difference. 

It may sometimes occur that the treatment and the control have 
the same value. In this case the difference will be zem, and if this 
result were included in the ranking we should assign to it the rank 
1. The question would then arise : What sign should we give to the 
rank, positive or negative? Obviously, we cannot properly give it 
any sign, without upsetting our test. The best plan in such cases is 
to exclude ties as contributing nothing to our decision. The test 
will then be carried out as usual, but, of course, in calculating our 
significance level we shall have to reduce the number of replica
tions in the actual experiment by the number of excluded ties. 

Even more common in practice is the type ofexperiment where 
comparisons of treatments are made under several different con
ditions, but with several replications within each condition, in
stead of simply one comparison under each set of conditions. An 
actual example will make this clear. 

Suppose we wished to investigate whether there were any dif
fer~nce in reading ability between children having a poor home 
bac~ground and children with a good home background. We 
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might set about investigating the matter as follows. On the basis 
that one swallow does not make a summer we should consider it 
important to test more than one child with each type of back
ground. If the children of good background were drawn from one 
school and the children with a poor background from another. 
the experimental design would be poor. on the grounds that any 
observed difference might as well be due to a difference between 
schools as a difference between home backgrounds. As the statis
tician would say: 'the between background difference would be 
confounded with the between schools difference', the two being 
inextricably together. (Confounded is used in the root me\lning of 
the word: blended or mingled.) To eliminate this confounding, 
tho comparison would have to be within a school - better still 
within a class, children being chosen who have travelled the 
educational road together as far as possible. In a word. the chil
dren should be as like as is reasonably possible, except in the 
matter of home background. 

If the experiment were confined to one particular school, how
ever, the criticism might be made that the results of the experi
ment apply only to children with that kind of educational back
ground, and it is certainly reasonable prima/ode that the effect of 
home background might well 'interact' with the school back
ground. Such questions have always to be met before experiments 
are embarked on. Let us in this case cut a long story short and 
suppose that the experimental design finally chosen was as 
follows. 

Four schools of different type to be chosen. In each school ten 
children of similar background educationally to be chosen - five 
with a good home background (probably defined as better than 
average for the school in question) and five children with poor 
background at home. The ten children in each school to be given 
the same reading test under the same conditions, the marking to 
be in accordance with a standard scale. Suppose the scores to be 
as shown in the table on next page. 

The reader will see that what we have done is to assign to 
each reading score a rank Dumber within its own school. Since 
there are ten children tested in each school, the total of the rank 
numbers for each school will be the sum of the first ten natural 



RANKING METHODS 363 

Good Rank Poor Rank 
home home 

85 1 47 7·5 
63 5 65 4 

School A 47 7'5 52 6 
76 2 42 9 
70 3 41 10 ._ -

Total 18'5 Total 36'5 

57 5 84 1 
72 2 67 4 

School B 43 9'5 45 8 
52 6 43 9'5 
68 3 48 7 

-- --
Total 25·5 Total 29·5 

97 1 54 6 
53 7·5 - 67 2 

School C 64 4 65 3 
57 5 48 9 
19 10 53 7·5 

-- --
Total 27'5 Total 27'5 

59 5 45 9 
68 3 34 10 

School D 72 1 69 2 ~ 

56 7 64 4 
47 8 57 6 

-- -
Total 24 Total 31 

Grand totals of 
ranks 95'5 124'5 



364 FACTS FROM FIGURES 

. n(n+l) lO x ll . 
numbers, VIZ. -2- ~-2- =55. This fact we may use as a 

check on the calculations within each school. With four schools, 
the grand total of all the ranks will be 4 x 55 = 220, and this again 
constitutes a check on the final rank additions. The question to be 
put now is whether so small a rank total as that observed for the 
Good Home Background group could easily have arisen by 
chance, or whether it is so small that we can regard the effect of 
good home background as established. The general answer to this 
question will clearly depend on both the number of groups 
(schools) and the number of replications within the group. Tables 
have been calculated for the various probability levels. The fol
lowing formula enables us to check roughly whether significance 
is attained. If the lower rank total in an experiment in n groups 
with N replicates in each group is less than or equal to 

(2n -1)N2+N -4 
2 

we may take it that the 1 % level of significance has been reached. 
And if the lower rank total is less than or equal to 

(2n _ l)N2 + 3N - 4 
2 

we may take it that the 5 % significance level has been reached. 
In our example, we had n = 4 groups, with N = 5 replicates in 

each group. Substituting in the above formulae, we find: 
7 x 25 + 5-4 

1 % significance level 2 = 88 

7 x 25+15-4 
5% significance level 2 = 93 

We found a lower rank total of95 '5 in our experiment. This value 
is just about on the 5 % level, so we conclude that the effect of 
home background is probably significant. The reader should bear 
in mind that the formulae we have given for calculating sig
nificance levels are substitutes for the tables only for rough work
ing. For this purpose they are amply good, as the approximations 
they give are on the whole quite good. Anyone doing careful work 
should, of course, make use of proper tables. 

So far, we have seen what may be done in the way of comparing 
two treatments only. In practice, experiments are often designed 
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in which several treatments are compared simultaneously. Sup
pose, for example, that the number of articles a workman could 
complete in a given period of time depended on some physical 
characteristic of the material with which he were working. Sup
pose further, that research were in progress to ,find methods 
whereby this characteristic (itself possibly a complex of charac
teristics, rather than a simple one) might be modified so as to 
make the job more easy for the operative. (Readers in the Boot 
and Shoe industry may be reminded of' mulling'.) Let us suppose 
that the research workers had produced four suggestions, as pos
sible improvements. An experiment might then be designed to see 
whether there was any chance of any of these proving helpful. 
We have here a typical case of process research, that is research 
at the factory level rather than in a laboratory. It is well known 
that many things work wonderfully well in the controlled con
ditions of the laboratory, only to prove a failure in the much less 
stable conditions of the manufacturing organization. Processes, 
to be suitable for manufacturing, have to be robust, For 
this reason there is a growing tendency amongst industrial statis
ticians (who are usually chemists or physicists, primarily - and 
statisticians only because they find it pays good dividends) to 
carry out a great deal of their research in the production unit as 
such, in so far as this may reasonably be arranged without dis
turbance to the flow of production. It is well to remember that the 
ultimate experiment is in the shops, anyway. 

Let us suppose, then, that the investigator decided to have an 
experiment on the following lines. Five operators would be 
chosen, each operator to be regarded as a block (i.e. a source of 
supply). The four suggestions as to treatment of the material 
would be added to the current methvd (Le. the one with which 
dissatisfaction has been expressed), making five treatments in all 
to be compared. To eliminate between operator effect, each 
operator would have a trial run with each of the five treatments of 
the material. In this way the treatment effects would not be con
founded with the operators. In addition, the order in which each 
operator would take the experimental materials would be as
signed at random. Thus, each operator would work through the 
specimen ~aterials in a different order. This would eliminate any 
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systematic time factor, such as might arise if the operator's pro
ductivity varied from time to time during the day - e.g. slowing 
down before • knocking off time'! The relative merits of the 
material treatments would sensibly be measured by the number of 
articles completed in a standard time, say one hour. Naturally, 
every precaution would be taken to ensure that during his test 
periods the workman was not held up or disturbed for any ex
traneous reasons. The following table might then represent the 
'number of articles produced in the standard time by the several 
workmen with the various treatments of the working material. 

Work- Treatments of working material 
man 

Control A B C D 

I 72 65 37 57 64 
2 24 42 2S 62 83 
'3 49 20 42 24 44 
4 52 33 27 '72 35 
5 38 17 45 44 40 . 

Our next step is to set up a table showing how each workman 
ranks the various treatments, as indicated by his productivity. 

Workman Control A B C D 

1 1 2 S 4 3 
2 5 3 4 2 1 
3 1 S 3 4 2 
4 2 . 4 S 1 3 
S 4 S 1 2 3 

Rank totals 13 19 18 12 12 

Since a low rank total is the hall-mark of a successful modification 
of the material, it is evident that we have no improvement offered 
to us. (Often the case, unfortunately!) This Qccd not deter us, for 
our present purpose, however. We have simply to interchange the 
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column headings' Control' and 'A' to get a set of data in which 
the experiment looks promising, for in that case there would be 
four treatments apparently better than the Control. Our statis
tical problem now is to decide whether the treatments as a whole 
differ among themselves. This is still a sensible question even ifno 
treatment looks better than the control. If we find that the treat
ments do differ significantly one from another, then we shall 
be justified in making comparisons between individual treat
ments. But if the treatments cannot be shown to differ significantly 
from each other, as a whole, then we should be very cautious in 
making claims about differences between individuals. 

We test the results for iack of homogeneity as follows. If the 
number of blocks (workmen in this case) is equal to n, and num
ber of treatments (including the control, if there is one in the 
experiment) is equal to p, then we can calculate the • rank dif
ference: X2 as 

2 ' 12 [ Sum of Squares of ] 
X r - np(p + 1) Treatment Rank Totals - 3n(p + 1) 

Tl)e appropriate number of degrees of freedom being (p -1). In 
our example we had n-5 operators and p - 5 treatments. The 
sum of the squares of the treatment rank totals is 

132 + 192 + 182 + 132 + 122 -1,167 
We find, then, that 

12 
X2, - 5 x 5 x 6[1,167J - 3 x 5 x 6-3·36 

with (p -1) degrees of freedom, i.e. 4 degrees of freedom. From 
tables of X2 (the reader may check on his graph), we find that the 
5 % level of X2 is 9·5. It is evident that there is no evidence bere 
that the treatments have any real effect - either as improving pro
ductivity or as retarding it. The 'backroom boys' must go away 
and have another think. 

It may possibly have occurred to some readers that the same 
technique and the same data could be made the basis of a test for 
significant differences between the operators with regard to pro
ductivity. In this case we should look upon the treatments as 
blocks. and the operators as treatments. Our ranking would then 
be within treatments, instead of within operators. Instead of 
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saying : How does this operator get on with the various materials? 
we should say : How does this material get on with the various 
operators? The rankings, instead of running across the rows of 
our table, would then run down the columns, and instead of get
ting a rank total for each material we should get one for each 
workman. The reader may care to work through this case for 
himself, and see whether there.is evidence of a significant dif
ference in productivity between the workmen. Would this be a 
fair test of the between workman differences or is there a pos
sibility that each workman might find particular trouble with a 
particular kind of 'material ? Does this apply to the previous 
analysis? What we are asking is whether there might not possibly 
be an 'interaction' between workman and material, so that we 
get a special boost or set back in production when a particular 
workman is teamed up with a particular material. This type of 
problem will receive our attention when we come to the Analysis 
of Variance. 

We close this section of our review of statistical ranking 
methods by going back to our first example in this chapter. We 
there had the case of two teachers ranking ten students in order of 
estimated ability, and we found. by using Spearman's rank cor
relation coefficient, that there was a significant correlation be
tween their ran kings. The same conclusion might be reached by 
means of the rank difference X2, we have just introduced. In this 
case our teachers become our operators, and our students become 
our treatments. We form the following table : 

Student A. B C D E F G H K L 
----- - - - ----- - I-

Ranked by X 2 1 3 4 6 5 8 7 10 9 
Ranked by Y 3 2 I 4 6 7 5 9 10 8 

- -I- ----
~I~ 

-----
Rank totals 5 3 4 8 12 16 20 17 

In this case n = 2 and p - 10, so we get on substitution in 
2 12 [sum of squares Of] 3 1 

X , = np(p + 1) student rank totals - n(p + ) 
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since the sum of the squares of the student rank totals is 

52 + 32 +42 + 82 + 122 + 122 + 132 + 162 +202 + 172 - 1,516 
12 

X2, 2 x 10 x II [1,516] -3 x 2 x 11 - 16·7 

369 

With p - 1 = 10 -1 = 9 degrees of freedom, the 5% level of X2 is 
16·9. 

We may take it, therefore, that there is probably a significant 
correlation between the rankings of the teachers. If the reader will 
compare this conclusion with the one reached at the beginning of 
the chapter he will see that we are not quite so confident this time. 
He should remember that these significance tests are approximate, 
and be satisfied that they line up as well as they do. In practice, 
we are not concerned so much with the exact probability level 
reached, as with an indication as to what judgement we should 
pass. On the whole, these approximate tests serve this purpose 
excellently. Properly applied, they will never lead us astray in our 
broad purpose. 

The quantity X2, is simply related to Spearman's rank correla
tion coefficient by the following formula : 

R=(n)-I p - l 
In the present case, with p => 10 and X2, = 16 '7, we estimate R as 

16'7 R-T - 1=0'85 

a value which agrees with that calculated by the direct method at 
the beginning of the chapter. The value R = 0'85 may also be 
tested by comparing it with its standard error. The standard error 

of R is _ / 1 = _ ~_ = 0 '333. The ratio of R to its standard error 
vp - l v9 

is therefore 
0·85 

t =Q.333 =2'55 

Since this lies between 2 and 3 standard errors, we again conclude 
that the correlation is probably significant. 

As the reader will by now see, there is almost no end to the 
types of problem which can successfully be tackled by the tech
nique of .ranking. Other techniques will be found in the books 
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referred to in the bibliography. For the man who is not a pro
fessional statistician there is great value in simple techniques of 
this kind. It is true that they do not utilize to the full all the infor
mation in a set of data, and are to that extent inefficient. On the 
other side of the ledger, however, there must be made a sub
stantial credit entry in view of their time-saving nature and splen
did IIPproximations. 

NOW SEE WHAT YOU MAKE OF THESE 

1. In a painting competition the various entries are ranked by two 
judges. Use Speannan's Rank Correlation Coefficient to test whether 
there is significant agreement among the judges. 

Entry ABC D E F G H K L 
Judge X 5 2 6 8 1 7 4 9 3 10 
Judge Y 1 7 6 10 4 5 3 8 2 9 

2. Do the ladies show a real measure of agreement as to the features 
they like best in popular magazines? Calculate the coefficient of con
cordance-

Feature A B C D E F 
Miss P's rank 3 1 6 2 5 4 
Miss Q's rank 4- 3 2 5 1 6 
Miss R's rank 2 1 6 5 4 3 
Miss S's rank 5 4 .2 6 1 3 

3. Mr. Robinson considered the six people A; B, C, D, E and F two 
at a time and made up his mind which he liked best of each pair. His 
judgments are as in the following table. For instance he preferred, 
Me A to Mr B, but Mr E to Mr A. 

BCD E F 
All 100 
B 100 1 
COO 1 
D 1 1 
E 1 

Calculate the coefficient of consistency for Mr Robinson's judgements. 
4. Two drugs are tested ror their soporific effect, each on a group of 

ten people, the number of hours sleep induced being stated. Is it 
reasonable to claim that one drug is superior to the other in inducing 
sleep? 

Drug A 7t 6t 5l 7t 8t 7* 8t 9 7t 8 
DrugB 9 8t 7 6t 8l 9t 9t 8t 9* 7l 
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The Analysis of Variation and Co-variation 

• Arter two years Pharaoh had a dream. He thought he stood 
by the river out of which came up seven kine, very beautiful 
and fat.' 

Undoubtedly one of the most elegant, powerful, and useful tech
niques in modern statistical method is that of the Analysis of 
Variation and Co-variation by which the total variation in a set 
of data may be reduced to components associated with possible 
sources of variability whose relative importance we wish to 
assess. The precise form which any given analysis will take is 
intimately connected with the structure of the investigation from 
which the data are obtained. A simple structure will lead to a simple 
analysis; a complex structure to a complex analysis. In this chap
ter we shall consider some of the more common types of analysis 
so that the reader may get hold of the basic principles and appre
ciate the beauty of the technique.· 

It will be recalled that we calculate the variance of a set of data 
as the mean square deviation of the several items from their grand 
average. Thus, if the individual items be denoted by x, their grand 
average by x, and the number of items by N, then the variance 
wiJI be 

] 
V - q 2-/iiE(x _X)2 

This will be the sample variance. But we also know that a small 
sample tends to underestimate the variance of the parent popula
tion and that a better estimate of the population variance is ob
tained by dividing the • Sum ofSquares',E(x _X)2 by the number 
of 'degrees of freedom', (N -1). We have then that the 'Popula
tion Variance Estimate' is 

V _q2 ... E(x - X)2 
N-l 

We shall show, in a moment, by way of example, how the total 
variation may be resolved into components in suitable cases: 

• Introduced by R. A. Fisher. 
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First, however, the reader should have it clearly in his mind that 
in the Analysis of Variance we compute for each source of 
variability in turn: 

(a) the sum of squares, (b) the number of degrees of freedom. 
Consider, then, the following table of data which shows the values 
of 20 items which'have been collected in four samples of 5 items 
each. Even if the data were collected at random from a perfectly 
homogeneous population, we should not expect each sample to 
have the same average value, since even sample averages must 
reflect the variance in the parent population. What we should 
expect in these circumstances is that the variation between sample 
averages should be commensurate with the population variance 
as indicated by the variation within the individual samples. If it 
should prove that the • between sample variation' were signifi
cantly greater than the' within sample variation', then we should 
suspect that the samples were not, in fact, drawn from the same 
population, but from populations whose average values differed. 
so that on top of the' within population variation' there existed 
also a • between population variation'. 

Sample totals 
Sample means 

Sample 1.. Sample 2 
2 3 
3 4 
1 3 
3 5 
1 0 

10 
2 

15 
3 

Sample 3 
6 
8 
7 
4 

10 

35 
7 

Total number ofitems = N=20 
Grand Total of all items == T = 80 

Grand Average of all items =~==*=:4 

Sample 4 
5 
5 
5 
3 
2 

20 
4 

The table on next page shows the squares of the deviations of 
the 20 items from their grand average value of 4. 

The number of degrees of freedom on which this total sum of 
SQuares was computed is found as o~e less than the number of 
items on which the calculation was made. We had 20 items and so 

Total Degrees of Freedom -19 
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Sample 1 Sample 2 Sample 3 Sample 4 
4 1 4 1 
1 0 16 1 
9 I 9 1 
1 1 0 1 
9 16 36 4 

Totals 24 19 65 8 

Grand Total of Squared Deviations from the Grand Average 
= Total Sum of Squares = 24 + 19 +65 + 8 = 116 

Let us now try to partition the total sum of squares and the total 
degrees of freedom into components corresponding to ' between 
sample averages' and' within samples' respectively. In order to 
get the between sample effect, we must eliminate the within 
sample effect. We can do this by replacing each item by its own 
sample average. Doing this, we obtain the following table: 

Sample I Sample 2 Sample 3 Sample 4 
2 3 7 4 
2 3 7 4 
2 3 7 4 
2 3 7 4 
2 3 7 4 

For which the Grand Totaljs still T == 80. of course 

In order to get the between sample sum of squares, we now pro
ceed exactly as we did when we were calculating the total sums of 
squares. We set up the following table which shows the squares of 
the deviations of the entries in our new table from their grand 
average, thus : 

Totals 

Sample 1 
4 
4 
4 
4 
4 

20 

Sample 2 
1 

5 

Sample 3 
9 
9 
9 
9 
9 
-

45 

Between sample sum of squares = 20 + 5 +45 = 70. 

Sample 4 
0 
0 
0 
0 
0 

0 

To get the relevant degrees of freedom, we take one less than the num
ber of sample averages on which the computation was based. Hence : 

Between sample degrees of freedom = 4 - 1 = 3 
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It now remains for us to get the sum of squares and the degrees of 
freedom which correspond to within sample variation. In order 
to do this, we must remove the between sample average effect. 
We are now concerned only with the variability within the in
dividual samples. To get this, we subtract from each item in our 
original table of data its own sample average. The result is shown 
in the following table: 

Totals 

Sample 1 o . 
I 

- 1 
I 

- 1 

o 

Sample 2 
o 
I 
o 
2 

- 3 

o 

Sample 3 
- 1 

I 
o 

- 3 
3 

o 

Sample 4 
1 
I 
1 

- 1 
- 2 

o 

The grand average of the items in this new table is, of course, 
zero, and the sum of squares for the within sample source of varia
tion is obtained by finding the sum of the squares of the deviations 
of the items in this table from their grand average, zero. All we 
have to do, then, is to square the items as they stand. The result is: 

Sample I Sample 2 Sample 3 Sample 4 
o 0 I 1 
I I I 1 
I 0 0 1 
I 4 9 1 
1 9 9 4 

Totals 4 14 20 8 

Within Sample Sum of Squares = 4 + 14 + 20 + 8 = 46 

In order to get the within sample degrees of freedom, we argue as 
follows : each sample consists offive items. For each sample the 
number of degrees of freedom within that sample will be one less 
than the number of items within that sample, viz. 4. However, 
there are four such samples, so the total degrees of freedom 
within samples will be 4 x 4 = 16. 

Let us now collect our results together in a Table of the Analysis 
of Variance. 
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TABLE OF ANALYSIS OF VARIANCl! 

Source of variation Sums of Degrees of Variance 
squares freedom estimate 

Between samples 70 

I 
3 1/ = 23.3 

Within samples 46 16 H = 2'9 

Total 116 I 19 

It will be seen that our pro-:edure has neatly divided the total sum 
of squares and the total degrees of freedom into two inde
pendent components, which correspond to between sample and 
within sample variation. 

Now let uS think a little, and see if we can turn this device to 
practical account. When we divide a sum of squares by the corre
sponding number of degrees of freedom on which the sum of 
squares is based, we are estimating a variance. In our example, the 
Table of the Analysis of Variance shows this done for the two 
components of our variation. lfwe set up the Null Hypothesis that 
the between sample variation is only a reilexion of the variation 
of the items in the common parent population from which the 
items were drawn, the two Variance estimates are stimates of the 
same variance. What we are saying, in effec . this : it does not 
matter whether we estimate the populati variance on the basis 
of the variation between sample averag or on the basis of the 
variation of the items about their own sa 
completely determined by the variance of t items in the common 
parent population. Since the two estimate are independent of 
each other, we shall not expect them to be i tical in value. But 
we shall expect them not to differ more than 's to be expected 
taking into account the number of degrees of f dom on which 
they are based. Now we already have a simple tes for the mutual 
compatibility of two variance esti s, nam ly Snedecor's 
Variance Ratio Test which we dealt with in apter 13. If our 
Null Hypothesis is correct., and there is no specific between sample 
effect other than that introduced by the variance of the common 
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parent population, then we should expect Snedecor's Test to 
yield a non-significant result. 

On the face of it, judging from our Table of Analysis of 
Variance, there is a specific between sample effect, i.e. in addition 
to the between sample variation to be expected on our Null 
Hypothesis, there is an extra variation between the samples which 
is unaccounted for by the Null Hypothesis. Applying Snedecor's 
Test we get 

23 ·3 
F = T-9= 8'1 

For the greater variance estimate there are 3 degrees of freedom 
and for the lesser variance estimate there are 13 degrees of free
dom. 

Consulting the Table for Snedecor's F given in Chapter 13, we 
find that the I % level of F is about 5·3. The 0 ' 1 % level is about 9. 
Our observed value of8 ' 1 is therefore well above the I % level and 
very nearly at the D,) % level. We conclude that the observed 
variance ratio is too great for the Null Hypothesis to be main
tained and that there is a specific between sample variation. The 
implication is that, whatever we may have hoped or thought to 
the contrary, if we are-wise we shall act on the assumption that the 
samples were, in fact, drawn from sources whose average values 
differed from each other. If for our purpose it were desirable to 
have the average value as large as possible, then we should do our 
business with the source which gave us Sample 3 for which the 
average value came out at 7. We should then have to remember 
that, although this particular sample gave an average value of7, it 
might have been an optimistic-looking sample from a population 
with a rather lower average, and we should therefore be interested 
in setting up confidence limits for the mean value in the popula
tion from which the sample was drawn. This is a matter which the 
reader can follow up for himself along the lines laid down in 
Chapter 14. 

Unless the reader is of a different psychological make-up from 
the author, he will feel that while this is a very useful device, there 
ought to be some quick method of arriving at the same result. 
This is not just slothfulness on our part. Decisions of the kind for 
which this technique would be useful have to be made speedily in 
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many cases. Moreover, it is inelegant to"" use crude methods of 
computing when there are more speedy approaches. There is, of 
course, a better method. To illustrate it, we shall re-work the 
analysis of the previous data so that the reader can cross check 
and satisfy himself that the speedy method is absolutely accurate. 

We first of all find the sample totals and the grand total for the 
original data, as in the following table: 

Sample J Sample 2 Sample 3 Sample 4 
2 3 6 5 
3 4 8 5 
J 3 7 5 
3 5 4 3 

0 10 2 

Totals 10 J 5 35 20 

G rand total T~ 80 Number or items N 

We next compute a very important quantity known as the ' Cor
rection Factor' : 

. T2 80 x 80 
CorrectIOn Factor ="N = 20 = 320 

This Correction Factor enters into the computation of all further 
sums of squares that are directly computed. 

The next step is to set up a table showing the squares of the 
original items, thus : 

Sample 1 Sample 2 Sample 3 Sample 4 
4 9 36 25 
9 16 64 25 
I 9 49 25 
9 25 16 <) 

0 100 4 

-
Totals 24 5.9 265 88 

The Total Sum of Squares is then obtained by subtracting the 
13 ' 
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Correction Factor from the grand total of the square items in 
this table, thUS: 

Total Sum of Squares ~ (24 + 59 + 265 + 88) - 320 
= 436 - 320 = 116 

This agrees with what we obtained when we did the calculation by 
the first method. 

In or-der to get the Between Sample Sum of Squares, we find the 
sum of the squares of the sample totals and divide this sum by the 
number of items which went to make up each sample total. 
Finally, we subtract the Correction Factor. In this way we obtain 
the following: 

Between Sample Sum of Squares = t(102 + 152 + 35 2 +202) - 320 

= 100 + 225 ~ 1,225 + 400 _ 320 

=ilfJl - 320 = 390 - 320 = 70 

The Within Sample Sum of Squares is then found by subtracting 
the Between Sample Sum of Squares from the Total Sum of 
Squares, and we find : ~ 

Within Sample Sum of Squares = 116 - 70 = 46 

Both the Between Sample Sum of Squares and the Within Sample 
Sum of Squares agree with the values found previously. 

The Degrees of Freedom are found as follows: 

Total number of items = 20, hence Total d.f. = 20 - 1 - 19 

Total number of samples = 4, hence Between Sample d.f. 
= 4 - 1 = 3. 

Within Sample d .f. = Total d.f. minus Between Sample d.f. 
= 19 - 3 = 16. 

We are now in a position to draw up the Table of Analysis of 
Variance as before. The saving in time is considerable. The reader 
is advised to master the procedure just outlined before proceeding 
further. He should invent a similar example for himself and work 
it out both ways. He will be well advised to keep the values of the 
items s!l1a11. The procedure is exactly the same however many 
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items we have in each sample, or however many samples we have. 
The first method will work even when there are unequal numbers 
of items in each sample. The second method is applicable exactly 
as we have given it only if the samples all have the same num
ber of items. If the number of items in the samples varies, then we 
have to get the Between Sample Sum of Squares by the following 
method: 

(a) Square each sample total ; 
(b) Divide the square of each sample total by the number of 

items which went to make it up ; 
(c) Find the totals of the items thus obtained for the individual 

samples; 
(d) Subtract the Correction Factor. 

The Total Sum of Squares and the Within Sample Sum of Squares 
are. found exactly as previollsly explained. 

We advised the reader to keep the values of the items small 
when making up his own sample . . If the reader had a calculating 
machine handy, this warning was not needed. We were thinking 
of the poor fellow who had to struggle with his arithmetic un
aided. In practice, of course, we cannot control the magnitude of 
th,tltemS..in the samples. They come to us already fixed in mag
?ili'ide, and we have to make do and mend. How do we make do 
and mend 'if the items are large and we have no machine to help 
us with the arithmetic ? 

The reader will quickly get the idea once he sees that a set of 
data whose smallest item is 117 and whose largest item is 124 is no 
more and no less variable than a set whose greatest item is 16 and 
whose smallest is 9. In both cases the range (maximum minus 
minimum value) is equal to seven. It follows that : 

The variance is unchanged by the subtraction (or addition) 0/ a 
cons/ant amount from every item. 

To illustrate this useful trick we shall take an example from 
market research. A manufacturer is about to put a certain pro
duct on the market. He has four packages in mind which he 
thinks will appeal to different price markets. Would the pur
chasing public, seeing the same product in different'packages. fix 
different prices as reasonable? This is one aspect of a total 
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problem in which the manufacturer would have to consider the pos
sibilities of smaller sales volume in a rugher priced market as well 
as the extra cost of the more appealing carton. To settle whether 
the four packages suggest different price levels in the customer's 
mind, he shows each package to six members of the shopping 
public, choosing a different (but comparable) set of customers for 
each package so that the customers do not feel that they are ex
pected to grade the packages in any way. Let us suppose (what is 
perhaps rather unlikely) that the possible customers quote their 
estimates to the nearest penny in this case and that we receive 
the following results for analysis. 

CUSTOMI!R'S VALUATION IN PENCE 

Pack I Pack 2 Pack 3 Pack 4 
66 42 54 78 
82 66 90 54 
60 30 60 60 
50 60 81 42 
60 36 60 71 
90 48 51 49 

The variation within packages is a reflexion of the fact that cus
tomers tend to value by..the price ticket and fwd themselves rather 
at sea without the shopkeeper's assistance in deciding how much 
the article is worth. In this example, the within package vari
ability is sufficiently great to make us confident that the cus
tomers questioned must have been ladies. 

Getting back to our sheep, as the French say, it is clear that if 
we had to square the items in the table as they stand, we should 
soon have quite a lot of arithmetic on our hands. To avoid this as 
far as possible we decide to subtract from each item a constant 
amount so as to make the figures as small as possible. The smaller 
the figures, the easier the job. Moreover, small negative figures are 
preferable to large positive ones. How much shall we subtract? 
The golden rule is: A number as near the grand average as we can 
guess. A fair guess in tlus case would be 60 (keep it an easy num
berl). Making the subtractions and setting up a second compart
ment to our table which contains the squares of the reduced 
values, we arrive at the following table which contains all we need 
for our analysis: 
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packogeJ_paCkaaC I packaae l Package Packaae Package Packaac I Package 
1234 I 234 

---------_._-------- --

I "-""" "~~o",_ ..... , 

I' G I - I R I - 6 I 18 36 324 36 324 
:~ I 6 I :;u - 6 484 36 900 36 
o I - 30 () () 0 900 0 0 

_ 10 0 'I 21 I - 18 100 0 441 324 
o - 24 0 II 0 576 0 121 

30 ' -12 - 9 - II 900 144 81 121 ---1- --- ___ . ___________ j_ 

Tota lsi 48 I - 78 I 36 I -~ 1,520 1,980 1,458 926 

T =48 - 78+36 - 6 =0 

N = 6 x 4 =24 items 

T 2 0 >: 0 
Correction Factor "" - ~-- ~.- O 

N 24 

Rl'llVcen Sample SUIIl of Squares 

(6 items in cach total) 

~ [482+( - 78)2+362+( -6)2] - 0 

2,304 +6,084 -)- 1,296 + 36 
= 6 - 0 

=~= 1,620 

There are 4 samples and therefore 
3 degrees of freedom. 

Total Sum of Squares 

[1,520 + 1,980 + 1,458 + 926] - 0 
= 5,884 

Therc arc 24 items and therefore 
23 degrees of freedom . 

Withi" Sample Sum of Squares 

Is difference between Total Sum 
of Squares and Between Sample 
Sum of Squares, viz. 

5,884 - 1 ,620 = 4,264 

The degrees of freedom are the 
difference between the Total d .f. 
and the Between Sample d.f., viz. 

23 - 3 = 20 

We now collect our results together and calculate the Variance 
Estimates by dividing each sum of squares by its number of 
degrees of freedom. ' 

TABLE OF ANALYSIS OF VARIANCE 

Source of I Sum of 
I 

d.f. Variance 
variation I squares estimate 

1 

Between packages 1,620 -, 3 540·0 
Within packages 4,264 I 20 

1-

213 ·2 
1-----_._---

i Total 5,884 23 
1 i 
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The vanatlon between packages might be fortuitous, ansmg 
simply from the customer's uncertainty as to price without there 
being any real effect on price arising from the different packages. 
No use to fool ourselves that a more expensive package was help
ing price if this were not the case. Let us make a Null Hypothesis 
that differences in packaging have no effect on the customer's 
estimate of price and use the Variance Ratio test to see whether 
such a hypothesis is tenable in the face of the observed data. 
We get 

540'0 
F ~ ,2fr2 ~, 2 ' 5 

The greater variance estimate has 3 degrees of freedom and the 
lesser estimate 20 degrees of freedom. The Table of the Variance 
Ratio shows that the 5 % level of F is 3 ·1 and the I % level 4 '9. 
Hence, our observed value for F is well below the 5 % level and 
therefore not significant of any departure from our Null Hypo
thesis. Our investigation has not succeeded in demonstrating con
vincingly that there is any difference between the packages in 
regard to price appeal. There may be such a difference, but fur
ther data would have t be collected to remove our scepticism in . 
the matter. 

We shall now bring in the control chart technique dealt with in 
Chapter 11 to throw further light on the Analysis of Variance 
technique. Our Table of Analysis of Variance gave us a Variance 
Estimate based on 20 degrees of freedom withiQ samples equal to 
213·2. The Variance Estimate based on 3 d.f. between samples 
was 540'0. According to our Null Hypothesis (which the data 
failed to refute) these are independent estimates of the variance in 
a common parent population. With the Null Hypothesis still 
standing, we may pool our estimates together based on 20 + 3 = 23 
d.f. We do trus by dividing the total sum of squares by the total 
degrees of freedom and get 

V = .tH-4. = 256 

The standard deviation of our hypothetical parent population is 
given by the square root of the variance, i.e. 

u = \/i56 = 16 
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Now the standard deviation for the averages of samples of n items ' 
drawn from a population whose standard deviation for the in
dividual items is u is given by u,vli. In our case then, the standard 
Jeviation for the averages of our samples of six customers will be 

16· v6 = 6·5. Now we have already learnt that there is only about 
one chance in twenty of a deviation of more than two !'tandard 
deviations from the average and only about three chances in II 

Ihousand of a deviation of more than three standard deviations 
from the average. Hence we only need to know the grand average 
and the sample averages in order to be able to plot a control chart 
for the sample (package) averages. 

. .... 
'" u 
'" Z ....... 

~o ACT I ON x'" e ~ WARNING 
'" 

10 
"' .... • • v~ bO 

'" . 
(5 ... 

50 a W.e.RNING w w .., ... 
~O ACT I ON « < 

'" :l: 2 3 4 ... -
> :;; 

PACKAGE IWMSER « w 

Fig, 99. Control Chart for analy~is o(variancc in a markel research problem 
on package appeal 

The reader can quickly verify for himself that the grand average 
is 6Od, and that the sample averages were 

Package 1 
Package 3 

68d. 
66d. 

Package 2 470. 
Package 4 59d , 

The Warning Limits for our control chart will be at 

60 ±2(6'5) = 00 :!: 13 

The Action Limits will be placed at 

00 ± 3(6'5) = 60 ± 19 ,5 
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The data are shown plotted in the control chart in Fig. 99. It will 
be seen that the points are quite well in control, it not being sur
prising that one point out of four should lie on the one chance in 
twenty limits. 

The previous examples have been concerned with data classi
fied according to a single criterion, e.g. type of package. Our next 
example will deal with data which are classified according to two 
criteria. Suppose a certain company had four salesmen, A, B, C, 
and D, each of whom was sent for a week into three types of area : 
country area, C, outskirts of a city, 0, and shopping centre of a 
city, S. Their takings in pounds per week were as shown in the 
table. 

Salesmen 

- - - ---_--l- I 
A B C D Districl 

totals 
_ - - - ---------- - -

I D 
C

1 
i 30 70 30 30 160 s 
t 
r 0 80 50 40 70 240 
i 
c 
t 

S 100 60 80 80 320 
--- ---

Salesmen totals 210 180 150 180 

We can make a considerable saving in computational effort in 
this example by putting the data into 'coded form'. We have 
already had a simple case of coding when we reduced each item 
by a constant amount. There is another trick we can use, namely: 
to divide all items by a constant amount. What effect will this 
have on the variances? Evidently, if we divide each item by some 
nl;lmber, c, then since the variance is calculated from the squares 
of the items the computed value of the variance in the coded data 
will be equal to the true variance divided by the square of the con
stant divisor, c. However, since our significance tests are carried 
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out in terms of the ratio of variances, it is evident that the sig
nificance tests will be unaffected when all the items are divided by 
a constant amOWlt. We thus get the following rule: 

In carrying out all analysis oj variance, we may code the data 
by addition, subtraction, multiplication or addition by constant 
amounts without in any way disturbillg the significance tests. 

This rule will be of tremendous assistance in our example. Let 
us code the data by (a) subtracting £50 from each of the takings 
and (b) dividing the result by 10. Thus, if we denote any actual 
takings by x, then the corresponding code value will be 

x-50 
x'= l0 

Reducing the table of data to coded form, we get: 

I I 
I 

Salesmen 

r-A ! B ~TD District totals 
__ I_-

Type of C - 2 2 - 2 - 2 - 4 
district 0 3 0 -I 2 4 

S 5 1 3 3 12 

Salesmen totals 6 3 0 3 Grand Total =12=T 
Nwnber of items = 12=N 

. . T2 12 x l2 
The CorrectlOn Factor will be N = --u- = 12 

Betweell Salesmen Sum oj Squares. We find the sum of the 
squares of the salesmen totals, djvide by the number of items that 
went to make up'each salesmen total, 'and finally subtract the cor
rection factor. We get 

t[62 +32 +02 +32] -12=¥ -12=6 
Between four salesmen there are 3 degrees of freedom. 

Between District Slim oj Squares. We find the sum of the squares 
of the district totals, divide by the number of items that went to 
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make up each district total, and finally subtract the correction 
factor. We get 

tf( -4)2+42+122] -12=.!p- -12-32 

Between three districts there are 2 degrees of freedom. 
Total Sum of Squares. We find the sum of the squares of all the 

items in the table and subtract the correction factor. We get 
[( - 2)2 +22 +( - 2)2 +( - 2)2 +32 +02 +( -1)2 + 

22 +52+ 12+32 + 32] -12 = 74 - 12=62 

Between 12 items there are II degrees of freedom. 
Let us now collect our results together in a Table of the Analysis 

of Variance. 

TABLB OF ANALYSIS OF VARIANCE 

Source Sum of 

I 
d.f. 

I 
Variance 

squares estimate 

Salesmen 6 3 2 

Districts 32 2 16 -
Residual 24 6 4 

Total 62 11 

The reader will notice that besides the components of variation 
which we calculated, the table contains an extra entry under the 
title • Residual' . Out of a total sum of squares equal to 62 the 
salesmen and district sources only accounted for 32 + 6 ~ 38. This 
left still to be accounted for a sum of squares of magnitude 
62 - 38 - 24. This sum of squares which is a measure of the varia
tion not explained by salesmen and district effects is entered as 
• Residual'. Its degrees of freedom are the degrees of freedom not 
accounted for by salesmen and district effects. 

Suppose DOW we make the Null Hypothesis that all the sales
men are equally good (condition that only obtains in a seller's 
market, but then applies with a vengeance), alld that, moreover, 
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it matters not at a11 whether we send our salesmen into country 
districts, shopping centres, or outskirts (the sort of condition that 
might obtain for all practical purposes either in a slump or in the 
off-season in a highly seasonal trade). Under stich circumstances 
our three independent estimates of variance are all estimates of 
the variance of a common parent population where variability 
exists for reasons other than salesmen and district effects. They 
should therefore appear as compatible estimates under Snedecor's 
Variance Ratio Test. It is at once evident that the Variance Esti
mate based on the Salesmen degrees of freedom is not significantly 
greater than the Residual Variance Estimate. The reader can 
easily see for himself that if we compare the Districts Estimate 
with the Residual Estimate we get a Variance Ratio of F = 4, there 
being 2 degrees of freedom with the greater estimate and 6 degrees 
of freedom with the lesser estimate. Tables of the Variance Ratio 
give the value of the 5 % level of Fas approximately 5, and the 1 % 
level as approximately I I. Our calculated value is not sufficient, 
therefore, to upset the Null Hypothesis. It would not be un
reasonable - ifwehad no more to go on than these data - to believe 
that the salesmen were equally capable and that all districts were 
equally profitable to work. In order to establish the contrary of 
either of these propositions on a factual basis, we should need 
further data. 

It is convenient at this point to look further into the precise 
nature of the' residual' term in the previous example. Returning 
to our table of coded data we can quickly extract the following 
information: 

Salesman's average 
A 
2 

C 

Salesmen 
B C 

o 

District 
o 

District average - J 

Grand average =: J 

S 
3 

D 

By subtracting the grand average from each of the salesmen's 
averages we get the amount by which each salesman's average 
departs from the grand average. A positive sign iodicates that his 
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average was above the grand average, a negative sign that his 
average was below the grand average. 

DISCREPANCIES BETWEEN SALESMEN'S AVERAGES AND 
GRAND AVERAGE 

Discrepancy 
A 
1 

Salesmen 
B C 
o -1 

D 
o 

In like manner we can arrive at the following: 
DISCREPANCIES BETWEEN DISTRICT AVERAGES AND 

GRAND AVERAGE 

District 
COS 

Discrepancy - 2 0 2 

If, now, we return to our table of coded takings, and subtract 
from each entry (being very careful about signs + and -) the dis
crepancy between its own salesman's average and the grand 
average, we shall have removed the specific salesmen's effect. The 
result will be : 

A 
C - 3 
0 - 2 
S 4 

B 
2 
o 

C 
- I 

o 
-l 

D 
- 2 

2 
3 

Next we go through this table subtracting from each item (again 
being careful about signs) the discrepancy between its own dis
trict average and the grand average, in order, finally, to remove 
the specific district effect. The result this time is : 

ABC D 
C - I 4 1 0 
C 2 0 0 2 
S 2 - 1 2 1 

The sum of squares calculated from this table will be the sum of 
squares introduced by variation other than that due to salesmen 
and district effect and should therefore equal what we have called 
the' Residual' sum of squares. We compute the sum of squares by 
finding the sum of the squares of the items and subtracting the 
correction factor. We get 
[( - 1)2 +42 +)2 +02 +22 +02 +'02 +22 +22 + 

( .- 1)2 + 22 + J2] - 12 =36 - 12 ~ 24 
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This agrees with what we found before. A residual of the type we 
have just computed is called, for reasons which will later be 
apparent, the Interactioll between the effects A and B, and is de
noted by the symbol A x B. It is one of the great merits of Analysis 
of Variance procedures that such interaction effects can be at 
once estimated and tested for. They come out naturally in the 
wash. 

Before leaving tlus example, let us look at the data in control 
chart form. The residual variance estimate corresponds to a 
population standard deviation (1 = "'4 = 2. The salesmen averages 
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..J 

< 
'" 
w 
o 
< .,; 

b 

~--------------------------ACTION 

------------------------ WARNING 

• ~ .... GRAND 
~ ; Ir-----------~----------.-----AVERAGE 

0 0 
z w 
< 0 
~ 0 
w U 
..J 

~~ 
4 

• 
------------------------WARNING 

r----------------------- AC nON 

A B c D 
SALESMAN 

Fig. 100. Control Chart for analysis of variance in a sales departtnent 
problem (salesmen effect) 
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~ z _) COS 
0_ 

DISTRICT 

Pig. 101. Control Chart for analysis of variance in a sales department 
problem (districts effect) 
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are averages of thFee items, so the standard deviation for these 

averages will be ~3 - 1'15. Keeping in the coded form of the 

data, we should plot warning limits and the grand average plus or 
minus two standard deviations, i.e. at 1 ± 2·3 . Action limits would 
go at the grand average plus or minus three standard deviations, 
i.e. at 1 ± 3·5. The control chart for salesmen's averages is shown 
in Fig. 100. It will be seen that they are in perfect control. In a 
similar way, since the district averages are the averages of four 

items, the standard deviation for these averages will be ~4 = 1, 

and the warning limits will go at 1 ±2, with the action limits at 
1 ± 3. The control chart for district averages is shown in Fig. 101 . 
It will be seen that there is a marked suggestion oflack of control 
in this case. This reflects the fact that, although the variance ratio 
was below the 5 % level, it was approaching it (a value 4 as against 
the 5 % level of 5). 

For our next illustration of the Analysis of Variance technique 
we tum to agriculture. Suppose we wished to investigate the effect 
of five different manurial treatments on the yield of wheat. We 
should take a block of land and subdivide it into plots of equal 
area so that it had the appearance of a chess board with five rows 
and five columns. One of the awkward things about field trials of 
this kind is that the soil in our experimental plot might show a 
systematic variation in fertility apart from any treatment applied 
by us in the course of the experiment. If our block contained a 
highly fertile strip which coincided with the five plots down one 
side of our block and we decided to apply one of our five treat
ments to this fertile strip, then when we found a high yield from 
this strip we should attribute it to our treatment when in fact it 
wa:~ due to the high fertility of the soil before ever we applied any 
manurial treatment to it. To get round this kind of difficulty we 
would be well advised to apply each treatment to five plots out of 
the total of twenty-five, the plot5 being chosen at random in such 
a way that each treatment occurred once and only once in each 
row and column of our chess board. Denoting the five treatments 
by the letters A, H, C, D, and E, one possible arrangement would 
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be that shown in the following diagram. where the numbers arc 
to be takcn as the yields of wheat measured in bushels per acre, 

i I i 
I 

A B C D ! E I I I I I I I 
13 9 21 , 7 I 6 I I i - - - I I ,_---
D E 

i 
A I B ! c I I 

I 16 9 8 I 15 7 
I 

I 

I E I B I C I D A I 
! 10 II 17 8 17 , ---

I 
E I A B , C D 
8 

, 
7 10 ' IS I 7 

C I-D- j E 
I 

A 
I 

B I I II , 9 ' 8 I 15 
I 

II 

i I I I 

For convenience in computing we shall code the yields by sub
tracting 10 bushels per acre in every case, The coded data are 
then as shown: 

I I I I 

A~-C jE 
~_- I _1_1 - 3 1~ 

~ £1 ; ~3 :; 
C D E A 
7 - 2 0 7 

, -
ABC D 

-21 5 -3 0 - 3 
CIDE A B 

I 1-11 - 2 

Column Totals 2 

Treatment Totals { ~ 
8 
B 

-5 

9 
C 

25 

5 1 

-1 7 
D E 

- 10 -10 

Row Totals 

6 

5 

13 

- 3 

4 

Grand Total = T", 25 
Number of items "" N = 25 

T2 
Correction Factor IV = 25 
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The Analysis of Variance then proceeds as follows: 
Between Column Sum oj Squares. Each column total is the sum 

of fiv~ items. Divide the sum of the squares of the column totals 
by the number of items going to make each total and subtract the 
correction factor. We get 

t[22 + 82 +92 +( _1)2 + 72] -25 = 14 ,8 with 4 d.f. 
Between Row Sum oj Squares. Each row total is the sum of five 

items. Divide the sum of the squares of the row totals by the 
number of items going to make up each row total and subtract the 
correction factor. We get 

t[62+52+ 132+( _3)2+42] -25=26 with 4 d.f. 
Between Treatment Sum oj Squares. Each treatment total is the 

sum of five items. Divide the sum of the squares of the treatment 
totals by the number of items going to make up each treatment 
total and subtract the correction factor. We get 

H252 +( - 5)2 + 252 + ( - 10)2 + ( - 10)2] - 25 =270 with 4 d.f. 
Total Sum oj Squares. We find the sum of the squares of all thr 

items in the table and subtract the correction factor. We get 

TABLE OF SQUARED VALUES 

9 1 121 9 16 
1 ..4 25 9 36 
1 49 4 0 49 
4 25 9 0 9 
1 1 4 25 1 

Totals 16 + 80 + 163 + 43 + 111 

Hence, subtracting the Correction Factor, we find 
Total Sum of Squares = 413 - 25 =388 

=413 

Since there are altogether 25 items, there is a total of 24 d.f. 
TABLE OF ANALYSIS OF VARIANCE 

Source 

I 
Swnof d.f. Variance 
squares estimate 

Colu~ 
I 

14 ·8 4 3·7 
80lwiiIm 26 4 6·5 
Treatments 270 4 67·5 
Residual 77 ·2 12 6'4 

Total I 388 I 24 I 
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The residual sum of squares is that portion of the total sum of 
squares not accounted for by row, column, or treatment effects. 
Inspection of the table of the Analysis of Variance shows at once 
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Fig. 102. Control Chart for latin square analysis on manuriallrealmcnt for 
wheat 
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Fig. 103. Control Chart for row, column, and treatment averages in latin 
square analysis on manurial treatments 

that there can be no question of the Estimates of Variance based 
on row or column degree~ of freedom being significantly greater 
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than the residual variance estimate. There-is therefore no reason 
to suppose that there is any significant change in fertility of the 
soil across the rows or columns. Any apparent variation is simply 
a reflexion of those other causes of variation which we normally 
describe as experimental error. The reader may confirm for him
self, however, that the treatment effect is highly significant as 
judged by the F test. We are justified, therefore, in believing that 
treatments A and C really do give a higher yield than other treat
ments, and may proceed to calculate confidence limits for their 
yields in bushels per acre. 

This time we shall plot the individual plot yields in a control 
chart. The residual variance is 6·43 which gives us a standard 
deviation V6-4 - 2'5 bushels per acre for individuai plot yields. 
The plot yields are shown in Fig. 102 according to the three ways 
oflooking at them: (a) by rows, (b) by columns. (c) by treatments. 
Compare this with Fig. )03. 

An extremely useful design in Analysis of Variance is the so
called' Factorial'. In order to illustrate this design type we shall 
take a fairly complex example so that the reader has a chance to 
acquire what we may well term the ' routine' of the analytical 
procedure. The example is typical of the situations in which a fac
torial design suggests itself as suitable. Silvered mica condensers 
are manufactured from small mica plates, silvered on each side, 
and finally impregnated with petroleum jelly to keep out moisture. 
The silver is applied to the mica plates in the form of a spray or 
printing ink and the vehicle carrying the silver is then driven off by 
a firing process. Broadly speaking, there are two variables in the 
firing process: temperature and time. The impregnation process 
may well be carried on by immersing the plates in a bath of petro
leum jelly heated to a steady temperature somewhere below the 
'flash point'. For the impregnation process we again have the 
variables, temperature and time. Suppose, now, we wished to in
vestigate what combination of firing and impregnation times and 
temperatures would give our condensers the highest quality as 
measured by the 'loss angle' of the plates (the lower the loss 
angle, the better the condensers). To investigate this problem, we 
might choose three likely firing temperatures, three likely firing 
times, three likely impregnation temperatures, and three likely 
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impregnation times. Altogether, our chosen conditions may be 
arranged into 3 x 3 x 3 x 3 -81 different combinations, each 
of which constitutes a different manufacturing process. Suppose 
we decided to make up experimentally three condensers according 
to each of these 81 different processes, then there would be al
together 243 condensers to be made. There is no special reason 
why we should have chosen three levels for each of our con
ditions; we might, for instance, have had two firing times, three 
firing temperatures, four impregnation temperatures, and six 
impregnation times. Neither need we have made each process give 
us three condensers. We could have made only one condenser 
with each set of conditions or we could have made a dozen. We 
have a perfectly free hand to arrange our experiment in accord
ance with what seems good to us on technological grounds and 
economic in terms of the magnitude of the work involved in the 
experiment. The principles of analysis are always exactly the same 
as we shall indicate in our example. 

We shall use the following notation: 

Firing temperatures: H10 H 2, and 
H3 

Firing times: T .. T2, and T3 h
I mpregnation temperatures: JI';, 

h2' and h3 
Impregnation times : /10 (2, and 13 

The higher the subscript the 
longer the time or the 
higher the temperature 
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TAKE NOTICE 

The reader is asked to study the left-hand pages only, in order 
to see the formation of the different tables, until he reaches the 
bottom of page 410. He should then work his way back from the 
bottom of page 411, keeping to the right-hand pages and follow
ing the numbering of the calculations. Each calculation refers to 
the table which lies opposite to it on the left-hand page. The 
author apologizes for introducing Chinese methods, but the 
reader will soon see the advantage of the layout in making the 
computational procedure clear. 
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CALCULATION 16 

Total Sum of Squares and d.f and Residuals 

Sum the Squares of all the 243 items in Table A2 (page 397) and 
subtract the Correction Factor. The total Sum of Squares is 

[72 + 52 + 92 + 52 + .. . + ( - 1)2-1- ( - 3)2 + ( - 2)2] - 108 = 1,856 

Between the 243 entries in Table A2 there will be a total of242 d.f. 

Residuals (Sum of Squares and d.! associated with replication) 

Subtract from the Total Sum of Squares the total of all the Sums 
of Squares found in Calculations 1- 15. 

Residual Sum of Squares = 1,856 - (92 + 295 + 1,027 + 2) 
- (5 + 15 + 55 + 11 + 22 + 2) - (7 + 28 + 10 + 10) - 17 - 307 

Subtract from the Total d.f. the total of all the d.f. in calclliations 
1-15. 

Residual d.f. = 242 - (4 x 2 + 6 x 4 + 4 x 8 + 16) = 162 d.f. 

CALCULATION IS 

T x H x t x h Interaction Sum of Squares and d.! 

Divide the sum of the squares of the 81 entries in Table B by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the T, H, t, and II effects, the T x H, Txt, 

. T x II, H x t, H x h, and t x II ' first order' interactions, and the 
H x I x II, T x t x h, T x H x h, and T x H x t ' second order' inter
actions. Subtract the Correction Factor. 

H202 + 152 + 202 + ... + ( - 5)2 + ( - 2)2] - (295 + 92 + 2 + 1,027) 
- (22 + 11 + 5 + 3 + 15 + 5) - (10 + 7 + 28 + 10) -108 = 17 

The T, H, t, and h effects each had 2 d.f. so the Interaction has 
2 x 2 x 2 x 2 = 16 d.f. 
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TABLE CI 

Obtained from Table B by summing over Ir 

) 
TI T2 T3 

-
HI I H2 i H3 HI I H2 H3 HI H 21 H3 ___ 1 _ _ 1 _ _ • ______ 

- - --:-
IJ 33 I 20 I 15 I 1 1- 8 - 9 13 3 I -5 

~ 22 13 1 10 i I I - 10 - 7 ~~r~ 
- --_ .:-

13 27 19 III I 1 \ - 8 - 8 4 1 9 \ -5 

Explanalion. The entry 33 under TIH\/, is obtained from the left-hand 
column ~o under TIHIII in Table B by adding the three values 

10 (each ofwbich is the sum of3 items already). 

3 

Each entry in Ihe above table ;s the sum of9 loss angles. 

TABLE C2 

Obtained from Table B by summing over T 

HI Hz H3 

II 12 13 11 ~_/3 II 12 13 

r-- ----- 1-
hI 46 38 38 28 34 27 20 20 

r-- --- I-
hz 10 10 2 0 -5 - 8 -11 - 8 

~-=;-~~~I-=-;;!-=;-
--- I-

- 18 - 14 . - 14 
! 

Explanation. Each entry is obtained from Table B by adding together 
the values found there for each treatment combination shown in 
Table C2, e.g. 46 .. 20+9 + 17. 

Each entry in Ihe above lable is the sum 0[9 loss angles. 
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C ALCULATION 14 

T x H x t Interaction Sum of Squares and d.f. 

Divide the sum of the squares of the 27 items in Table CI by the 
number of items going to make up each entry. Subtract the Sums 
of Squares calculated for the T, H, and t effects. Subtract the 
Sums of Squares calculated for the T x H, T x t, and H x t Inter
actions. Subtract the Correction Factor. 

,\ [33 2 I- 202 + 152 + .. , + 92 + ( - 5)2J 
- 295 - 92 - 2 - 22 - II - II - 108 = 10 

The T, H, and t effects each had 2 d.f.. so the Interaction had 
2 x 2 x 2 = 8 d.f. 

C A LC ULATION 13 

H x t x II Interaction Sum 0/ Squares and d.! 

Divide the sum of the squares of the 27 entries in Table C2 by 
the number of items going to make up each entry. Subtract the 
Sums of Squares calculated for the H, t, and h effects. Subtract 
the Sums of Squares calculated for the H x t, H x h, and t x h 
Interactions. Subtract the Correction Factor. 

t [462 + 382 + 382 + ... + ( - 14)2 + ( - 14)2) -
92 - 2 - 1,027 - 3 - 15 - 5 - 108 - 10 

The H, t, and" effects each had 2 d.f. , so the Interaction had 
2 x 2 x 2 = 8 d.f. 
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TABLE CJ 

Obtained from Table B by summing over I 

TI T2 TJ 

HI , H2---;;: 111 I Hz HJ HI I Hz H3 - -------- 1- -
hi I 55 I 43 38 27 18 17 , 40 33 12 
------------- -----

"2 22 2 6 - 3 - 14 [- 16 3 4 -17 
_ ----------------1-

h3 5 7 I - 8 -21 - 30 /- 25 - 12 -11 - 13 

Each entry is Ille sum 0/9 loss angles. 

TABLE C4 

Obtained from Table B by summing over H 

I TI Tz T3 

11 Iz _13 _ _ _ 11_1~ 13 II 12 13 

- ---- I-
hi 51 39 46 I 21 22 19 29 29 27 

- --------- - 1-
h2 16 7 7 -11 - 13 - 9 - 3 2 - 9 

1-----------
-25,-25 

---=;-1- 10 ItJ 1 - I 4 -26 - 15 

Each enlry is Ihe sum 0/9 loss angles. 
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CALCULATION 12 

T )( H )( h Inferaction Slim of Squares and d.f 

Divide the sum of the squares of the 27 entries in Table C3 by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the T effect, H effect, and h effect. Subtract 
the Sums of Squares calculated for the T )( H , T )( II, and H )( II 
Interactions. Subtract the Correction Factor. 

t[552 + 43 2 + 382 + ... + ( - 11)2 + ( -13)2] 
-295 - 92 -1,027 - 22 - 5 - 15 - 108 ~ 28 

The T effect, H effect, and h effect each had 2 dJ., so the Inter
action dJ. =2 )( 2 )( 2 =8 d.f. 

CALCULATION 11 

T )( t )( h Interaction Sum of Squares and d.f 

Divide the sum of the squares of the 27 entries in Table C4 by the 
number of items going to make each total. Subtract the Sums of 
Squares calculated for the T effect, t effect, and h effect. Subtract 
the Sums of Squares calculated for the Txt. T x h, and t x h 
Interactions. Subtract the Correction Factor. 

}[51 2 + 392 + 462 + ... + ( - ) 1)2 + ( - 10)2] 
-295 -2 -1,027 -11 -5 -5 -108 = 7 

The T effect, t effect, and h effect each had 2 d.f., so the Inter
action d.f. = 2 x 2 )( 2 = 8 d.f. 
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TABLE 01 

Obtained by summing Table C2 over h 

HI H z H3 

II I 12 I) II I 12 13 'I 12 13 

~!~-;1-1-5 -1-1-7-
-

20 I -5 - 2 

Nole. The table could also be formed from Table Cl by summing 
over T. 

Each enlry is the sum 0/27 loss angles. 

TABLE 02 

Obtained by summing Table Clover t 

T I T2 T3 

HI H2 H3 HI H2 H3 HI Hz H3 
--- - --------------

82 52 36 • 3 - 26 - 24 31 26 - 18 

NOle. The table could also be formed from Table C3 by summing 
over h. 

Eech entry is Ihe sum 0/27 loss angles. 

TABLE 03 

Obtained by sl.!IJllTling Table Clover H 

TI T2 T3 

II 12 13 II 12 13 tl 12 13 
------------------

68 45 57 - 16 - 16 - IS 11 20 8 
I 

NOle. The table could also be formed from Table C4 by summing 
over h. 

Each enlry is lhe sum 0/27 loss angles. 
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CALCULATION 10 

H x t Interaction Sum of Squares and d./. 

Divide the sum of the squares of the items in Table D 1 by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the Hand t effects. Subtract the Cor
rection Factor. 

fr [47 2 + 372 +322 + . .. +( - 5)2 +( - 2)2] - 92 - 2 -108 = 3 

There were 2 d.f. each for the Hand t effects, so the dJ. for the 
Interaction are 2 x 2 = 4 d.f. 

CALCULATION 9 

T x H Interaction Sum of Squares and d./. 

Divide the sum of the squares of the items in Table D2 by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the T and H effects. Subtract the Cor
rection Factor. 

+,[822 + 522 + 362 + .. . + 262 + ( - 18)2] - 295 - 92 - 108 = 22 

There were 2 d.f. each for the T and H effects, so the d.f. for the 
Interaction are 2 x 2 = 4 d.f. 

CALCULATION 8 

T x t Interaction Sum of Squares and d.f. 

Divide the sum of the squares of the items in Table D3 by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the T and t effects. Subtract the Cor
rection Factor. 

n[682 +452 +572 + ... +202 +82] - 295 -2 -108 = 1] 

There were 2 d.f. each for the T and t effects, so the d.f. for the 
Interaction are 2 x 2 = 4 d.f. 
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TABLE 04 

Obtained from Table C4 by summing over t 

TI T2 T3 

hI h2 h3 hI h2 h3 hI h2 h3 
I---- - -------- - - --I-

136 30 4 62 - 33 - 76 85 - 10 - 36 
r 

Note. The table could also be formed from Table C3 by summing 
over H . 

Each entry is Ihe sum of 27 loss angles. 

TABLE OS 

Obtained from Table C2 by si.lIIlJlling over t 

HI H2 83 

hI h2 h3 hI h2 h3 hI h2 I h3 
1---- ------1-122 22 - 28 94 - 8 - 34 67 -27 - 46 

NOle. The table could also be formed from Table C3 by summing 
over T. 

Each entry ;s the sum of 27 loss angles. 

TABLE 06 

Obtained from Table C2 by summing over H 

t. t2 t3 '" _~I h, 
hI h2 h3 hI h2 h3 

I-- -- I-

101 2 -40 90 -4 -37 92 -II -31 

Note. The table could also be formed from Table C4 by summing 
over T. 

Each entry is the sum of 27 loss angles. 
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CALCULATION 7 

T x h Interaction Sum of Squares a/l(/ d.f. 

Divide the sum of the squares of the items in Table D4 by the 
number of items going to make each entry . Subtract the Sums of 
Squares calculated for the T aDd II effects. Subtract the Cor
rection Factor. 

'b -[1362 + 302 + 42 + 63 + ... + ( - 10)2 + ( - 36)2] 
- 295 - 1,027 - J 08 = 5 

The Teffect had 2 d.f. and the II effect also 2 d.f. The d.f. for the 
Interaction is obtained as the product of the main effect 
d.f. = 2 x 2 = 4 d.f. 

C AJ.:CULATlON 6 

If x Ir Interaction Sum of Squares and d.f 

Divide the Sum of the squares of the items in Table 1)5 by thc 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the H and II effects. Subtract the Cor
rection Factor. 

n [1222 + 222 + ( - 28)2..1" " + ( - 27)2 + ( - 46)2] 
- 92 - 1 ,027 - 108 = IS 

The H effect had 2 d.f. and the II effect also 2 d.f. The d.f. for the 
Interaction is obtained as the product of the main effect 
d.f. = 2 x 2 ~ 4d . f. 

CALCULATION 5 

t x h Interaction Sum of Squares alld d.f. 

Divide the sum of the squares of the items ill Table D6 by the 
number of items going to make each entry. Subtract the Sums of 
Squares calculated for the t effect and II effect. Subtract the Cor
rection Factor. 
;1.,-[1012 + 22 +( -40)2+ . . . +( -11)2 +( -3 1)2] 

- 2 - 1,027 - 108 = 5 

The t effect had 2 d.f. and the Iz effect also 2 d.f. The d.f. for the 
Interaction is obtained as the product of the main effect 
d.f. = 2 x 2 ",, 4 d.f. 

14 
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TABLE £1 

Obtained by summation from Tables 01,03, or 06 

II I 
63 I 

t2 tJ 

49 50 Grand total = T= 162 i for N =243 items 
Each entry is the sum of 81 loss angles. 

TABLE E2 

Obtained by summation from Tables 04, 05, or 06 

! 
hi 

283 

I 
h2 I h3 

-13 -108 Grand Total = T = 162 I for N =243 items 
Each entry is the sum of81 loss angles. 

TABLE E3 

Obtained by summation from Tables 02, 03, or 04 

TI 
-. 

170 

T2 T3 

- 47 39 Grand Total = T = 162 
for N =243 items 

Each entry is the sum of 81 loss angles. 

TABLE E4 

Obtained by summation from Tables 01, 02, or 0 5 

116 52 -6 Grand Total = T = 162 
for N = 243 items 

T2 162 x 162 
Correction Factor == - = - -- = 108 

N 243 -
Each entry is the sum of 81 lou angus. 

N.B. Now start at the bottom of page 411 and follow the calculations 
working backwards tbrough tbe book to page 401 on rigbt-band pages. 
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C Al.CULATION 4 

t Effect Sum of Squares and Degrees of Freedom 

1)ivide the sum of the squares of the entries in Table EI by the 
number of items going to make each entry (= 81). Subtract Cor
rection Factor ( = 108). 

*[632 + 492 + 502] - 108 = 2 
Between three levels of t there are 2 degrees of freedom. 

CA LCULA nON 3 

h Effect Sum of Squares and Degrees of Freedom 

Divide the sum of the squares of the entries in Table E2 by the 
number of items going to make each entry ( = 81) . Subtract Cor
rection Factor ( = 108). 

tr[2832 + ( - 13)2 + ( - 108)2] - 108 = 1,027 

Between three levels of II there are 2 degrees of freedom. 

CALCULATION 2 

T FjJect Sum of Squares and Degrees of Freedom 

Divide the sum of the squares of the entries in Table E3 by the 
number of items going to make each entry ( = 81). Subtract Cor
rection Factor ( = 108). 

ih-[1702 +( - 47)2 - 392] - 108 = 295 

Between three levels of T there are 2 degrees of freedom . 

C ALCULATION t 

H Effect Sum of Squares and Degrees of Freedom 

Divide the sum of the squares of the entries in Table E4 by the 
number of items going to make each entry ( = 81). Subtract Cor
rection Factor ( = 108). 

tr[1162 + 522 + ( - 6)2] - 108 = 92 

Between three levels of H there are 2 degrees of freedom. 



412 l'ACTS FROM FIGURES 

Collecting our results together, we form our Table of the 
Analysis of Variance, dividing each sum of squares by its appro
priate number of degrees of freedom in order to form the column 
headed 'Variance Estimate '. 

TABLE OF ANALYSIS OF VARIANCE 

i I 
I I 

Nature of effect Source Sum of I d.f. Variance 
\ 

\ 

I 
squares I estimate 

i -

I T ••• 295 2 '147'5 
Main factors I H ... 92 2 46 

/ 2 2 1 
II ••• 1,027 2 513'5 

TH • 22 4 5·5 
Tt 11 4 2·75 

1 nteractions be· Th 5 4 1·25 
tween pairs of HI 3 4 0 ·75 
factors HII 15 4 3 '75 

th 5 4 1·25 

Interactions be· H/ h 10 8 1·25 
tween triplets of - Tt h 7 8 0 ·87 
factors THh 28 8 3'5 

THI 10 8 1'25 

Interaction of all I 
\ 

factors i THlh 17 16 1·06 

Replication I Residual 307 162 

I 
1·90 I , 

Total 1,856 I 242 
I 

We make a Null Hypothesis that all the effects named in our 
Table of the Analysis of Variance have a zero magnitude, so that 
in effect all the variance estimates listed in the last column are 
independent estimates of the same quantity estimated by the 
residual variance, viz. essentially an estimate of the magnitude of 
the 'experimental error.' The F test tells us whether the variance 
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estimate based on any of our named sources of variation (i.e. 
possible variation) is so much greater than the variance estimate 
based on the residual (experimental) error that the observed 
variance ratio is very unlikely to have arisen by chance. If the F 
test gives a significant result, then our Null Hypothesis breaks 
down. It will be plain that in such case the variance estimate is 
not simply an estimate of the experimental error variance, but 
of that variance plus an extra variation introduced by the fact 
that in our experimental design we made the experimental 
conditions in question vary (e.g. if the Firing Temperature 
Variance Estimate proves significant, then that estimate includes 
not only experimental error but also the variation induced by 
the variation in Firing Temperature which was part of the 
experimental design). 

Now it may be shown that if a second order interaction is sig
nificant it is not valid to test any first order interaction related to 
the significant second order interaction against the residual. For 
example, if the interaction H x T x t proved to be significant, then 
it would not be permiSSible to test either the H x T, the H x t, or 
the Txt interaction against the residual. Likewise, if a first order 
interaction were to prove significant, then we should not be justi
fied in testing any of the main factor effects related to that inter
action against the residual. For example, if the H x T interaction 
were significant, then it would not be permissible to test either 
the H main effect or the T main effect against the residual. We 
shall say later what action it is proper to take when interactions 
arise that are significant. 

It follows from what we have been saying that when we come 
to carry out the F test for the various effects in our Table of the 
Analysis of Variance we must first of all do the test for the highest 
order interactions - in this case the third order interaction, 
H x T x h x t. Since the variance estimate associated with this is 
less than the residual variance estimate, there is no point in testing 
whether it is significantly greater. We pass, therefore, to the 
second order interaction group. The only one here with a chance 
of being significantly greater than the residual is the T x H x Iz 

. . h' h . . . F 3'50 18 Ii mteractlOn, w IC gIves a vanance ratio = 1 '90 ~ . 4 or 8 and 
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162 d.f. When we consult the Tables of the Variance Ratio, 
however, this proves to be non-significant. 

It may have occurred to the reader that, since the third and 
second order interactions have proved non-significant, then ac
cording to our Null Hypothesis they are estimates of Residual 
Error just as much as the effect specifically named as such in our 
table. We are therefore justified in pooling the second and third 
order interaction sums of squares with the residual sum of squares 
and dividing by the sum of the relevant degrees of freedom in 
order to get an improved estimate of the residual variance based 
on a greater number of degrees offreedom. Since we already have 
a large number of degrees of freedom for error in our present 
case, there is little to be gained apart from the reader learning 
that it can be done and how to do it. Since this is a very laudable 
objective, however, we shall do it for the reader's benefit before 
going any further. 

Sum of squares d.f. 
JO 8 
7 8 

28 8 
10 8 
17 16 

307 162 

Totals 379 210 

Revised Residual Variance Estimate =ffi =' 1'8 

Let us now consider the first order interactions. The Table of 
Analysis of Variance tells us at once that only three interactions 
could possibly prove significant, viz. the H x h, T x t and T x H. It 
is easy to confirm that F is not significant at the 5 % level for 
either H x h or T x I with 4 and 210 d.f. For the T x Hinteraction 

we find F ... i :~ ... 3-1 with 4 and 210 d.f. which the tables show 

to be significant at the 5 % level though not at the 1 % level. We 
can proceed no further until we have examined this. 

Suppose, as suggested by the F. test, that there is such an inter
action . What does it mean? Quite simply that the Tand H effects 
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Fig. 104. Graphical representation of interaction between firing tempera
ture and firing time in condenser problem (ref. table 02) 

Co) 

Fig. 105. What Fig. 104 might have looked like in the absence of inter
action 

are not independent in their effect on loss angle of the condensers. 
Some combinations of time and temperature are unexpectedly 
better or worse than we should expect. In Fig. 104 (a) and Fig. 
104 (b) we see the interaction in graphical form by plotting the 
entries of Table D2.1n the absence of interaction in (a) we should 

. expect all three levels of T to follow the same kind of trend as we 
pass from HI to H J• The trends need not all be straight lines, but 
they should all resemble each other. They might, for instance, 
have looked something as shown in Fig. 105 (a). Similar remarks 
apply to the (b) section of the diagram. 

If we felt that such an interaction might occur in reality, we 
should then have to do repeat analyses of variance taking the 
interaction into account. We could do this by doing three separate 
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analyses on the original data: one for all the entries in Table A2 
which were recorded at the level Th another for the entries re
corded at level Tz, and a third for the entries recorded at level T3• 

This process we should call a • breakdown analysis by firing times'. 
Each of the analyses in the breakdown would be a three-factor 
analysis. Alternatively (or as well, if we thought it would be in
structive, as.it sometimes is) we could do a breakdown analysis 
by firing temperatures, making three-factor analyses at each of 
the three firing temperature levels instead of the three firing times. 
Conclusions arrived at in the sectional analyses of a breakdown 
analysis are valid for the level of the variable for which they are 
carried out. 

In our particular problem the interaction in question does not 
seem a very likely one. This is best seen in Fig. 104 (b) where the 
interaction suggests that a long firing time at a high temperature 
gives very good results (low loss angle) while a long firing time at 
a moderate temperature shows a marked deterioration in quality 
compared with a moderate time at a moderate temperature. As 
technologists we reject such a suggestion. This illustrates a point 
which cannot too ofte!} be stressed: that statistics need more than 
significance tests for their proper interpretation. It is inherent in 
the nature of experiments that odd-looking results will appear 
from time to time. Just as a new-born baby without experience of 
the world might regard the wickedness of a Borgia as something 
reasonably to be expected among popes, so the pure statistician 
would be unable to spot the oddity of our interaction. We must 
never lose sight of the fact that statistical techniques are in
struments in our hand and -like all instruments of measurement 
- constantly to be suspected by the investigator of playing him 
false. 

Having got rid of the necessity for doing a breakdown analysis 
in this case, we are now ready to look at the main effects. Testing 
these against the residual variance estimate, we find that all of 
them with the exception of I, the impregnation time, are signifi
cant. In fact, they all exceed the 0·1 % level of F. It will be seen 
that they have been marked in the table of the analysis of variance 
with three asterisks ( ••• ) to indicate this level of significance. 
Two asterisks (U) would have indicated significance at the 1 % 
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level, while a single asterisk ("') denotes significance at the 5 % 
level. This is a very handy way for indicating which effects are 
important and how important they are. 

To interpret the results, we turn to Tables E2, E3, and E4, where 
the main effects are displayed. Table E2 teHs us that in order (0 

get a low loss angle we should use the highest impregnation tem
perature in the range investigated. If there is a reasonable margin 
between this temperature and the flash point of the petroleum 
jelly it might be worth investigating whether the impregnation 
temperature could with advantage be raised even higher. Table 
£3 tells us that the moderate firing time is the best to use to get a 
low loss angle. The technician would also look out for possible 
reasons for the poorer results at the other times. At the lower 
firing time the reason might be that the vehicle in which the silver 
was carried in the spray paint or printing ink was not completely 
removed in the firing. The appearance of the plates might give 
some clue about the reasonableness of this assumption. The 
poorer result with the longer firing time is certainly obscure. Our 
investigation of the T x H interaction suggested that long firing 
ti me with high temperature gave very good results. It does not 
seem likely, therefore, that prolonged baking is causing any de
terioration in the mica itself. Table E4 tells us that the best results 
will be obtained at the higher firing temperature. Again, we might 
bear in mind the possibility that an even higher firing temperature 
than any tried in the experiment might be a paying proposition. 
This would apply particularly if our firing cycles were rather long, 
since a higller temperature might well give a good result with an 
even shorter firing cycle than the present moderate onc. A con
trolling factor here would ultimately be the temperature at which 
the mica would disintegrate, unless the duration of the firing 
cycle fell sufficiently rapidly as the temperature was raised. The 
fact that the impregnation time effect, t, proved non-significant 
tells us that it matters little what the duration of impregnation is, 
provided it is not less than our minimum. Table El certainly 
shows a tendency for the loss angle to fall as the impregnation 
time is prolonged, but this was not sufficiently marked to prove 
significant. 

Our interim recommendation, then, would be that firing should 
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be at the highest temperature H3 for the medium duration T2• 

This should be followed by impregnation at the highest tempera
ture "3 and the shortest impregnation cycle 11 might be used as a 
time saver, though no harm would be done if the impregnation 
cycle were allowed to overrun. We should recommend that con
sideration be given to further investigation into the possibility of 
raising both firing and impregnation temperatures. 

We have worked through this analysis in some detail, thinking 
aloud to ourselves, more or less as the statistician would as he did 
the analysis, in the hope that it may give the reader some insight 
into the spirit in which statistical analyses are carried out in prac
tice. To conclude we shall show the data in control chart form for 
the four main effects. The residual variance we have estimated as 

I ·8 which corresponds to a standard deviation of Cl = V f8 = I '4 
approximately. The entries in the four E tables are each the totals 
of 81 loss angles and correspend, therefore, to average values as 
shown in the following table (averages to one decimal place): 

The standard deviation of the averages of samples of 81 items 
drawn from a population with standard deviation 1·4 will be 

_1/~ = 0,16. Working in the coded data all the time, we find the 
v 81 
grand average for 243 items with a grand total of 162 to be 
Us ~ 0 ·67. The Warning Limits for our control chart for sample 
averages will therefore be set at 0 ·67 ± 0'32 and the Action Limits 
at 0·67 ± 0·48. Fig 106 shows the control chart with the averages 
plotted. It will be noted that the control chart bears out the 
analysis of variance (it is, of course, an analysis of variance in 
another form), 

In order to exhibit our interaction T x H in control chart form. 
we argue as follows : Each entry in Table D2 is the sum of 27 loss 
angles; dividing each entry by 27 we get the following table of 
average values (1st decimal place). . 
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I 1 

TI Tz I T3 

HI I Hz H3 HI I Hz I H3 i HI I Hz I H3-

~7.;-~-~r~l -l'O-1" - o'9 1-1-'1-i~l-o'7 
I . I I ! 

If, now, from each entry we subtract; 

(a) The discrepancy (.~T -1') between the average value of the T 
level in question and the grand average and 

(b) the discrepancy (.til - £) between the average value of the 
H level in question and the grand average; 

then we should expect the modified entries to be distributed about 

the grand average with a standard deviation = ~ = 0·27. The 

control chart limits would thus be 

Warning 0'67 ± O'54 
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Fig. 106. Conttol Chart for analysis of variance of main effects' in con
denser 108s anale problem 
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The subtraction of (XT - 1 ) and (XH - -'~) in algebraic form is 

- (XT -1) - (.\'H - 1) = -XT - Xli +21 

Hence, what we have to do is to subtract from each entry the 
average value for its T level and the average value for its H level 
and, finally, add twice the grand average. The T level and H level 
a verages are easily found from Tables E3 and E4. The reader may 
like to confirm for himself that the points plotted in the control 
chart in Fig. 107 are correct. It will be seen that the control chart 
agrees with the Analysis of Variance in showing the interaction a 
suspicious (5 % level) rather than well established. 

'" w _, 
l.) 
z ... 
'" '" o 
_, I 

.... 
o 

r---------------------------__ ---------ACT ION _________ __________ !£.!:!t._T.~2 _______ WAR:, I NG 

T, H, 

• T,H. T2H, GRAND 
T, ~2. T,H,. A\lERAGE \,H. T.H • 

------------------------------WARNING 
~ 0r-_______________________________ IIni ON 
... 
'" w 
> ... 
Fig. 107. Control Chart for T x II interaction in condenser analysis of 

variance. This figure should be compared carefully with Fig. 104 

For our next illustration of the Analysis of Variance we take an 
example in regression. Consider the data in the following table 
which shows simultaneous determinations of red blood cell count 
and haemoglobin content for the blood of ten different people. 

In order the more easily to handle the data, we shall put it into 
code form as follows. From each red blood cell count, X, we shall 
subtract 4'60 and multiply the result by 100 to get rid of decimals. 
From each haemoglobin determination we shall subtract 14 ·6 and 
multiply the result by 10. Mathematically expressed, the coding is 

Xc - lOO(X - 4'60) 
Yc = JO( Y - 14 '6) 
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where Xc and Yc denote the coded values of X and Y respectively. 

x y 

Red blood Haemoglobin 
cells (millions (grams per 

per cubic 100 cubic 
millimetre) centimetres) 

4·40 13 ·9 
4·39 14·2 
4 ·63 14·2 

4·52 14·5 
4·70 14·6 
4·65 14·8 

4 ·81 14·8 
4·60 15 ·0 
4·91 15·0 

4·86 15 ·2 

The table which follows shows the coded values together with the 
computation of sums of squares and products necessary for the 
computation of the regression coefficient and the correlation 
coefficient. 

X y X 2 y2 X Y 
-20 - 7 400 49 140 
- 21 - 4 441 16 84 

3 -4 9 16 - 12 

- 8 -1 64 1 8 
10 0 100 0 0 
5 2 25 4 10 

21 2 441 4 42 
0 4 0 16 0 

31 4 961 16 124 
26 6 676 36 156 

Totals 47 2 3,117 158 552 
- N = lOitcms 
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The correlation coefficient is given by 

r2=L'x2.L'y2 where L'Xy =L'YX-~ (L'xy)l I L'X.L'Y 

Ex2 o= Ex2 _ (L'X,J2 

l L'y2 ~L'Y2 _ (E[/ 

We have 

2:xy =EXY - l;X;Y = 552 - 471~ ~ = 543 

(1:X)2 47 x 47 
L'x2 ~L'X2 - ]II 0= 3, 177 - ---w- = 2,896 

" (Ey)2 2 x 2 
Ly2 =L'Y2 - -;;r = 158 - To "" 158 

Hence 
. 2_ .(L'Xy)2 _ 543 x 543 - 0,64 

r - L'x2.L'yl - 2,896 x 158 -

Hence I' = v'0-64 = 0 '80 

The Total Sum of Squares 
(L'Y)2 

L'y2 =L'r:_ -~ = 158, as previously 

Regression Sum of Squares 

The portion of the Total Sum of Squares accounted for b: 
regression is 

r2L'y 2 = 0·64 x 158 = 101 

Residual Sum of Squares 

The portion of the Total Sum of Squares not accounted for b: 
regression is 

(l-r2)L'y2= {1 - 0'64)158 = 57 
Alternatively 

Residual Sum ofSquares = 158 - 10J = 57 

Degrees of Freedom 

With N = 10, the Total d.f. = 9 
A regression takes 1 d.f. 
Hence, dJ. for the Residual = 8. 
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TABLE OF ANALYSIS OF VARIANCE 

Source Sum of squares d.f. Variance 
estimate 

--
I Regression r2Xy2 = 101 1 101 

- I I 
Residual I (I - r 2)Xy2 = 64 8 I 8 

I 
Total ! 2'y2 = 158 9 

If we make a Null Hypothesis that r = O, then both our Variance 
Estimates are estimates of Residual (i.e. non-regression) varia-

tion. We have F = 1~1 = 12'6 with 1 and 8 dJ. Tables of F show 

this value of F to be just in excess of the 1 % probability level. We 
conclude that the regression coefficient is significant. 

In · Chapter 16 we said the significance of r could be tested by 
calculating 

• rvW-:::i 
Student s t = . /" 

vi - r2 

with N - 2 = 10 - 2 = 8 d.f. 

0 '8v8 
VI _ 0'64 = 3'8 

Again we find that r reaches the 1 % level. 
The next idea we shall illustrate is that of the Analysis of Co

variation, and for this purpose we shall revert to the Latin Square 
example dealt with on page 390. In that example we were in
vestigating the yield of wheat under five different treatments and 
the Latin Square arrangement with the analysis of variance 
enabled us to remove any specific row and column effects due to 
differing fertility in the soil. The effect of this procedure, in 
general, will be to reduce the residual variation and so increase 
our precision of estimation and sharpen our significance test. 
Now suppose that in the year prior to our experiment the same 
twenty-five plots had been sown with wheat without the applica
tion of the five treatments which entered into our experiment. We 
shall imagine that the yields of the plots are known for this pre
liminary year to have been as shown in the foUowin, table. 
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INITJAL YIELDS OF WHEAT IN BUSHELS PER ACRE (X) 

I 

A 10 B 9 I C 18 D 7 E 5 

D 8 E 7 A 13 B 6 C 14 

B II C 15 D 7 I E 9 I A 15 

E 9 A 13 B 8 C 11 I D 7 

C 9 D 7 
I 

E 7 A 15 
I 

B 9 

Subtracting 10 bushels per acre from each yield. we find the coded 
yields as follows: 

CODED INITIAL YIELDS IN BUSHELS PER ACRE MINUS 10 

A 0 I B - I I C s I D -3 I E - 5 

D - 2 I E -) I A 3 t B - 4 
I 

C 4 

B 1 C 5 I D -3 E - 1 i A 5 

E -1 A 3 I B -2 C 1 I D -3 

C - 1 D - 3 I E -3 A 5 I B - 1 
I 

This is exactly similar in form to the table of coded yields 
which we analysed for the treatments on page 391. The only dif
ference is that in this case the letters are to be taken as denoting 
the plots which in the actual experiment the following year are 
to receive treatments A, B, C, D, and E. These preliminary yields 
can be analysed in exactly the same way as the treatment yields 
were analysed . We shall content ourselves with giving the results 
of the analysis and leave it to the reader as an exercise to work out 
for himself. 
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ANALYSIS OF VARIANCE FOR THE PRELIMINARY YIEL DS 

I 
Source I Sums of d.f. 

squares 

Columns 4 ·6 4 
Rows I 13 ·4 

I 
4 

Treatment 
: 

positions 

I 
191 ·8 4 

Residual 73·2 12 

Total 
I 

283 ·0 24 

For reference purposes we repeat here the coded yield table for 
the year for which the treatments were actually applied (picked up 
from page 391). If the reader will compare this table with the table 
of the coded yields for the preliminary year, a marked similarity 
of pattern will be observed. This is in no way surprising. A plot 
that crops well in the preliminary year has a start over a poor 
cropping plot when the manurial treatments are applied, and we 
should forecast that the good plots in the preliminary trial should , 
on the whole, do better than the poor plots when the treatments 
are applied, irrespective of the value of the treatments. If, then, we 
call the preliminary yields X and the second year (experimental) 
yields Y, we should expect that the X and Y values would exhibi t 
a correlation - despite the disturbing effect of the different 
manurial treatments in the second year yields, Y. 

CODE D YIELDS WITH TREATMENTS APPLI ED (Y) 

3 I I 
I J A B - ) C 11 D - 3 E - 4 

--
D - 1 I E - 2 A 5 B - 3 C 6 

1-'_--
B 1 I c 7 D - 2 I E 0 A 7 

E - 2 I A 5 B - 3 I C 0 D - 3 

I I 
I , 

C 1 D -) E - 2 
I 

A 5 B 1 
I 
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Jf, therefore, we were to have a regression equation showing 
how the Yvalues are increased as the X values increase, we should 
have a means of calculating a correction to the yields when the 
treatment is applied, thereby eliminating initial bias due to un
equal fertility in the individual plots. This regression equation is 
arrived at very simply by the Analysis of Co-variance (or, if you 
like, correlation). Just as the Analysis ofYariance for the Xvalues 
and the Yvalues was carried out by calculating the sums of squares 
of the X and Yvalues respectively, so the Analysis of Co-variance 
is arrived at by calculating the sums of products of corresponding 
X and Y values. Where the sums of squares weI e necessarily 
positive, the sums of products can sometimes be negative. This 
will be the case where we have a negative correlation (Y decreas
ing when X increases). In the analysis of variance we calculated 
sums of squares corresponding to rows, columns, treatments, 
residual, and total. We do exactly the same for sums of products 
in the analysis of co-variance. The degrees of freedom for the 
products are in every case equal to the degrees of fre{Cdom for the 
corresponding sum of squares. Taking the sources of variation in 
tum, we find the following : 

Column Sum of Products 

We set doWn corresponding column totals for the X and Y 
values taken from the coded yield tables and find the value of 
IXY, EX, and IY. The number of items corresponding to each 
grand total and product sum is N = 25, since there were twenty
five plots in our experiment. Each column total in the table which 
follows is the sum of five plot totals. The column totals are: 

For X - 3 1 3 - 2 0 EX=- I 
For Y 2 8 9 - I 7 E Y = 25 

Sum of products - 6 + 8 + 27 + 2 + 0 31 

We divide this quantity by the number of plots entering into each 
column total ( ... 5) and, finally, subtract a correction factor whose 
value is given by 

1 
NIX . .EY = ir[( - 1) x 25]. - - 1 
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This same value for the correction factor will be used when we 
come to the sums of products for rows, residual, and total. In this 
case we find the sum of products corresponding to columns as 

¥ - ( - 1) = 7 '2, with 4 degrees of freedom 

Row Sum of Products 

Setting down row totals for X and Y, we gel : 

For X - 1 - 2 7 - 2 - 3 
For Y 6 5 13 - 3 4 

Sum of products - 6 - 10 + 91 + 6 - 12 = 69 

Dividing by 5, the number of plots in each row total, and sub
tracting our correction factor ( - J in this case), we find for the 
row sum of products: 

¥ - ( - 1) = 14'8, with 4 degrees of freedom 

Treatment Sum of Products 

Setting down treatment totals for X and Y, we get: 

For X 
For Y 

16 - 7 
25 -5 

17 - 14 - 13 
25 - 10 - 10 

Sum of products 400 + 35 + 425 + 140 + 130 = 1,130 

Dividing by 5, the number of plots entering into each treatment 
total, and subtracting our correction factor, we find the treatment 
sum of products as : 

~ - ( -. J) = 227, with 4 degrees of freedom 

Total Sum of Products 

In order to get the total sum of products, we set up the follow
ing table which shows the products of the X and Yvalues for each 
of the twenty-five plots. These products are·then totalled over the 
whole table and, finally, we subtract the correction factor. 
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0 1 88 9 I 20 

2 6 15 12 24 

I 35 6 0 35 

2 15 6 0 9 

- 1 3 6 25 - 1 

[Derived from tbe coded yield tables for X and y] 

Summing the cell entries over the whole table, and subtracting 
our correction factor, we find for the total sum of products 

318 - ( - I) = 31 9, with 24 degrees of freedom 

We now set up our table of sums of squares and products by col
lecting together the sums of products just calculated and the sums 
of squares for the X values and the Yvalues which we computed 
when we did the analyses of variance for these values (reference : 
the analysis of variance tables on pages 392 and 425). 

TABLB OF SUMS OF SQUARBS AND PRODU C TS 

Source Sums of Sums of Sums of d.f. 
squares products squares 
for X for Y 

Columns 4·6 7·2 14'8 4 
Rows 13 ·4 14·8 26·0 4 
Treatments 19( '8 227 ·0 270'0 4 
Residual 73 ·2 I 70·0 77 ·2 12 

Total 283 '0 
I 

319·0 388·0 24 

The Residual Sum of Products is obtained from those already 
calculated thus : Residual = 319 ·O- 7·2 - 14·8 - 227·O = 70·0, as 
shown in the table. 
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We may now use the Residual Sum of Squares and Products to 

estimate the regression coefficient of Y on X, which will tell us 
how much advantage accrued to any plot in our testing of the 
various manurial treatments by virtue of higher initial fertility in 
the soil of that plot before any treatments were applied at all. The 
sums of squares and products in our table are sums of squares and 
products about the mean , since we have already applied the cor
rection factor in computing them. To get the regression coefficient 
we divide the sum of products Jor the residual by the sum of 
squares in the X residual, thus: 

Exy 70 ·0 
b=I;x2 = 73-2 = 0·956 

Armed with this knowledge, we could now go back to our table 
of coded yields, Y, for the treatment tests. We could work out 
from thc preliminary yield fi!,'1lres for each plot how much the 
preliminary yield was in excess of the grand average preliminary 
yield per plot. We could then correct the yields, Y, by subtracting 
from each 'of them (to remove the initial advantage we subtract 
for an excess; for an initial deficiency we should add) the initial 
excess multiplied by the regression coefficient, b = 0·956. Having 
adjusted all our yields in this way, we could then do a new analysis 
of variance on the adjusted yields. Fortunately, we can avoid all 
this work by thinking a little before we rush madly at the job. 

For a plot whose preliminary yield is X against an average 
yield per plot of X, the correction will be of magnitude b(X - X), 
where b is the regression coefficient. For the deviation from the 
mean we may write x = X - X and the correction will then be bx. 
Hence if the yield of any plot under treatment is Y, then the ad
justed yield will be Y - bx which we may dcnote by Z . OUf 
analysis on adjusted yields would be an analysis of variance for 
these quantities Z and would involve sums of squares of the form 

Ez2 =E(Z - Z)2 

and since Z = Y, by virtue of the fact that the excess for the mean 
is by definition zero, we have 

Ez2 =E( Y - bx - Y)2 =E(y - bX)2 
i.e. Ez2 ~Ey2 - 2bExy + b2Ex2 
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Hence, it follows that the analysis of variance for the corrected 
yields may be obtained at once from our table of sums of squares 
and products by following the instructions implicit in the for
mula for J:Z2 which we have just derived. As an illustration, we 
show the computation for the column sum of squares in the ad
justed yields. Looking in the table for the sums of squares and 
products, we find : 

J:x2 =4'6 Exy=7'2 L'y2= 14·g 
and we know that b = 0·956. For ease in computation, since the 
error is very small, we shall regard b as equal to unity in this 
example. We have 

J:Z2 = J:y2 - 2bExy + b2Ex2 

= 14·8 - 2(7'2) + 4·6 = 5·0 
The Computations for Row, Treatment, Residual, and Total 
Sums of Squares are made in turn in exactly the same way, and we 
arrive, finally, at the following table. 

ANALYSIS OF VARIANCE ON ADJUSTED YIELDS 

Source I Sum of d.f. I Variance 
) squares I estimate 

Columns 1* 5·0 4 

I 
1·25 I 

Rows ! 9·8 4 2'45 
Treatments 

I 
7-8 4 I 1·95 

Residual 10·4 I 11 I 0 '95 

I 
I 

Total 33 ·0 ! 23 I I 
1 , 

It will be seen that the degrees cf freedom are exactly as they were 
in the analysis on the unadjusted yields, except that one degree of 
freedom has now disappeared from the Residual. Why is this? 
The reason is not far to seek: we estimated our regression coeffi
cient, b, from the residual section of our data, and in so doing we 
have to give up one degree of freedom. The first thing that strikes 
us is that in the analysis on adjusted yields the treatment effect 
turns out to be non-significant, where with the unadjusted yields 
it was significant. When we first analysed the data we were in the 
position of not having any information about the initial fertility 



THE ANALYSIS OF VARIATION AND CO-VARIATION 431 

of the plots. We did our best to control heterogeneity by rows and 
columns as a whole, by eliminating the sums of squares corre
sponding to these sources of variation. However, the analysis on 
adjusted yields shows that in this case the block of land on which 
the plots were laid out was very badly chosen from the point of 
view of homogeneity of fertility - so much so that treatments 
were apparently significantly ditlerent until we did our analysis of 
co-variance to eliminate this effect. We have here an extreme ex
ample, specially invented to illustrate our point. It is not likely 
that so extreme a case would often be met with in practice. Never
theless. analysis of co-variance is a very powerful technique for 
adjusting yields in cases of this sort. A further point which should 
be carefully noted is the way in which the residual error variance 
estimate (experimental error) is reduced, thus increasing the pre
cision of the whole experiment. The statistician gets tired of hear
ing people in certain industries say that while statistics is an ex
cellent technique when materials like steel are being dealt with 
which are very uniform in their properties, it is of little use when 
materials of great variability are being examined. The whole 
essence of statistics is that it is the only way of tackling inherently 
variable data. Unless such data are dealt with statistically, they 
are not dealt with properly. 

The Analysis of Co-variance is not confi ned to the adjustment 
of data to allow for variation in the fertility of the field plots in 
agricultural experiments . We might use it also in experiments 
designed to assess the gain in weight of human beings or animals 
fed on special diets so as to make special allowance for sex, initial 
weight, and other possible disturbing effects. The fact that we can 
eliminate this type of bias is a very important consideration in 
medical and biological experimentation in some cases. It is a 
common practice to restrict experiments to one litter of animals 
so as to keep down the heterogeneity of the' plots' (experimental 
animals). Not only is this awkward when litters are small, but it 
is generally an undesirable thing for the reason that experiments 
restricted to one litter, one strain, or one anything else are strictly 
only assessing effects within their restricted area of experimenta
tion . It follows that experimental results based on heterogeneous 
material - provided we make proper allowance for heterogeneity 
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by a technique such as the analysis of co··variance - arc much 
more likely to be of general applicability than results obtained on 
homogeneous material obtained by narrowing the field of in
vestigation to particular groups or strains. 

Yet again, the analysis of co-variance is extremely valuable 
when we wish to assess treatments for more than one factor 
simultaneously. For example, a certain treatment might be very 
successful in raising the weight of pigs; but, if the gain in weight 
were all fat, the result would not be best Danish bacon, but the 
sort of thing inexperienced amateurs produce when they feed a 
pig in their own backyard, ignoring scientific principles. Another 
example suitable for the analysis of co-variance would be the 
effect of certain manurial treatments on straw weight and grain 
weight in grain crops. In general, whenever any policy or treat
ment produces double effects both of which arc of economic 
interest to us, the analysis of co-variance in a well-designed in
vestigation would prove an illuminating way of looking at the 
data. 

To conclude our brief introduction to the analysis of variation , 
we shall now give the reader the basic ideas behind the technique 
known as 'confounding', which, whatever its name may suggest 
at first sight, is a perfectly sensible and straightforward business 
with a very useful purpose. It will be appreciated that in factorial 
type experiments, even when each factor is tried at only two levels, 
the number of combinations of treatments involved in the experi
ment increases very rapidly as the number of factors is extended. 
In general, an experiment involving/factors, each at L levels, will 
involve us in L/treatment combinations. To picture this in con
crete terms, imagine we wish to try out 6 manurial treatments, 
each at 2 levels. Then we should need 26 ~ 2 x 2 x 2 x 2 x 2 x 2 = 64 
plots of land in order to accommodate a single replication of the 
experiment. The block to contain so many plots must be of con
siderable area, and as the area of the block grows so also does the 
heterogeneity of the land within the block. It is true that we may 
often forgo replication of our blocks on the ground that higher 
order interactions in many cases are either non-existent or of 
little practical importance, so that the sums of squares and 
degrees of freedom associated with these higher order in ter-
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actions may be taken as assessing residual error ( = experimentnl 
error). If, however, the block size itself is too 'great for practical 
purposes, this is of no help to us. Confounding is a technique by 
which we forgo (wholly or in part) information about one or 
more interactions (believing on technical grounds that they are of 
little or no importance) and arrange that in exchange for this loss 
we shall be able to work with blocks of reduced size. 

In order to see how this is done, we must familiarize ourselves 
with certain new methods of representing treatments. Consider an 
experiment in which we are going to have three factors A, B, C 
(e.g. manurial treatments) each at two levels. The symbols a, b, c 
wiu be used to denote the treatments where A, B, and C are at 
their higher levels respectively. When no small letter is men
tioned it is to be taken that the factor mentioned is at its lower 
level (it may be that the lower level of a manurial treatment is 
complete absence of that treatment, of course). Thus, ab, be, abc, 
and e denote plots receiving both A and B at their higher levels 
with C at its lower level ; Band C at their higher levels with A at 
its lower level; A, B, and C all at their higher level; and C at its 
higher level with A and B at their lower levels, respectively. In a 
complete factorial layout there will be one plot which has all the 
treatments at their lower levels. For a reason which will be ap
parent in what follows, it is very convenient to denote this par
ticular treatment combination by the symbol (I) . In this notation, 
the eight treatment combinations to be used in our experiment 
may be denoted by the symbols : 

abc, ab, ac, be, a, b, c, (I) 

Each treatment combination would occupy a plot of land, and the 
block containing the eight plots, as shown below, would con
stitute one complete replication. 

I I 

I 
abc ab ae be 

-
a b c (1 ) 

I i 
In an experiment with fourfold replication there would be four 
such blocks, and so on. We shall ignore thequestion of replication. 
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Now look at our block on p. 433 which cont~ns the eight treat
men~ combinations. In what follows we shall be using the small 
letters which denote treatment combinations for the further pur
pose of signifying the yield (e.g. of corn). Clearly the difference 
between the yield a and the yield (I), viz. a - (I) is a measure of 
the effectiveness of the treatment a as we pass from its lower to its 
higher level. Looking closer, we find other pairs of plots which 
also measure the same effect, viz. ab and b ; ae and e; and, finally. 
abc and be. In every pair mentioned we have two plots which have 
received identical treatment except in regard to the presence or 
absence of the high level of A. The reader should check carefully 
for himself that the eight plots in our block can also be broken up 
to give four pairs showing the effect of B and four pairs showing 
the effect of C. Consider now, again, the four pairs showing the 
effect of A. Clearly, if we add together the four yields of the plots 
which have received treatment a, and subtract from the total the 
total of the four remaining plots which have not had the benefit 
of this treatment, we still have a measure of the effectiveness of a, 
which may be represented as 

[a ::rab +ae + abc] - [b + e +bc + (I)] 
Treat this as a little bit- of algebra. We see that from the first 
bracket we can extract a factor a, thus getting 

alb + e + be + 1] - [b + c + be + 1 ) 

The first part of the expression is identical with the second, except 
that it is modified by the presence of the factor a, which corre
sponds, of course, to the way in which we have measured the 
effect of the factor A by taking pairs of plots which differ only in 
the presence or absence of the letter a. Our algebraic expression 
may also be written as 

a(b + l)(c + I) - (h + l)(e + I) 
which in turn reduces to the form 

(a - I)(h + l)(c+ I) 

We have thus arrived at an easily remembered algebraic ex
pression in factor form which, when expanded according to the 
ordinary rules of elementary algebra, tells us what plot yields are 
to be added and subtracted together in ordcr to get a measure ()f 
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the A effect as we pass from the lower level to the higher level of 
that factor. Notice that the minus sign occurs with the factor 
which we are estimating. In like manner, the B effect would be 
represented and measured by (a + 1 )(b - 1 )(e + 1) and the C effect 
by (a + 1)(b + 1)(e -1). 

The reader already knows enough, by this time, to realize that 
in an experiment of this type we should not only ask about the 
effect of the three maio factors, but should also want to know 
about interaction effects. Is there a particular boost effect when 
we get particular combinations of factors? If so, how is it to be 
assessed in our new notation? We shall deal with this matter by 
considering the A x B interaction. There is an A x B interaction if 
the A effect is notably different according as the factor B is at its 
higher or lower level. The eight plots in our block again furnish 
us with the necessary information. 

The plots with B at the higher level are: 

abe, ab, be, and b 

These may be subdivided as follows: 

With A at the higher level: abe and ab 
With A at the lower level: be and b 

Hence, the effect of A with B at the higher level may be measured 
as given by the expression (abe + ab) - (be + b) 

The pfots with B at the lower level are: 

ae, a, e, and (1) 

These may be subdivided as follows: 

With A at the higher level: ae and a 
With A at the lower level: e and (J) 

Hence, the effect of A with B at the lower level may be measured 
as given by the expression (ae + a) - (e + 1 ). 

If, now, we subtract the effect of A with B at the lower level 
from the effect of A with B at the higher level, we shall have a 
measure of the interaction of the factors A and B. Thus : 

[(abc +ab) - (be + b)] - [Cae +a) - (e + 1)] 
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Treating this algebraically, we get 

(abc +ab) - (be +b) - (ae +0) +(e + 1) 
= ab(e + 1) - b(e + 1) - a(e + I) -I- (e + I) 
= (e+ l)(ab -b -a + I) 
= (a - I)(b - J)(e +_!_) 

Here, then, we have an algebraic expression very similar in form 
to that which we found for the main effects. The only difference is 
that now we have two minus signs, one in each of the brackets 
containing the letters referring to the interaction we are to esti
mate. In like manner the B x C interaction would be represented 
by (a + l)(b -I)(e - I) and the A x C interaction by (a - l)(b + 1) 
(e - 1). The reader will guess, rightly, that an interaction between 
all three factors will be represented by the expression (a.:11 )(b - I) 
(e - I), 

Before going any furth~r, we must get a little practice in using 
this notation for the computation of sums of squares. Let us sup
pose that a double replication, three-factor experiment were car
ried out with each factor at two levels, and that the yields of the 
plots in the two blocks were as indicated below: 

BLOCK I ~ 

abc ab ae 
2 3 I 

- -_ _-
a b e 
2 I 4 

For Block J 

Total =20 

be 
4 

- -
(I) 
3 

. . 20 x 20 
CorrectIOn Factor = - 8- = 50 

BLOCK II 

abc ab ac be 
2 2. 1 2 

-------
a 
0 

b e 
2 1 

For Block II 

Total =12 

(1) 
2 

. 12 x 12 
Correctton Factor::: -- = 18 

8 
, Grand Total, both blocks combined = 32 

. . ll xll 
Grand Correction Factor, both blocks combined = -- = 64 

16 
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Using, first, the technique already familiar, we shall divide the 
Total Sums of Squares into components corresponding to (a) 
Between Blocks and (b) Within Blocks Variation. 

Total Sum of Squares 

Square all yields for both blocks and subtract Grand Cor
rection Factor. 

Squares of Items 

Block I: 4,9. I. 16. 4. I. 16.9 Total60 
Block II: 4,4, 1,4,0,4, 1,4 Total 22 

Total of Squares 8'2 

Total Sum of Squares = 82 - 64 = 18 

Between Blocks Sum of Squares 
(Each block total is the sum of 8 items.) 

t[202 + 122] - 64 = 68 - 64 = 4 

Within Blocks Sum of Squares 

Total of Squares of items· in Block I = 60 and in Block n - 22 
Using Block Correction Factors: 

Within Block I Sum of Squares - 60 - 50 = 10 
Within Block II Sum of Squares = 22 - 18 = 4 

Total Within Blocks = 14 

These results may then be put in a table. 

ANALYSIS OF VARIANCE BETWEEN AND WITHIN BLOCKS 

Source Sum of I d.f. 
squares 

Between blocks 4 1 
Within blocks 14 2 x 7 = 14 

Total 
I 

18 
1 

15 

Now the within blocks variation, based on 14 degrees of free
dom, includes the between treatment variation, based on 7 
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degrees of freedom. The remaining 7 degrees of freedom of the 
within block variation are assignable to error. Adding plot yields 
for corresponding plots in the two blocks. we find the treatment 
totals (each the sum of two items) to be: 

abe I ab I ae 
I 

be 
4 5 2 6 , I 

a b 

I 
c (I) 

2 3 5 5 
! 

And the treatment sum of squares then comes out as 
t[42 + 52 + 22 + 62 + 22 + 32 + 52 + 52] - 64 = 72 - 64 = 8 

The Analysis of Variance Table then becomes : 

Source 
I 
I Sum of d.f. 

I squares 

Between blocks 4 I 
Treatments 8 7 
Residual (Error) 6 7 

Total 
I 

18 I 15 

Our next step is to use our new notation to help us to calculate 
the sums of squares corresponding to individual treatments, and, 
of course, the sum of these sums of treatment squares should be 
found equal to the Treatment Sum of Squares as given in the table 
above. The table of treatment totals will be the source of our in
formation as to the numerical quantities required in our evalua
tion. It should be remembered that the value of the quantity 
arrived at using our algebraic formulae for treatments is based on 
the whole of the sixteen plots of our original experiment, and so 
to get the sum of squares corresponding to anyone treatment we 
have to square the value given by the formula-and then divide 
the result by 16. 
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We shall show the working in full for the factor A and leave it 
to the reader to check for himself by eXpansiop that the remaining 
factors are correct. 

A effect: (a - I)(b + l)(c + I) 
-abc +ab +ac - bc +a. - b -c-(I) 
- 4 +5 +2 -6 +2-3 - 5- 5 =- 6 

To get the A effect sum of squares we square this and divide by 16, 
since it is based on the yields of 16 plots. 

A effect sum of squares = 1% = 2 . 25 

The remaining effects are as shown in the table following: 

labe ab ae be a 
I 

I 

Effect b e (1) Total I Square Sums of 
squares 

B 4+5 -2 +6 - 2+3-5 - 5 4 16 1'00 
C 4 -5 +2+6 -2- 3+5 - 5 2 4 0'25 

AxB 4+5-2-6-2 - 3+5+5 6 ) 6 2'25 
A x C 14 - 5+2-6-2+3-5+5 - 4 16 1'00 
B x C 4-5-2+6+2-3-5+5 2 4 0'25 

A XB XC ! 4 - 5 - 2 - 6+2+3+5-5 - 4 16 1·00 

; Add A effect sum of squares as already found 2'25 

I Total Sums of Squares for treatments 8·00 
I I 

This agrees with the treatment sum of squares found previously. 
Whereas the previous calculation gave the sum of squares for all 
treatments, this has now given us the sums of squares for the in
dividual treatments. Moreover, since each treatment was at two 
levels in the experiment, there is one degree of freedom for each of 
the treatment combinations in our table above. /t should be care
fully noted that Whell this method of computing tire sums · of 
squares is used there is 110 question of having to apply any cor-

rection factor of the type ~ as we have previously been ;/1 the 

Ilabit of doing. 
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We may DOW write out the full table of the analysis of variance 
for the data of our experiment, as follows: 

TABLE OF ANALYSIS OF VARIANCE 

, 
Source I Sums of squares d.f. Variance 

estimate 

Between blocks 4 ·00 1 4 ·00 
Treatments 

A 2·25 1 2·25 
B 1·00 1 ) '00 
C 0·25 1 0'25 

A xB 2·25 1 2·25 
A xC ) ,00 1 1·00 
B xC 0·25 ) 0·25 

A x B xC ) ,00 ) 1·00 
- 8·00 - 7 - 1'14 

Residual (Experi-
mental Error) 6·00 7 0·86 

Total 18·00 15 
~ 

In the investigation just dealt with, each block of land con
tained eight plots to accommodate the eight treatment combina
tions. It is reasonable to believe that blocks of half the area would 
exhibit greater internal uniformity. We may arrange our treat
ments in such half-size blocks without reducing the treatment plot 
size, provided that we are willing to forgo some of our information 
about interaction effects. We do this by confounding a chosen 
interaction with between plot differences, i.e. we put the chosen 
interaction on the same foundation (confound) as the between 
block effect, so that there is no way of disentangling the inter
action from the block effect. 

Let us consider first of all an experiment with a single replica
tion in which, as before, we have three factors, A, B, and C, each 
at two levels. Using the notation just established, the treatment 
combinations will be 

abc, ab, ae, be, a, b, c, (1) 
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In the previous experiment these all went into a single eight-plot 
block. This time, we are going to make two four-plot blocks and 
we shall allocate four treatment combinations to each block in 
such a way that one treatment effect will be indistinguishable from 
the between block effect. The usual thing is to sacrifice inter
actions of as high order as possible. Let us therefore agree in this 
case to sacrifice knowledge about the A x B x C interaction. In 
our new notation, this interaction would be assessed as 

(a - I)(b -I)(c -I)=[abc+a +b+c] - [ab + ac+ bc+ 1] 

It follows that if we place in our first block the treatments shown 
in the first .bracket and in our second block the treatments shown 
in the second bracket, we shall have an arrangement in which the 
chosen interaction is confounded with the bet~een block effect. 
The experimental layout would be ; 

BLOCK I 

c;r:] 
~ 

BLOCK 1l 

~II---Iac 
~ (I) 

In practice, the treatments would be assigned to the plots within 
each block at random, e.g. by picking the treatments out of a hat 
as in a raffle. The reason for this randomization is to make sure 
that e.ach treatment has an equal chance of being tested out on any 
particular plot of ground, thus eliminating bias which might be 
introduced through the conscious selection of the plots. 

It will be plain enough that in the above arrangement the chosen 
interaction has indeed been lost. It still remains to show that the 
remaining treatment effects are unaffected by this arrangement. 
We shall illustrate this for the case of the A main effect and leave 
it to the reader to satisfy himself in similar fashion about the other 
treatments. Suppose that the soil in Block II is very fertile, so that 
each plot in that block would give an extra yield due to fertility 
bias of a magnitude which we shall represent by the symbol q. 
This is a between block difference, of course, The yields might 
then be denoted symbolic.ally as follows: 

,<; 
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BLOCK I BLOCK Il 

~ 
~ 

(ab +q) 

(be +q) 

Now the main effect A js represented by 

(ae +q) 

(1 +q) 

(a -1)(b + 1)(e + 1) = [abc +ab + ae +a] - [be +b + e + 1] 

Owing to the between block bias, however, we should actually 
evaluate: 

[abc + (ab +q) + (ae +q) + a] - [(be +q) + b +c + (I +q)] 

It is clear that when the two brackets are subtracted the bias q will 
vanish. It follows, therefore, that with such an arrangement the 
main treatment A is unaffected by between block bias, whereas. in 
the case of the confounded interaction, the bias would have been 
associated with every treatment in one block and with none of the 
treatments in the other block. The reader will find that every 
treatment apart from the confounded interaction is unaffected by 
block bias in the experimental arrangement which we have 
designed. 

Let us carry this confounding idea a little further. Suppose we 
allocate our treatments to four blocks of two plots each. In such 
a case, the blocks would be smaller than ever and therefore likely 
to be even more homogeneous in fertility. Of course, to reap tms 
advantage there will be a price to pay. We shall have to sacrifice 
more of our treatment comparisons. The number to be sacrificed 
is equal to the number of degrees of freedom between our blocks. 
Between four blocks there are three degrees of freedom. Hence, 
we shall have to sacrifice knowledge about three effects. Now we 
are not completely free to choose wmch treatment effects we shall 
sacrifice. Suppose we choose to sacrifice'the interaction A x B x C, 
as the highest order interaction, and decide that the A x B inter
action might also be let go. Then it turns out that in choosing 
these two to be sacrificed we have automatically committed our
selves to losing the C main effect. 

Thls is not at all obvious, at first sight, but the reader will soon 
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be able to satisfy himself on that score when he knows a little 
more about confounding. He will be able to work out the fact 
from first principles. Meantime, there is a very simple rule, know
ledge of which will make the reader as clever as the author in spot
ting these inevitable losses. This is it. 

Regard the treatment symbols as algebraic expressions. Mul
tiply together the expressions chosen for confounding. Rep/ace 
every squared term in the answer by unity. The result is an inter
action inevitably confounded by our initial choice. 

Example. If we choose interaction ABC and interaction AB to be 
confounded, then we inevitably lose also 

ABC x AB= A2B2C= C 

If the reader will try the matter out for himself, he will soon find 
that if he sacrifices the ABC interaction with any of the first order 
interaction, he is bound to lose one or other of his main effects. 
This is obviously unsatisfactory. The main effects would not have 
been introduced into the investigation at all unless we were in
terested in assessing them. There is a way out of the difficulty, 
however, provided we are willing to sacrifice all three of our first 
order interaction. If we choose to sacrifice the AB and the AC 
interactions, we shall inevitably lose also the interaction 
AD x AC =A2BC =BC. We shall still have the second order inter
action available and the three main effects. We shall adopt this as 
a satisfactory arrangement for the purposes of illustration (very 
likely it would be unacceptable in practice and a complete re
vision of the experimental design would then be called for). The 
problem then arises: How do we allocate the treatments to our 
two-plot blocks so as to sacrifice the chosen interactions without 
losing the main effects and the second order interaction? This 
calls for a little explanation, but the idea is perfectly general and 
so worth learning. The procedure for finding one of our plots to 
start with - the leading block, we might sensibly call it - is as 
follows. 

We take our eight treatment combinations 

abc, ab, GC be G, b, c, (1) 

We then make a list of all the treatment combinations which have 
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an even number of letters in common with , each of the inter
actions we propose to confound, thus: 

Even number of letters in common with AB abc ab c (1) 
Even number of letters in common with A C abc ac b (I) 
Even number of leiters in common with BC abc be a (1) 

The reader will not be puzzled by the appearance of the treat· 
m<=nts a, b, c, (1) in our table when he recalls that zero is an even 
number. 

Comparing the results for the three interactions, we see that 
there are only two treatment combinations which have an even 
number of letters in common with all the interactions to be con
founded, viz. abc and (I). These treatments will therefore be 
taken as our leading block, which will appear as follows : 

.b< (I) I 'coe<, 

With our leading block found, the other blocks are easily arrived 
at. We take any treatment that has not already been allocated to a 
plot, e.g. abo The treatm.ents in the leading block are multiplied 
by this treatment algebraically, any squared ' term being replaced 
by unity, thus: 

abc x ab =a2b2c= c and (I) x ab =ab 

In this way we arrive at our second block, which will be 

, .. I "OCK n 

Again we look for a treatment which has not yet been allocated to 
a plot, e.g. treatment b, and multiply the treatments in our leading 
block by this treatment. This gives our third block as: 

ac b BLOCK III 
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There are still two treatments left. These, of course, go to the 
fourth block : 

be a BLOCK IV 

The layout for our confounded experiment is therefore: 

BLOCK I BLOCK II BLOCK III BLOCK IV 

In practice the treatments should be allocated at random to the 
plots within their own block, so as to give every treatment an 
equal chance of being tested on each plot. In the full randomiza
tion, of course, we should decide which particular block of land 
was to be called Block Number I, which Block II, and so on by 
picking them out of a hat. In this way the intTOduction of con
scious bias is avoided. 

It remains to be seen now whether our procedure has, in fact, 
confounded the three first order interactions with between block 
effects, while at the same time leaving the three -main effects and 
the second order interaction free from block bias. Let us suppose 
that relative to Block I, the other blocks have excess fertility p for 
Block II, q for Block III, and r for Block IV. The AB interaction 
is evaluated from 

(a -l)(b -l~(c + 1) = [abc + ab + c + 1] - [ac + bc + a +b] 

Allowing for block bias, we shall actually evaluate 

[abc + (ab + p) + (c + p) + (1)]- [(ac +q) + (be + r) + (a +r) + (b +q)] 

It is at once evident that when we subtract the terms p, q, and r, 
which represent block bias, are not going to vanish. Hence, the 
interaction AB is confounded with between block differences, as 
we agreed it should be. In like manner, the reader may quickly 
satisfy himself that the other two interactions, AC and BC, are also 
confounded in this arrangement with between block differences. 
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Consider, now, the main effect A, which is assessed on the basis 
of 

(a -l)(b + I)(e + I) = [abc +ab +ae +a) - [be +b +e + I) 
Allowing for between block bias, what we shall actually evaluate is 

[abc +(ab +p) +(ae +q) +(a +r») - [(be +r) +(b +q) +(e +p) + I) 

When the brackets are subtracted, it is clear that the terms p, q, 
and r, which represent block bias, will vanish. Hence, we may 
safely use this experimental arrangement to evaluate the main 
effect A without fear that our result will be contaminated by be
tween block effect. The reader may satisfy himself that the other 
main effects are also evaluated free from block bias. 

Let us look, finally, at the second order interaction ABC which 
is evaluated from . 

(a -I)(b - I)(e -I) = [abc +a +b +e) - Cab +ae +be+ I) 

Allowing for between block bias, what we shall actually calculate 
is 

[abc +(a +r) +(b +q) +(e +p») - [Cab +p) +(ae +q) + (be +r) + I) 

Since, on subtraction, the block bias terms p, q, and r will vanish, 
we see that the experimental arrangement allows us to assess the 
second order interaction free from between block effects. 

There is a logical end to this road. What happens if we try to 
work in blocks containing only one plot each, so as to get the 
maximum homogeneity? The price to be paid will be the sacrifice 
of a number of treatment comparisons equal to the number of 
degrees of freedom between blocks - in this case; with eight 
blocks, seven treatments would have to be sacrificed. What is left 
of our experiment? It is obvious, of course, that such greediness 
must be foolish. Every treatment would be associated with a 
block, and between block treatments would enter into every treat
ment assessment. Confounding is a purely commercial trans
action. We pay the fair market price for what we buy. The advan
tage lies in the fact that the market is conducted on a barter basis. 
We pay a fair price in terms of things we do not specially want in 
return for something we do want. Which is all very joll;,: and above 
board. 
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In order to show the generality of the procedures, we shall now 
consider a four-factor experiment, with each factor tried at two 
levels. (It is possible to design confounded experiments wben 
factors are at three levels, but for this more advanced technique 
the reader must refer to some of the texts mentioned in the biblio
graphy.) If we denote the factors by the letters A, B, C, and D, 
then, with each factor at two levels, there will be sixteen possible 
treatment combinations. In our present notation, they may be 
represented by : 

abed All treatments at high level 
abe abd aed bed Three high and one low in each case 
ab ae ad be bd cd Two high and two low in each C-ase 
abc d 
(1) 

One high, three low in each case 
All treatments at low level 

For one complete replication the sixteen treatments would call for 
sixteen plots. If we decided that in the interests of greater block 
homogeneity we were well advised to work in two blocks of eight 
plots each, then this could be done by sacrificing any treatments 
contrast. Choosing the highest order interaction ABCD to be 
sacrificed, we arrive at the plots to go into our leading block by 
collecting together those treatments which have an even number 
of letters in common with the interaction ABCD. In this way we 
find the leading block to be : 

abcd I ab I ac I ad bc I bd I cd I (I) BLOCK I 

It follows that the second block must be: 

In practice. the treatments would be assigned at random to the 
plots within their own block. The reader may confirm for himself 
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that this arrangement allows us to evaluate every treatment com
parison free from between block effect except the ABeD inter
action which has been confounded. The demonstration is exactly 
the same in form as ·in the case of the three-factor experiment 
which we worked out in full. 

Our single replication of sixteen plots can be arranged in other 
ways, however, if this suits our purpose. We might, for example, 
lay the experiment out in four blocks of four plots each, so as to 
increase the within-block homogeneity. Since there are three 
degrees of freedom between four blocks, this would involve us in 
the sacrifice of three treatment effects. The choice before us is 
wide in this case, and would ultimately rest on what treatments 
we felt on technical grounds to be of least interest to us in prac
tice. Let us look at the possibilities, as they are shown in the table 
on page 449. If we decide to confound any interaction in the left
hand column of the table, and also at the same time any inter
action along the top row of the table, then we commit ourselves, 
inevitably, to confounding the interaction shown in the body of 
the table. On our principle of trying to retain main effects and 
first order interactions, the choice becomes very much more re
'stricted, this ideal being, in fact, impossible of attainment. Study 
of the table will convince the reader that the loss of at least one 
first-order interaction is inevitable. The arrangements in which 
this can be done are as follows: 

ABC 
ABD 
ACD 
BCD 

ABD ACD BCD AB AC AD BC BD CD 

CD BD AD 
BC AC 

AB 

BCD ACD ABD 
BCD ACD ABC 

BCD ABD ABC 
ACD ABD ABC 

The above table is an excerpt from our full table. Actually it can 
be arrived at in very simple fashion if we remember that possible 
solutions must inevitably include two second order interactions. 
Putting these together in all possible pairs and finding the third 
interaction by the multiplication rule, we get: 
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ABC ABD CD I ABD ACD BC 

ABC ACD BD ABD BCD AC 

ABC BCD AD ACD BCD AB 

Let us now choose for the purposes of illustration the set ABC, 
BCD, and AD 

In order to find our leading block, we have to pick out those 
treatments which have an even number of letters in common with 
each of the interactions to be confounded. Doing this we arrive at 
the following table: 

Even number in Treatment combination 
common with 

ABC abd aed bed d (1) ab ae be 

BCD abd aed abe a (1) be bd ed 

AD abd aed be b c ad (I) abed 

Inspection of the table shows that the treatments which have an 
even number of letters in common with the interactions to be con
founded are abd, aed, be, and (1). Our leading block thus becomes 

This does not include the treatment combination a, so we mul
tiply through the leading plot treatments, substituting unity for 
any squared terms, and find ' 

, 
~_M __ ~ __ Cd __ ~I __ a_bc __ ~I ___ a~1 BCDCK" 

The treatment combination b has not yet been allocated. Mul
tiplying through the leading block treatments by b, we get 

ad 
I 

abed I C b BLOCK III 
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The treatment d has not yet occurred. Multiplying through the 
leading block by d, we find 

ab ae bed d BLOCK IV 

The experimental layout would then be as shown: 

BLOCK I BLOCK II 

abd be tm (I) aed d 

BLOCK III BLOCK IV 

~ d [ili] d 

So far we have only considered confounding in single replica
tion experiments. It is evident that, if we have more than one 
replication, the range of possibilities will be at once increased. 
There will exist the opportunity of confounding one treatment 
effect in one of the replications and quite different treatment 
effects in other replications. In this way, there is no need to sacri
fice all knowledge about a confounded effect. The ideas follow 
quite naturally from what we have already learnt, so we shall 
illustrate the technique by working a numerical example, in 
which there are three factors A, B, and C, each at two levels, and in 
which the treatment combinations ABC and BC are confounded, 
each in one only of the two replications of the experiment. Before 
dealing with the numerical analysis, let us design the experi
mental layout as the investigator would have to do before starting 
the experiment. 

Consider the first replication in which we are to confound 
the ABC interaction. One block will contain those treatment 



452 FACTS FROM FIGURES 

combinations having an even number of letters in common with 
the interaction ABC, and will therefore appear as 

(I) ab ae be BLOCK I 

For the second block we shall have, therefore: 

abe a b e BLOCK II 

Considering next the second replication, one block will have 
those treatments containing an even number of letters in common 
with the interaction BC, and will therefore appear as 

( I) a " I ." I >COCK m 

The second block in this replication must therefore be 

L---
ab 

__;_I ~_ae_.!,__1 _b __;__e-...JI 'WO<" 

Imagine, now, that the experiment has been performed and that 
the yields were as'shown in the following schematic : 

I 

FIRST REPLICATION 

(I) 1 ab 2 

ae 3 be 2 

Block Total T", S 
Block Correction Factor 

T2 
- =.0.1=16 
N 

II 
abe 1 a 3 

b 6 e 2 

Block Total T ", 12 
Block Correction Factor 

~=l¥= 36 
N 
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SECOND REPLICATION 

III 
(I) 2 a 3 

be 3 abe 8 

Block Total T = 16 
Block Correction Factor 

T2 
- =4¥ =64 
N 

IV 
ab 6 ac 10 

b 7 e 5 

Block Total T = 28 
Block Correction Factor 

T2 
-=2¥=196 
N 

Grand Total for aU blocks T = 64 

T 2 
Grand Correction Factor Jy=T =256 

The reader should by now be able to follow the following com
putation without difficulty: 

Total Sum of Squares 

Square all items and subtract the grand correction factor. 

Block I items squared 1 + 4 + 9 + 4 - .18 
Block II" " 1 + 9 + 36 + 4 - 50 
Block III" " 4 + 9 + 9 + 64 = 86 
Block IV.. .. 36 + 100 +49 +25 = 210 
Total of squares of items - 364 
Total Sum of Squares = 364 - 256 = 108 with 15 d.f. 

Between Blocks Sum of Squares 

Derived from squares of block totals and grand correction 
fac tor, remembering that each block total is the sum of 4 items. 

t[64 + 144 + 256 + 784] -256 = 312 -256 = 56 
Between blocks sum of squares = 56 with 3 d.f. 

Within Blocks Sum of Squares 

Derived by subtracting between blocks sum of squares from the 
total sum of squares, thus: J 08 - 56 ~ 52 with J 5 - 3 = 12 d.f. 

Alternatively. We may derive it directly by subtracting from the 
sum of the squares of the items in any block (see total sum of 
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squares computation) the block correction factor. Then sum the 
results for all blocks thus: 

Block I 18 - 16 =< 2 with 3 d.f. within the block 
Block II 50 - 36 "" 14 with 3 dJ. within the block 
Block III 86 - 64 ... 22 with 3 d.f. within the block 
Block IV 210 - 196 = 14 with 3 d.f. within the block 

Total within blocks = 52 with 12 d.f. within the blocks 

Now this within blocks sum of squares includes the treatment 
sum of squares and the residual error sum of squares. Our next 
step is to get the sum of squares for all the treatments individually 
and combined. 

Treatment Sum of Squares 

Firstly, those treatments which are not confounded with be
tween block differences. To evaluate these we can utilize all the 
blocks. 

A = (a - 1)(b + 1)(e + 1) 
= [abc + ab +ae +a] - [be +b +e +(1)] 

Summing the treatment yields over every block, we find: 

A = [9 + 8 + 13 + 6] - [5 + 13 + 7 + 3] = 8 

We get the A sum of squares by squaring this result and divid
ing by 16, the number of plots on which the contrast is based. 
Hence the A sum of squares is n = 4. Since the factor A was at 
two levels in the experiment, there is 1 dJ. 

The following table shows the computation for all the uncon
founded contrasts. The layout is self-explanatory. 

abe ab ab be a b e (I) Total T2 T2 
=T 16 

---
A 9+8+13-5+6-13 - 7-3 8 64 4·00 
B 9 + 8 - 13 + 5 - 6 + 13 - 7 - 3 6 36 2·25 
C 9 - 8 + 13 + '5 - 6 - 13 + 7 - 3 4 16 1·00 
AB 9 + 8 - 13 - 5 - 6 - 13 + 7 + 3 -10 100 6·25 
AC 9 - 8 + 13 - 5 - 6 + 13 - 7 + 3 12 144 9'00 

(Unconfounded) Total treatment sum of squares, with 5 d.f. ==22.50 
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We can estimate the BC sum of squares from Blocks I and II, 
since the interaction was left unconfounded in these blocks. Sum
ming over the blocks in the first replication only, therefore, we 
find : 

abc ab ae be a b e (1) T I T2 T2 

I 8 
BC 

I 
1 - 2 - 3 + 2 + 3 - 6 - 2 + 1 

---

I 
- 6 I 36 4 ·50 

This is with I dJ., since each of the main factors Band C have 
only one degree of freedom, so that the interaction has 1 x 1 = 1 
d.f. 

The ABC interaction may be assessed from the second replica
tion, since it was Jeft unconfounded there. Summing as before 
over the eight plots, we find: 

abe ab ac be a b e (1) T T 2 T 2 
-
8 

--I-
ABC 8 - 6 - 10 - 3 + 3 + 7 + 5 - 2 2 4 0·50 

This again is based on 1 d.f. 
Collecting together the treatment sums of squares, we have: 

A 
B 
C 
AB 
AC 
BC 
ABC 

Treatment Total 

Sum of Squares 

4·00 
2·25 
1·00 
6·25 
9·00 
4·50 
0·50 

27 ·50 with 7 d.f. 
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Residual Sum 0/ Squares 

This is found as the difference between the within blocks sum 
of squares and the treatment sum of squares, viz. 

52-27'50 = 24,50 with 12-7=5 dJ. 

We may now draw up the table of the analysis of variance. 

TABLE OF ANALYSIS OF VARIANCE 

Source Sum of d.f. Variance 
squares estimate 

Blocks 56·00 3 18·67 

Treatments 
A 4·00 1 4·00 
B 2·25 1 2·25 
C 1·00 1 1·00 
AB 6·25 1 6·25 
AC 9·00 1 9·00 
BC 4·50 1 4·50 
ABC 0·50 1 0'50 . 

Error 24·50 5 4090 

Total 108·00 15 

NOW TRY YOUR SKILL AT ANALYSIS OF 
VARIANCE 

1. The following table shows the annual death rate by quarters of 
the year and by decades according to the Registrar General. Carry out 
a between-row and column analysis to establish season and long
term trend. 

1901/10 
1911/20 
1921/30 
1931/40 

March 
17-1 
17·2 
IS'5 
15-8 

Quarter ended 
June September December 
14·6 13-8 15'4 
]3·6 11·8 14·9 
11·7 9·5 11 ·g 
11·6 9·8 12·0 
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2. In the chapter on Time Series Analysis, we got the following 
results for quarterly takings as a percentage of the current trend. Carry 
out an analysis of variance between quarters to establish formally that 
there is a real seasonal effect: 

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 
Year 1 -44 + 2 +134 -13 
Year 2 -60 +13 +112 - 33 
Year 3 -67 -10 + 70 + 8 
Year 4 -48 - 51 -90 - 9 

3. If. in an experiment, we decide to confound the interactions AB 
and AC, what other effect must inevitably be sacrificed? Layout an 
experimental arrangement for (our factors A, B, C, and D, with each 
factor at two levels. in whiCh this particular set of effects may be con
founded with between block differences. 

4. Design all experimental layout in which three treatments are 
considered each at two levels, there being two repUcations of treatment 
combinations with the AS interaction confounded in one replication 
and the AC in the other replication. 
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Statistics Desirable 

'This is the end of tears: No more lament.' SOPHOCLES 

It would be ungracious of us to leave the reader who has valiantly 
suffered our attempt to explain statistical methods without some 
word of farewell. Statistics is not the easiest of subjects to teach, 
and there are those to whom anything savouring of mathematics 
is regarded as for ever anathema. We have tried to keep these lost 
souls in mind by keeping the more formidable aspects of mathe
matical statistics as far in the background as possible. For this 
reason, we hope that some of those who have laboured with us 
will not be happy that the time has come to part. After all, the 
whole point of a book such as this is that it sets out to create au 
interest in its subject-matter. We shall be well content if some, at 
least, of our readers, while glad enough to be rid of the present 
author and his efforts, will at any rate have seen sufficient of the 
light to wish to go to those better teachers whose names we have 
placed in the bibliography as if in a roll of honour. 

There are certain matters which we would place before the 
reader's attention before leaving him to his own thoughts. In the 
first place, the fact that men are very fond of collecting figures, 
quoting from them and drawing conclusions (legitimate and 
otherwise) on them as a foundation. We feel that the man who 
says • Give me the figures' is worthy of respect; that propaganda 
well armed with numerical data is sincere - even if it may still be 
misleading. This attitude we find in every aspect of our lives, 
whether it be in the field of sport or the world of business. There 
is something very sad in the disparity between our passion for 
figures and our ability to make use of them once they are in our 
hands. How often we find ourselves in the same position as the 
child who has a lovely chemistry set for Christmas but who lacks 
the knowledge to do anything but mix anything and everything 
together, making a fine old mess in the process. There is an art in 
handling figures, just as in handling chemicals. We do not set our
selves up as chemists without studying the laws of chemistry. 
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Neither are we likely to make much of a job of anything but the 
simplest data without ·proper study of the means of handling 
them. 

The trouble arises from the fact that, while we are not all 
taught chemistry at school, we are all taught arithmetic. Now 
there are in arithmetic four things to learn : addition, subtraction, 
multiplication, and division. That is all. Most of our time at 
arithmetic in school is devoted to applying these four operations 
to a variety of circumstances: thus arise the problems in weights 
and measures, fractions, decimals, proportion, and all the rest. It 
is constantly impressed upon us that arithmetic is an exact science; 
that all the problems in our textbooks have an answer, which is 
an exact one and may (if our teachers are modern enough so to 
pamper us) be found in the back of the book. The nearest we get 
to anything like statistics is when we learn to work approxima
tions (a dying art, alas !). But even in such cases we are sternly 
reminded that we are only getting a rough idea of an exact answer 
which we could (were it not that we are now on Chapter 14) work 
out exactly. 

Far be it from me to decry the ardour with which our masters 
and mistresses drive this into our thick skulls. It is all necessary. 
What I grumble about is the fact that they seem positively afraid 
of d'oing anything that is not capable of an exact solution. This is 
indeed a sorry preparation for the life of the real world. Apart 
from the bank clerk counting someone else's coppers with grimy 
fingers. it is doubtful whether there is any single case where the 
full precision of which arithmetic is capable is of the slightest use. 
What training do we receive even in the basic ideas of handling 
statistical data, which is the very lifeblood of everyday life? There 
is much that could be done with children of even average intel
ligence before the age of fifteen . But the schoolmasters must learn 
first. And a jolly interesting class subject they can make of it if 
they will. They will be doing a jolY of inestimable value if they will 
train their students to have some critical faculty in the face of 
arithmetic. Teach them the art of crossing out 114·72 and replac
ing it with 100. My experience is that people have a sort of religious 
awe about figures. They feel there is something impious in inter
fering in any way with an answer that has once been worked out. 
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How many hearts have been saddened when the physics master 
puts his pencil through the accurate answer! It is strange how lads 
of sixteen and seventeen think it quite daring fun to make gross 
approximations. Stranger stilI to see them at so advanced an age 
surprised that crude approximations in the parts ofa problem can 
lead to a quite decent answer, provided the sacrilege is carried out 
with all the cunning of the devil himself. 

Half of the corruption of political life may be due to malice 
aforethought on the part of the politicians. The other half is cer
tainly due to their having an unhealthy respect for figures - a 
positive fear of attacking them when they lend colour to their own 
party's dogmas. Men have been martyred for the difference be
tween two wrong answers. In business, too, men have lost face for 
the same reason and had to wait until the following year before 
the disgrace had sufficiently worn down for them to be given a 
well merited rise. 

Really, the slipshod way we deal with data is a disgrace to 
civilization. Never have so many data been collected in files and 
left unanalysed. Never have so many data been taken out of files 
and misread. Yet it is easy enough to learn the arts of interpreta
tion; to learn when it is safe to say definitely one thing or another; 
to learn when judgement must be suspended. 

A very little consideration shows that there is scarcely a hole or 
comer of modem life which could not find some application, 
however simple, for statistical theory and show a profit as a result. 
It has something to offer the man who specializes in any of the 
branches of management in industry. It offers assistance to the 
man responsible for purchasing and goods inward inspection. In 
the hands of the cost accountant or the time and motion study 
man it acts as a hone to sharpen traditional tools. For the in
spector in a production plant it offers the only possible realization 
of the true philosophy of inspection and, not surprisingly, does 
the job with greater efficiency and in a more revealing manner. It 
is a positive encouragement to the customer in that it holds out 
the promise of goods produced under controlled conditions, so 
that they are at once better and more consistent in quality. In the 
research laboratory it is a powerful adjunct, offering optimum 
criteria for the assessment of data, eliminating wishful thinking, 
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and yielding principles of experimental design which face the fact 
of experimental error and make possible the highly desirable 
objective of experimenting with a great diversity of combinations 
of the factors under- test. Perhaps most important of all , it enables 
research to leave the controlled conditions of the laboratory and 
proceed in the rough and tumble of the factory, where, after all, the 
results of experimental work have finally to be turned into pro
duction processes reasonably immune from trouble. 

Consider, for a moment, some of the fields where the techniques 
may be applied . There is scope and often real necessity for them 
in leather tanning, in the paper-making mill, and in the prepara
tion of pharmaceutical products. It is applied in glass technology, 
in rubber technology, and in the manifold branches of applied 
chemistry and ,metallurgy on which we so much depend for the 
comforts of modem civilization. We find it in steel works, in agri
cultural research, and in the textiles industry - the latter still 
offering enormous scope to those who have the courage to apply 
statistical techniques to hosiery production problems and the like. 
It is made use of by the telephone engineer both in the design of 
equipment and in tbe manufacture of components to close limits. 
I t has been applied even to traditional handicrafts like glass blow
ing. In the field of mechanical engineering it has a great part to 
play both for quality control of quantity produced articles and for 
the sampling inspection of components and raw materials. In
surance, public health, road safety research, operational research 
into building techniques, selection of students for higher educa
tion aptitudes, personnel selection, and market research all depend 
on the application of sound statistical principles. It is a promising 
tool for the meteorologist, for the biologist, and for the student of 
sociology. Constantly. new techniques are being developed as the 
science is used in more and more fields of endeavour. Each field 
raises new problems and calls for new techniques and modifica
tion of old ones to suit its own peculiarities. There is unceasing 
cross fertilization between applied statistics and mathematical 
statistics. Mathematical principles spread out in ever widening 
circles of practical application; diverse techniques developed in 
varying fields by practical men are unified and strengthened by 
the mathematicians. 
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At bottom it boils down to this: wherever anything is measured 
numerically, wherever there is an attempt, however rough, to 
assess anything in the form of numbers, even by the simple pro
cess of counting, then there begins to arise the necessity for 
making judgements as to the significance of the data and the 
necessity for traffic rules by which the flow of information may 
proceed smoothly and purposefully. In a word, there is the need 
for statistics. The application of scientific method to every phase 
of industry (which is a phenomenon of rapidly growing propor
tions) inevitably has brought about an increase in measurement of 
every kind. It is widely accepted now that, even if in the present 
state of knowledge and in the hurlyburly of production we are 
able to measure what we are dealing with only roughly, it is far 
better to make some rough measurement than no measurement at 
all. The fantastic success of physics - which is by definition the 
science of measurement - has stirred workers in every field to try 
to emulate this success in their own field by similar methods. No 
doubt it is true that the methods of physics are not applicable in 
all other fields. The fact remains that in many cases it is only now 
being tried out, and is certain to bring great rewards in many 
cases. The very fact that this great adventure in measurement is of 
necessity rough, that very often we are unaware of the under
lying structure of the universe our measurements are sampling, is 
the true explanation of why statistical techniques are becoming so 
widely adopted in every industrial country. 

Britain has a proud record in the development of statistics. 
Yet already a rather familiar story is being retold. Other 
countries, notably the United States, are more alive to the prac
tical value of these techniques. To the American industrialist 
'there's gold in them thar formulae'. This book is meant as a 
small contribution to bringing statistical methods before the atten
tion of those who were raised earlier in history, as well as those 
who are responsible for the future of our industries. It is not that 
I recommend statistics as a panacea - such things do not exist, 
but it is a development worthy of the attention of all who have 
the application of scientific method to our industries at heart. It is 
one more tool which many. though Dot all, will find valuable. 
What about you? 
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Every man who has attained success in his walk of life tends to 
grow contented. His success is taken as proof of the essential 
rightness of his ideas. And rightly so, maybe, so long as we re
member that William the Conqueror was also right at the Battle 
of Senlac Hill. Those who have not yet attained success are 
(among my readers) those whom it awaits as they grow older -
and as the older men retire. These young men tend to believe that 
anything new is better, simply because it is new. I have advice for 
young and old which I hope they will ponder. 

If you are young, then I say: I..earn something about statistics 
as soon as you can. Don't dismiss.it through ignorance or because 
it .calls for thought. Don't pass into eternity without having 
examined these techniques and thought about the possibility of 
application in your field of work, because very likely you will find 
it an excellent substitute for your lack of experience in some 
directions. It will curb your over-enthusiasm. If you are older and 
already crowned with the laurels of success, see to it that those 
under your wing who look to you for advice are encouraged to 
look into this subject. In this way you will show that your arteries 
are not yet hardened, and you will be able to reap the benefits 
without doing overmuch work yourself. Whoever you are, if your 
work calls for the interpretation of data, you may be able to do 
without statistics, but you won't do so well. If my efforts in this 
book have helped you to some measure of understanding about 
the subject. I am sure you will thank me and forgive the bluntness 
of my advice. If not, then I am sorry for everything. 
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Answers 

CHAPTER 2 

(1) f . (2) (4.3.2.1) (n·n-k~). (3) 17$. 6d. 
(4) Two factors, 10. Three factors, 10. (5) 64. 
(6) No Orchids forbidden, 5. Compulsory, 10. Free choice, 15. Note 
tllat 15 = 5+10. General Rule : NCR = (N-I)CR+(N.-J)C(R-I). 
(7) 56, 7, 20, 720. (8) 630. 

(9) S 9! P . 14! Do h 231 
tatesmen 2!2!2! rocrastmator 3!2!2!2! t 4!3!3 13!2!2!2 1 

(10) 32.31.30 ... 24.23. 

CHAPTER 4 

(1) !(n + 1). (2) 50·1. (3) H.M. = 24 m.p.g., A.M. = 25 m.p.g. 
(4) 52·6. (5) 16t lb., but arithmetic avg. preferable. 

CHAPTER 5 , 
(1) 1 = 50·1.$ = 0 '305. (2) M.D. =0·25. (3) I.Q.R. = 0 ·5. (4) 61%. 

CHAPTER 6 

(I) of = 9'5. s = 1'25. (2) !l·25. (3) 9·47. 

CHAPTER 7 

(I) (a) 0·904. (b) 0 ·091. (c) 0 '995, (d) 0·005, (e) 0·096. 
(3) Not rash. Probability is only 0·001. (4) 1:1 :2. (5) 20%. 

CHAPTER 8 
(1) Odds 30 to 1 against so many deaths if treatment harmless and 
patients typical. 
(2) Results so bad have only I % chance without definite cause. 
(3) About one chance in ten. 
(4) Taking' 5 and over' as equal to 7. the expectation is z =2 ·08 
approx. and the approx. expected frequencies for O. 1, 2 etc. particles 
are, 37, 78, 82, 57, 30, 12,4. 

CHAPTER 9 
(1) (a) 15- 33, (b) 18- 30, (c) 21- 27. 

CHAPTER 10 
(3) t inch. (4) 0'002 inch. 
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CHAPTER 11 
(I) Z = 1·5 in samples of 100 items. 
(3) s = 1·5 drams, so virtually all within ± 4·5 drams. 
(4) 4·5 drams. 

469 

(5) .1' = 0·7 thousandths of an inch, giving about 15% defective. Need 
S = 0·33 approx., i.e. range of about 0 ·7. 

CHAPTER 13 
(I) Doctor and patient in asylum. 
(2) Standard Error of difference of means approx. 0·4 lb. Observed 
difference nearly 4 times standard error. Highly significant. 
(3) Standard Error of Mean approx. 1 beat per sec. Highly significant 
but of no practical use. 
(4) Significant p = 1 % appro". (5) No. 

CHAPTER 14 
(1) 4·25%. (2) 0 '25%. (3) 3·53 ±0·36%. (4) ± O'014 fl. oz. 

CHAPTER 15 
(1 ) X2 = 3.S approx. 1 d.f. Hardly significant (using Yates' Correction). 
(2) x2 = 7 approx. I d. f. Significant. 
(3) X2 =230 approx. l d.f. Highly significant. 

CHAPTER 16 
(1) (a) y=0·9Sx+7 ·9,(b) x= I ·1y - 8·7. 
(2) r = 1 very nearly. Highly significant. 

CHAPTER 18 
(1 ) Significant at 5% level. (2) W =0·2 approx. 
(3) K =0'5 approx. (4) Yes. Significant at 5% level. 

CHAPTER 19 
(3) Be Interaction is lost. The required layout is: 

Block I d abe abcd (1) 
Block II ad be bed a 
Block III bd ae oed b 
Block IV ed ab obd e 

(4) The required layout is : 
lSI Replication 

Block I Block II 
abc 
ob 
e 

(I) 

ae 
be 
a 
b 

2nd Replication 
Bloek I Bloek II 

abe 
ae 
b 

(1) 

ob 
be 
a 
e 
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Chapters in which items are extensively introduced are shown 
in heavy type with the first relevant page immediately following. 

Addition Law, 7. 
Analysis: 

Control Chart, 11 141f, 19 382f. 
Covariance, 16 286f, 19 420f. 
Discriminatory, 315C. 
Preference, 18 340f. 
Preliminary Yield, 19 423f. 
Sequential,ll 192f. 
Time Series, 17 321f. 
Variance, 233f, 19 371 f. 

Average: see Mean. 
A.O.Q. and A.O.Q.L.,llI73f. 
A.S.N. Curve, 12192f. 

Bessel's Correction, 226, 229, 236. 
Block bias, 359, 19 441f. 

generation, 19 433f. 
leading, 19 ~~ . , 

Chance, La:Ws of, 2 4f. 
Charlier's Check, 74f. 
Chi-Square, 15 246f. 

Additive nature, 268. 
Class characteristics, 68f. 
Coefficient of: 

Agreement, 350. 
Association, 264. 
Colligation, 266. 
Concordance, 338. 
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J. L. Putman 

A476 

This is a book about atoms, and t heir use for man's benefit. Today, 
most people are getting llsed to the idea of nuclear power, but few 
realizc the value of thc lluclcar reactor as a source of radioactive 
isotopes. 

Much of the bC'<)k is devoted to an account of how isotopes 
affect our daily life; how they C,IO be used to diagnose and cure 
discasc , or help the farmer and thc industrialist. We are shown thc 
fascinating possibilities of the tracer method. by which atoms can 
first be labelled and then followed through various chcmical 
reactions, or can be detected in quantities so small as to bc 
unwcighable in the most sensitive balance, We )earn how radio
isotopes have at last provided an accurate _clock. by which we can 
date events in remote geological ages and even get some idea of 
when the earth itself was formcd. 

A chapter on health helps to put some irrational causcs of alarm 
into proper perspectivc, and shows how modern precaution~ make 
the use of radioactivity safe for both the "worker and the public. 
The introductory chaptcrs explain enough about atoms and nuclei 
to make the whole subject intelligible to t~e layman. 
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